Domain decomposition method for a flow through
two porous media

Cornel Marius MUREA*

Abstract. A flow through two porous media is studied. The two media are
in contact. The domain decomposition is obtained by introducing a Lagrange
multiplier. The aim of this paper is to present a new proof for the existence
and uniqueness of the Lagrange multiplier. This technique can be used for
time-dependent partial differential equations where the other methods, like
convex optimization, differential optimization, hybrid method, fail.
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1 Introduction

We study the flow through two porous media €2; and €2,. The two media are in contact,
it means that 02, N 0€2; =TI, as in the Figure 1.
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Figure 1: The porous media
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We denote by ¥; and X, the faces |F, A[ and |C, D[ respectively. B
The porosity in €2; and €25 is given by the applications &y : €} — R and ks : {25 — R
respectively. We assume that

da; > O,V.I' € ﬁl, ky (.I') > g,
3&2 > O,V.Z' c ﬁg, kQ (.Z') Z Q9.

Let us consider ¢; : X1 — R and g5 : ¥ — R.
The classical equations for the flow through the porous media 2; and €2, are the
following

—div (k1 () Vuy (x)) = 0Oon 1
—div (k2 (z) Vug (z)) = 0on €y 2
uy () = g1 (x) on 3 3

= g2(x) on X, 4
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where n' is the unit outward normal to 92, and n? is the unit outward normal to 9.
The equalities (7) and (8) represent the contact boundary conditions.
If the function A is known, where

A (1) = ky (z) Vuy (z) .n' (2) = ko (2) Vug (z) 0% (z) on T,
we can solve the equation (1) with the boundary conditions (3), (5) and
ki (x) Vuy (x) .n' () = M (x) on I
Also, we can solve the equation (2) with the boundary conditions (4), (6) and
ko () Vug (x) .n? (z) = A (x) on I

We observe that the equations in 2; and €25 can be solved independently, so we can
solve numerically using parallel computation. But the function A is not known a priori.

We can split the system of equations by introducing a Lagrange multiplier.

The aim of this paper is to present a new proof for the existence of a Lagrange
multiplier. This kind of proof can be used in the case of time-dependent equations,
where the other methods fail.



2 Variational formulation

We assume that €; and {2, are two bounded Lipschitz domains. Let g; and gy be given
in HY2 (%) and H'/? (%) respectively. There exist %, in H' (Q;) and %, in H* (),
such that Uy = gp on 21, Uy = gz On 22 and Uy = Uy = OonT.

Let k; and ko be given in L™ () and L> (£22) respectively. We define the bilinear
form a; from H' () x H' () to R by

ay (uy,vy) = / ki (z) Vuy (x) .V, () dz
Q1
and the bilinear form ay from H' () x H' (Q2) to R by
as (ug,vy) = / ko (z) Vuy (x) .V, (x) da.
1951

We denote

Vi = {vieH" ();v1=00n%},
‘/2 == {'UQGHl(QQ);'UQZOOHEQ},
V = {VixVy vy =uvy0onl}.

The variational formulation for the system (1)—(8) is the following:
find (u; — Uy, ug — Uy) in V, such that

ay (uy — @y, v1) + ag (ug — Uy, v9) = —ay (U, v1) — ag (U2, v2), VY (v1,v9) € V. 9)

As a consequence of the Lax-Milgram Theorem, there exists a unique solution for
the above variational system.

3 Some known ways to prove the existence of the
Lagrange multiplier

Let us denote by v : H'(Qy) — HY?(T') and 72 : H' () — HY?(T) the trace
applications. Also, we denote M = H'/? (I).
We consider the linear operator

B:VixVy— M,
B (v1,v3) = 7 (v1) = ¢ (v2) -



3.1 Convex optimization

Since a; and ay are symmetric forms, the variational system (9) is equivalent to convex
optimization below.
Find (uy — @y, us — Uy) in V} x V3, an optimal solution for

inf J (v, v 10
(v1,v2)EVLI X V2 ( ! 2) ( )
subject to
B (Ul, Ug) =0 (11)
where

1 1
J (Ul, Ug) = 50,1 (Ul, Ul) + 5012 (UQ, UQ) + ay (ﬂl, Ul) + (5] (ﬂg, Ug)
Let us consider the set

C = {(a,2) ER} x M; 3 (v1,v2) € Vi x Vi,
0 S J(Ul,Ug) —J(Ul—ﬂl,UQ—EQ)—FCY, B(Ul,’UQ) :Z}

which is convex. In view of a separation theorem for convex sets, there exits a hyperplane
which separates C' from {(0,0)}. Since the following interior regularity of the constraints
holds

0 €int B (V} x V3), (12)

it follows the existence of the Lagrange multiplier A in M', where M’ is the dual space
of M, such that

V(UIJUQ) S ‘/1 X ‘/27

13
ap (Ub Ul) + ag (U2, U2) + <)\7 B (Ula U2)>M’,M =0 ( )
or equivalent
ap (uy —uy,v1) = —ay (U, v1) — <)\7’Y% (U1)>M,,M Vo € V1, (14)
ag (up — g, v2) = —ag (U, v2) + <)‘7 7% (7}2)>M',M Vvz € V3 (15)

where (-, ), 5, is the duality product between M’ and M.
The regularity condition (12) holds because the operator B is surjective.
The variational equations (14) and (15) can be solved numerically in parallel..

3.2 Differentiability optimization

The existence of a Lagrange multiplier can be proved without convex assumptions, but
under differentiability hypothesis.
We recall the Theorem 1.13 from the book [2, p. 194].
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Theorem 1 Let (X, ||||y) and (Y,]|-||y) be two Banach spaces. Let f: X — Y be a
Fréchet differentiable function in xo € X and T € L (X,Y) with closed range. If xy is
an optimal solution of the problem

inf {f (); T (x) = k}
where k is in Y, then there exits y5 € Y' such that

fro (@) + (5, T (x))y,, =0, VzeX.

Zo

Using this result in the case X = VixV,, Y =M, f=J, T =B, k =0, 2y = (u1, us),
ys = A, we obtain the existence of the Lagrange multiplier A, such that the variational
equations (14) and (15) hold.

3.3 Hybrid formulation

The results concerning the existence of the Lagrange multiplier, which are more popular
in the Finite Element community, are due to Babuska [1] and Brezzi [4].
We recall the principal result.

Theorem 2 Let W and M be two Hilbert spaces. Let us consider two bilinear and
continuous forms a: W x W = R and b: W x M' — R, such that

Ja>0,Yv eV, a(v,v)>alv| (16)
36 >0, inf sup b(w,p) > B. (17)
ell=1 || =1

where
V={veW;b(v,u)=0,Vue M}.

Then for each f in W', there exists an unique solution (u,\) € W x M' such that

{ a(u,w)+b(w,\) = <f=w>W’,W Yw e W, (18)

b(u,p) =0, Ve M.
We shall use this result for in the case W =V} x Vo, M = H'Y/?(T),

a((uy,uz), (vi,v2)) = ay (uy,v1) + ag (uz,v2),
b ((vla UQ) JIU’) = </1’7 B (Ula U2)>M’,M :
The relation (16) holds because a; is V; elliptic and as is V5 elliptic..
In view of the fact that B is surjective and using the characterization theorem for

the surjective operators [3, p. 29], we obtain that the inf-sup condition (17) holds.
The first equation of (18) is equivalent to (13).
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4 New proof for the existence and uniqueness of the
Lagrange multiplier

Theorem 3 Let (u1,us) be the solution of the variational problem (9). Then there
exists an unique element X of M', such that the relation (13) holds.

Proof. Uniqueness. We suppose that there exists two Lagrange multiplier A\; and As.
From the equality (13), we obtain that

()\1 — )\Q,B (Ul7v2)>M’,M = O, V(’Ul,'Ug) € ‘/1 X ‘/2

But the operator B is surjective because £; NI = () and ¥, N T = (). Consequently,
we obtain that A\; — Ay = 0.

Existence. Let g be in M. Since ©; NT = (), we have that the application trace v}
is surjective and it follows that there exists v; in Vi, such that 74 (v1) = ¢g. Analogous,
there exists vy in V5, such that 72 (v2) = g.

We define the Lagrange multiplier as follows:

A(9) = ay (uy,vy) .

We must to prove that A is well defined. For other ¥, in Vi, such that + (v1) = ¢,
using the equality (9), we obtain that

a1 (Ulﬁl) = —Qy (U2, Uz) =a (Ub U1) .
Then A is well defined and we have that

a (U'la Ul) - )\ (f)/ll‘ (Ul)) ) vvl S ‘/1 ) (]‘9)
as (ug,v9) = —A ('y% ('Ug)) , Yo e Vs,

From the continuity of the forms a; and as, there exist two constants C; and Cy such
that

|a1 (U1,U1)|

|a2 (U2,U2)|

Cillvill g, VYov1 €V, (20)

<
< Gollall g, YeaeVi

where [|-||, o, and [|-[|, o, are the standard norms of the Sobolev spaces H'({;) and
H' (€,) respectively.

We prove now that A is linear.



Let g and A be in M and « and 8 in R. Then there exist v; and w; in V; such that
Yt (v1) = g and 7 (w) = h and we have

v (awy + Bwy) = ag + Bh.
From the definition of A and since a, is bilinear, we obtain

AMag+Bh) = a (ur, avy + Bw)
= aa; (ur,vr) + Bay (ur, w)

= a)(g) + LA (h).

We prove now that A\ is continuous.
From the relations (19) and (20), we have

NI Crllollg, Vo€ Vi, (v) =g.

It follows that
A9) < Cr inf {orlly g, 2 (1) = g}

Since the application 7} is surjective, as a consequence of the Banach theorem (see
[3, p. 19]), we obtain that the norm

def .
lgll. < inf {lforll 0, 5 7 (02) = 9}

is equivalent to the norm |||, of the Sobolev space H'Y2(I"). Consequently, \ is
continuous, which completes the proof. [

5 Conclusions

We have presented a new proof for the existence and uniqueness of the Lagrange multi-
plier for a contact problem. The variational system can by decomposed by introducing
a Lagrange multiplier. The both variational systems obtained after the decomposition
could be solved numerically by parallel computing.

This kind of proof can be used for time-dependent partial differential equations (see
[5]) where the other methods, like convex optimization, differential optimization, hybrid
method, fail.
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