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Finite Element Methods for Investigating
the Moving Boundary Problem
in Biological Development

Cornel Marius Murea and George Hentschel

Abstract. We describe two finite element algorithms which can be used to
study organogenesis or organ development during biological development.
Such growth can often be reduced to a free boundary problem with simi-
larities to two-fluid flow in the presence of surface tension, though material is
added at a constant growth rate to the developing organ. We use the specific
case of avian limb development to discuss our algorithms.

1. Introduction

Biological development involves both growth and changes of form which can often
involves free moving boundaries [22]. Such moving boundary problems are simi-
lar in some respects to two fluid flow interfaces such as the Hele-Shaw problem
with surface tension also called Mullins-Sekerka problem. In general, however, in
contrast to incompressible flows, growth due to mitosis and nutrients ensure that
material is constantly being added (and sometimes removed when cell death or
apoptosis occurs). In addition, specific boundary conditions (in general different
for each organ or cell type considered) will result in a more complex boundary
value problem than those studied in Hele Shaw cells. In this paper to be specific
we shall consider avian limb development, though we believe that similar finite el-
ement algorithms described here will be useful for other problems of organogenesis
or organ morphogenesis and biological development.

In this paper we will consider the evolution of two-dimensional moving do-
mains. The more realistic but more complex case of three-dimensional domains
separated by two-dimensional interfaces will be described in a future publication.
In the case of the avian limb, the ventral-dorsal length scale (back of limb to palm)
is normally small compared to the proximal-distal (tip of finger to point at which
the limb joins the main body of the organism) or the posterior-anterior distance
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(from thumb to little finger) and therefore two-dimensional simulations are quite
informative. In addition, at the developmental stage we are interested in, namely
the embryo the whole limb which is only of a millimeter in scale, has approximately
the shape of an ellipse with boundary Γ1(t) and a boundary Γ2(t) grafted to the
trunk of the organism. In general only the growth velocity of Γ1(t) parallel to the
gradient of a pressure, while the growth of Γ2(t) can be described by the motion of
the joining vertex with the main trunck (in the more complex three-dimensional
case this single point becomes a closed one-dimensional contour). The pressure in
the limb whose gradient describes the rate of growth of the limb is the solution of
a Poisson problem with Dirichlet boundary conditions depending on the curvature
of the boundary.

In Section 2 we give a brief description of some relevant aspects of avian
limb development. Then in Section 3 we present a mathematical formulation of
the resulting free boundary problem.

In Section 4 two algorithms are described to solve numerically integrate the
resulting equations of motion and find the dynamical evolution of the interface.

In the first algorithm the boundary of the domain is approached by a polygon
and the pressure is computed by a Finite Element Method. The computed pressure
is a piecewise linear function, globally continuous. The curvature is computed as
the inverse of the ray of the circle passing through three consecutive vertices of
the boundary. The gradient of the pressure is then computed in a vertex of the
mesh, as a weighted mean of the gradients in the neighborhood triangles. For the
time discretization, we use the forward finite difference Euler’s scheme. A dynamic
mesh technique is used in order to generate a triangular mesh at each time step.
Starting from the mesh at the precedent time step and knowing the boundary at
the current time step, we generate a mesh by redistributing the interior vertices
using an optimization algorithm. The number of the interior vertices are constant.
Also the connections of all meshes are the same, i.e., if i, j, k are the vertices of a
triangle in the mesh at the precedent time step, these points are the vertices of a
triangle in the current mesh.

While in the second algorithm, the boundary is approached by cubic spline
interpolation which gives a curve twice continuously differentiable. The curvature
is computed using the parametrization of the splines. Again at each time step,
a new mesh is generated, but this time, the generation of the current mesh is
independent from the previous one.

In Section 5 we describe the numerical tests of our algorithms. Finally in
Section 6, we give a brief discussion of the potential of these approaches for studies
of organogenesis and biological development.

2. Early avian limb development

Early avian limb development presents a beautiful example of organogenesis and
biological pattern formation: Well-defined developmental axes exist which need
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to be understood. Limb growth changes the size and shape of internal domains
in which biochemical processes occur. Cartilege formation via mesenchymal cell
condensation occurs which will later differentiate into bone and form the skele-
tal limb. Many of these features appear to be robust: if comparisons are made
anatomically with such an apparently different vertabrates as chicken and mouse,
it is remarkable the extent to which the gross features of patterning observed dur-
ing development are conserved by evolution. All of which suggests that universal
physical mechanisms controlling development exist.

The embryo produces the raw materials (e.g., proteins, polysaccharides,
RNAs) for its development from the available nutrients, according to rules embod-
ied in the genetic code; diffusion, spreading, differential adhesion and chemotaxis
transport these materials to specific regions of the organism. The mechanical or
chemical changes which may take place in the course of the transport (change
of concentration, cell shape, adhesiveness and cohesiveness) are signals that often
affect the production of the building material itself, that is, gene activity.

In the course of these events cells differentiate and become more special-
ized. Differentiation involves regulated gene expression, but elaborate interactions
among cells determine where and when new genes are expressed. In addition,
morphogenetic changes require coordinated cell movement. The formation of the
avian limb requires the establishment of proximal-distal positional gradients and
transverse periodic modulations of morphogens to control the formation of indi-
vidual and multiple parallel skeletal elements. These morphogen patterns act on
limb mesenchyme to promote the formation of precartilage condensations, and ul-
timately the chondrocytes that will give rise to the cartilaginous primordia of the
limb skeleton, which ultimately are replaced by bone.

In this paper we wish to investigate only one aspect of this morphogenesis.
Namely what type of overall shape is to be expected as a result of growth of the
developing embryonic limb. To investigate this problem we consider a minimal
model which incorporates the key features of this biological growth. Key is the
addition of material at a rate S to the extracellular matrix in which the cells move
(more generally the rate of growth will be S(x, t) as it could be both spatially
varying and have a temporal dependence due to genetic switching mechanisms).
This means that that the material flow in the limb will obey

∇ · v = S. (1)

We treat growth of the limb as due to a creeping flow because of the very low
Reynolds numbers involved [8]. Therefore we can expect the flow to obey Darcy’s
Law

v = −α∇p (2)

where p is a pseudo pressure field, which obeys ∆p = −S/α in the limb domain.
Finally we need biologically reasonable boundary conditions. As it appear

there is no flow of material into the main body of the organism at Γ2(t) we shall
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take slip boundary condition here

v · ν = 0, (3)

where ν is the outer unit normal vector to the boundary, while the elastic properties
of the epithelial layer of cells forming the skin layer at Γ1(t) will result a pressure
at this boundary obeying

p = γκ, (4)

where γ is the effective surface tension of the limb [9] while κ is the limb curvature.
The equation of the normal velocity of the boundary Γ1(t) is

Vν = v · ν. (5)

The above condition requires that the boundary Γ1(t) moves with the fluid.
It is the integration of this free boundary value problem that we study below.

This mathematical model agrees favorably with the analysis presented in [3] based
on biological experiments where the limb is considered as a homogeneous and
highly hydrated core embedded in an dense envelope.

3. The free boundary problem

We study the evolution of a bounded connected open domain Ω(t) of R
2 with

boundary ∂Ω(t) = Γ1(t)∪Γ2(t), where Γ1(t) and Γ2(t) are two non-empty subsets
of ∂Ω(t). Here t ≥ 0 is the time. We assume that Γ1(t) is a non-closed curve of
class C2 and its ends evolve on the Oy ax. The boundary Γ2(t) is the segment
which has the same ends as Γ1(t). Let ν denote the outer unit normal vector to
the boundary.

(t) Ω

Γ

(t)

(t)

x

y

Γ2

1

V

ν

Figure 1. Schematic illustration of the free boundary problem
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From the equations (1)–(5), we can eliminate v and we obtain a system in p
only. In the moving domain Ω(t), we have to find the pressure p(x, y, t) : Ω(t) → R,
such that 





−∆p = S/α in Ω(t)
p = γκ on Γ1(t)

∂p

∂ν
= 0 on Γ2(t)

(6)

where α, γ, S are positive real constants and κ is the curvature of Γ1(t). We use
the sign convention that convex domains have positive curvature of the boundary.

The boundary Γ1(t) evolves according to the law

Vν = −α
∂p

∂ν
(7)

where Vν is the normal velocity of Γ1(t).
We know the initial domain

Ω(0) = Ω0. (8)

We consider the problem (6)–(8) of determining the evolution of Ω(t) and to find
the pressure p(x, y, t) for t ∈ [0, T ], where T > 0 is a given real constant.

This problem is similar to the Hele-Shaw problem with surface tension, but
in our case the pressure is no longer harmonic (∆p �= 0).

Let p(x, y, t) = S
4α

(
x2 + y2

)
. We set P = p + p and we obtain from (6)–(7)

the following problem: in the moving domain Ω(t), we have to find the pressure
P (x, y, t) : Ω(t) → R, such that






∆P = 0 in Ω(t)
P = γκ + p on Γ1(t)

∂P

∂ν
= 0 on Γ2(t)

(9)

and the normal velocity of the boundary Γ1(t) is

Vν = −α

(
∂P

∂ν
− ∂p

∂ν

)

. (10)

Though we cannot prove the existence and uniqueness of our solution, the ex-
istence and uniqueness of classical solution for the Hele-Shaw with surface tension
problem was proved in [7], suggests that this is the case here also. It is possible
that, in order to obtain the existence and uniqueness of solution, we have to pre-
scribe the angles between the boundaries Γ1(t) and Γ2(t). The problem of existence
and uniqueness is now under active investigation by G. Simonett.

As it was shown in [12], the shape of the moving domain is determined solely
by its normal velocity. In other words, if the velocity of Γ1(t) has the form

V = Vν · ν + Vτ · τ
where τ is the unit tangent vector to the boundary and Vν is given by (7), then the
movement of the domain and the pressure are the same as in the case Vτ = 0. We
set Vτ = −α (∇p · τ) and then V = −α∇p. The advantage of this choice is that
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we do not need to evaluate the normal vector to the boundary when we compute
the velocity of the boundary.

It is convenient to describe the curve Γ1(t) by the parametric coordinates

x = r1(θ, t),
y = r2(θ, t),

θ ∈ [a, b] .

Let us introduce the following generalized cylinder:

ΩT =
⋃

t∈]0,T [

(Ω(t) × {t}) .

The problem (6), (7) and (8) is equivalent to the following:
find r = (r1, r2) : [a, b] × [0, T ] → R

2 and p : ΩT → R, such that

∂r1

∂t
(θ, t) = −α

∂p

∂x
(r1 (θ, t) , r2 (θ, t) , t) , ∀θ ∈ [a, b] , ∀t ∈]0, T [

∂r2

∂t
(θ, t) = −α

∂p

∂y
(r1 (θ, t) , r2 (θ, t) , t) , ∀θ ∈ [a, b] , ∀t ∈]0, T [

r (θ, 0) =
(
r0
1 (θ) , r0

2 (θ)
)
, ∀θ ∈ [a, b]

where r0 =
(
r0
1 , r

0
2

)
is a parametric representation of Γ1(0) and p (x, y, t) is the

solution of (6).
Since ∂p

∂ν = 0 and ν = (−1, 0)T on Γ2(t), we have ∂p
∂x = 0 on Γ2(t). If we

suppose that p ∈ C2 (Ω(t))∩C1
(
Ω(t)

)
, we obtain that ∂p

∂x = 0 at the ends of Γ2(t),
also

∂p
∂x (r1 (a, t) , r2 (a, t) , t) = 0, ∀t ∈]0, T [
∂p
∂x (r1 (b, t) , r2 (b, t) , t) = 0, ∀t ∈]0, T [.

Then ∂r1
∂t (a, t) = ∂r1

∂t (b, t) = 0 and consequently r1 (a, t) = r1 (b, t) = 0, ∀t ∈]0, T [.
The boundary could be parametrized in multiple ways, but the solution must

be independent of parametrization.

4. Numerical methods

The free boundary problem (6)–(8) is similar to the Hele-Shaw problem with sur-
face tension also called Mullins-Sekerka problem.

To solve numerically the Hele-Shaw problem with surface tension, there exists
an efficient approach named θ−L introduced in [12]. The variables are the tangent
angle θ to the moving boundary and its arc length L. This framework makes the
application of an implicit method for time integration easy and it permits to
study the problem in a long time interval [13], [4]. In this approach a Fredholm
like boundary integral has solved and the integral representation of a harmonic
function is used. This is specific to some linear problems with constant coefficients.
This method is not appropriate if we replace the linear Darcy’s law (2) by the non-
linear Navier-Stokes equation with a volume source located at a certain point in
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the domain

ρ0

(
∂v
∂t

+ (v · ∇)v
)

− µ∆v + ∇p = f +
µ

3
∇ (∇ · v)

where ρ0 > 0 is the density of the fluid and µ > 0 its viscosity.
A frequented framework used for Navier-Stokes equation in moving domain

is Arbitrary Lagrangian Eulerian together with the Finite Element Method [14].
Other approaches are Time-Space Finite Elements [1], Level Set Method [21]

and Immersed Boundary Methods [17]. The last one was employed to study the
avian limb development in [6]. One of the disadvantage of the continuum models
is the complex implementation required to handle the moving boundary of the
domain where we have to solve a system of PDEs.

In [15] the software CompuCell is presented, where a purely continuum ap-
proach for morphogenesis is used in combination with a discrete cellular automata.
One of the part of CompuCell is based on the cellular Potts model (CMP). A crit-
icism of this formalism is that it neglects simple force balance between cells.

In this paper we present two algorithms which belong to the general frame-
work called “front-tracking methods” [5]. The numerical results were produced for
the Darcy’s law, but these algorithms could be used for the steady Navier-Stokes
equation also.

4.1. The first algorithm

For the time discretization, we use the forward finite differences Euler’s scheme.
We denote by ∆t the time step and by N = T/∆t the number of time steps. We
approximate Γ1(n∆t) by a polygonal line Γn

1 of vertices (xn
i , yn

i ) for i = 0, . . . , M .
We have xn

0 = xn
M = 0, for all n. We denote by Ωn the polygonal domain bounded

by Γn
1 and the Oy ax. For each vertex (xi, yi) of Γn

1 , we compute the discrete
curvature κn (xi, yi) as the inverse of the ray of the circle passing through the
three points (xn

i−1, y
n
i−1), (xn

i , yn
i ) and (xn

i+1, y
n
i+1).

The problem (6) is solved numerically by the Finite Element Method. The
computed pressure pn is approached by P1 function, globally continuous. We follow
[18] for computing the discrete gradient of pn. Let A be a vertex of Γn

1 . We denote
by star(A) the set of all triangles T of the mesh such that A is a vertex of T . We
compute the discrete gradient of pn at the point A as following:

∑
T∈star(A) Area(T ) · ∇pn|T

∑
T∈star(A) Area(T )

,

where pn|T is the linear function representing the restriction of the function pn on
the triangle T .

Algorithm 1

Generate a triangular mesh for Ω0 using freefem+ [2].
for each n from 0 to N − 1 do

Step 1: Compute the discrete curvature κn (xi, yi) at each vertex (xi, yi) of Γn
1 .
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Step 2: Compute pn by the Finite Element Method





−∆pn (x, y) = S/α, in Ωn

pn (xi, yi) = γ κn (xi, yi) , ∀ (xi, yi) vertex of Γn
1

∂pn

∂ν
(x, y) = 0, on Γn

2 .

Step 3: Compute the discrete gradient of pn at each vertex of Γn
1 .

Step 4: Compute the vertices of Γn+1
1

xn+1
i = xn

i − α∆t
∂pn

∂x
(xn

i , yn
i )

yn+1
i = yn

i − α∆t
∂pn

∂y
(xn

i , yn
i )

for each vertex (xn
i , yn

i ) ∈ Γn
1 , i = 0, 1, . . . , M , then set

xn+1
0 = xn+1

M = 0.

Step 5: The boundary Γn+1
2 is the segment of ends

(
xn+1

M , yn+1
M

)
and

(
xn+1

0 , yn+1
0

)
.

Step 6: Compute a triangular dynamic mesh for Ωn+1, where
∂Ωn+1 = Γn+1

1 ∪ Γn+1
2 using the algorithm [16].

endfor;

At the Step 6, we start from the mesh at the precedent time step and know-
ing the boundary at the current time step, we generate a mesh by redistributing
the interior vertices using an optimization algorithm. The number of the interior
vertices are constant. Also, the connections of all meshes are the same, i.e., if i, j,
k are the vertices of a triangle in the mesh at the precedent time step, these points
are the vertices of a triangle in the current mesh.

4.2. The second algorithm

Let (xn
i , yn

i ) for i = 0, . . . , M be points on Γ1(n∆t). Let {a = s0 < s1 < · · · <
sM = b} be a partition of an interval [a, b]. We will compute the interpolating
cubic spline functions Γn

1 = {(x(s), y(s)) , s ∈ [a, b]} with the properties:

• x(s) and y(s) are twice continuously differentiable on [a, b],
• x(s) and y(s) coincide on every subinterval [si, si+1], i = 0, . . . , M − 1 with

polynomials of degree three,
• x(si) = xn

i and y(si) = yn
i for i = 0, . . . , M ,

• x′′(a) = x′′(b) = 0 and y′(a) = y′(b) = 0.

For the numerical tests, we have chosen si = i, for i = 0, . . . , M .
In order to prevent the oscillations, we could choose a = 0 and

si+1 − si =
√

(
xn

i − xn
i+1

)2 +
(
yn

i − yn
i+1

)2
.
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The curve (x(s), y(s)), s ∈ [a, b] has a continuous curvature given by

k(s) =
x′(s)y′′(s) − x′′(s)y′(s)
(
(x′(s))2 + (y′(s))2

)3/2
. (11)

Algorithm 2

Let (x0
i , y

0
i ) for i = 0, . . . , M be points on Γ1(0).

for each n from 0 to N − 1 do

Step 1: Compute the cubic spline functions

Γn
1 = {(x(s), y(s)) , s ∈ [a, b]}

Step 2: Compute the curvature κn (xi, yi) at each vertex (xn
i , yn

i )
using (11).

Step 3: Generate a triangular mesh for Ωn using freefem+ [2], where
∂Ωn = Γn

1 ∪ Γn
2 and Γn

2 is the segment of ends (xn
M , yn

M ) and
(xn

0 , yn
0 ).

Step 4: Step 5: Step 6: Compute pn, ∇pn and (xn+1
i , yn+1

i ) as in the
Algorithm 1.

endfor;

At he step Step 3, the generation of the current mesh is independent from
the previous one.

We shall now describe some numerical tests of the efficacy of these algorithms
in studies of organogenesis.

5. Numerical tests

5.1. The initial domain is a semicircle

First let consider the case where the initial domain is a semicircle of ray R0. Then,
if we set the parametric representation of Γ1(0) as

r0
1(θ) = R0 cos(θ),

r0
2(θ) = R0 sin(θ), θ ∈

[
−π

2
,
π

2

]

the evolution of the boundary Γ1(t) is described by

r1(θ, t) = R0 e
St
2 cos(θ),

r2(θ, t) = R0 e
St
2 sin(θ),

θ ∈
[
−π

2
,
π

2

]
, t > 0.

The pressure has the form

p (x, y, t) =
S

4α

(
R2

0 eSt − x2 − y2
)

+
γ

R0 e
St
2

.

The algorithms have been implemented using the programming language
C++ and the Finite Element classes of F. Hecht [10]. The numerical results were
displayed using gnuplot.
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The first simulation was performed using the Algorithm 1 for R0 = 1, S = 2,
γ = 1, α = 0.5, ∆t = 0.05. The number of time steps is N = 10.

A dynamic mesh technique is used in order to generate a triangular mesh
at each time step. We have used the algorithm described in [16] for the mesh
generation. The initial mesh has: 208 vertices, 362 triangles, M = 32 (the number
of vertices on the boundary Γ1), h = 0.155178 (the mesh size).
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Figure 2. The initial mesh (left) and the mesh after 10 time steps (right)

The number of vertices, triangles, boundary edges are the same for the first
10 meshes. In the below table, we see the evolution of the mesh size h.

Time step (n) 1 2 3 4 5
Mesh size (h) 0.155 0.171 0.187 0.202 0.216

Time step (n) 6 7 8 9 10
Mesh size (h) 0.231 0.244 0.256 0.266 0.276

After 10 time steps, the domain might be a semicircle of ray e0.5 ≈ 1.648721.
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1.5

2
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Figure 3. The evolution of the moving boundary (0–10 time steps)
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The second simulation was performed using the Algorithm 2 for ∆t = 0.0005
and N = 1000 (the number of time steps). The others parameters are the same as
in the first simulation.

The software freefem+ [2] was used to generate a triangular mesh at each
time step. The numbers of the vertices and of the triangles are not the same for
the all meshes. For example, the mesh after 1000 time steps has 205 vertices and
356 triangles.

After 1000 time steps, the domain might be a semicircle of ray e0.5 ≈ 1.648721.
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1.5
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0 1 2 3 4

Figure 4. The boundary after 0, 100, . . . , 1000 time steps

5.2. A non-convex initial domain

Let now consider a case when the initial domain is non-convex as in Figure 5. The
boundary Γ1(0) has two flat parts on the bottom, on the top and three semicircles
of rays r1 = 0.6, r2 = 0.2 and r3 = 0.2 respectively.

The simulations ware performed for: S = 2, α = 0.5, γ = 0.5, ∆t = 0.0001
and N = 180 (the number of time steps).
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Figure 5. The initial domain
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Figure 6. The initial (continuous) and the final (dashed) bound-
aries. Algorithms 1 (left) and 2 (right)

We have observed that the pressure is almost constant near the two flat parts
of Γ1(t) and near the largest semicircle. Consequently, these parts of boundary
don’t move.

We obtain boundary with self-intersection (like the 8) after 182 time steps
using the Algorithm 2 and after 230 time steps using the Algorithm 1.

5.3. Concluding remarks

The second algorithm is superior to the first one due in principal to a better
approximation of the curvature and a better mesh. We can improve the results
by moving the boundary along the normal velocity which preserves a reasonable
distribution of the vertices on the boundary. The velocity of the boundary could
be computed more accurate by using P2 Finite Element for the pressure. Also
adapting mesh techniques could be employed for improving the quality of the
mesh.

In the first numerical test, we have solved the free boundary problem until
time t = 0.5 and in the second, until t = 0.018.

We have to use implicit in time algorithms in order to study this kind of
free boundary problem in a long time interval. The Arbitrary Lagrangian Eulerian
framework together with the Finite Element Method will be employed in a future
paper. These methods could be employed for the Navier-Stokes equation with
surface tension.
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6. Discussion

The algorithms described above could form the basis for many important inves-
tigations of organogenesis and biological development in general. Of course they
will need to be extended in several directions to give a quantitative picture of
how growth and form develops. Obviously highly computationally intensive three-
dimensional simulations are necessary. While genetic switching mechanisms will
need to be incorporated in order to understand the temporal properties of biolog-
ical development. But in addition to these questions many other lines of investi-
gation need to be developed.

For example we know that cell condensation and bone development depend
on reaction diffusion mechanisms in a progress zone of undifferentiated cells at
the tip of the limb. The size of this progress zone can be expected to have a
significant impact on the resulting prepattern created in the limb [19, 20, 11].
This is because even at the most basic level the number of standing waves of a
heterogeneous distribution of a chemical species formed by a reaction-diffusion
mechanism depends both on the scale of the basic pattern (set by the magnitude
of the biological parameters) and on the space available for this pattern to develop
(set by the domain size). Thus a very question is how the size of this progress zone
changes with time? In order to answer this question studies of limb growth will
form a vital ingredient.

Another question involves how the skeletal elements themselves, once formed,
would influence growth of the developing limb? Fairly significant changes in inter-
nal domain organisation occur between early development when the stylopod and
zeugopod are created, and later on when the digits appear. This question will re-
quire the development of algorithms for complex connected domains in which the
skeletal elements create internal boundaries to growth. In addition, the existence
of such internal domains will in turn influence reaction-diffusion mechanisms in
the interdigital regions. Such reaction-diffusion mechanisms might be relevant to
properly controlled cell death leading ultimately to digit formation. The influence
will be very dependent on the relative scale of the patterning compared to the size
of the interdigital domains.

Clearly these algorithms need to be developed in several directions for studies
of biological development and these will be reported in future publications.
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