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A stable algorithm for a uid-strutureinteration problem in 3DC.M. Murea & J.M. CroletUniversitatea din Buure�sti, Faultatea de Matemati�a, 14str. Aademiei, 70109-Buure�sti, RomaniaUniversit�e de Franhe-Comt�e, Laboratoire de Calul Sienti-�que URA-CNRS 741, 16 Route de Gray, 25030 Besan�onCedex, FraneAbstratA uid-struture interation problem is studied in the following hypotheses:the uid is inompressible and it is governed by the time-dependent Stokesequations and the sruture is governed by the linear elastiity equations.The interation beetwen the blood and the left ventrile of the heart isthe physial system whih is modeled.This paper presents a stable algorithm wih omputs the veloity andthe pressure of the uid and the veloity of the struture, using the Lagrangemultiplier method.1 IntrodutionA mathematial model for the biomehanis ontat problems beetwen theblood and an elasti struture has been studied by J.L. Lions in [5, p. 120{129℄ and [3, vol. 8, hap. XVIII, p. 795{801℄. In the linear ase, i.e.the uid is inompressible and it is governed by the time-dependent Stokesequations and the sruture is governed by linear elastiity equations, it hasbeen proved the existene and the uniqueness of the solution to 3D problem.In order to approximate the solution of this model, we propose an algo-rithm where the Lagrange multipliers are used to treat the both onstraintsof the problem: the free-divergene and the ontinuity of the veloity onthe ontat surfae.We an deouple the problem by introduing the Lagrange multiplierto treat the boundary value on the ontat surfae. This fat has positiveonsequenes: we an use the existent theories and the numerial proeduresto solve the uid problem and the struture problem, separately.325



Another attrative point is the simpliity of the implementation: at eahtime step, the linear system is solved by Uzawa algorithm. At eah iteration,the algorithm solves two deouplated problems, one for the uid and one forthe struture, the both problems have as parameter the Lagrange multiplieron the ontat surfae. The Uzawa algorithm �nds the ontat Lagrangemultiplier, suh that the veloities of uid and struture are equal on theontat surfae.In this paper, a disret time algorithm is presented.In the seond setion, it is proved that the disret time problem is wellde�ned, using the results of Babuska [1℄ and Brezzi [2℄. Firstly, the surje-tivity of the onstraint operator is proved. Using a haraterization theoremof the surjetive operators, the inf-sup ondition is obtained.In the third setion, the time stability of the algorithm is proved. Theproof is originaly: we don't use separately the existent stability theories forthe uid problem, respetively for the struture problem, but we prove thestability for the uid and for the struture, simultaneously. The veloity isevaluated in the norm H1, hene better than the usual evaluation in thenorm L2 used in the approximation of Stokes equation.2 Disret time variational formulationLet 
F (resp. 
S) be the domain in R3 of the uid (resp. of the struture),suh that: 
F \ 
S = �, �
F = � and �
S = � [ �1 [ �2.Let W 1 = H1(
F )N and W 2 = fw2 2 H1(
S)N ; w2 = 0 on �1g be theveloity spaes for the uid and for the struture.Let aF and aS be two bilinear appliations, de�ned by:8><>: aF : W 1 �W 1 �! RaF (v; w1) = NXi;j=1 Z
F �vi�xj �w1i�xj dx8><>: aS :W 2 �W 2 �! RaS(�; w2) = NXi;j=1 Z
S �ij(�)�ij(w2)dxwhere N = 3, �ij = �S( NXk=1 �kk) + 2�S�ij, �ij(w2) = 12(�w2i�xj + �w2j�xi ) and�S; �S > 0.The following quantities are given:i) fn+11 2 L2(
F )N and fn+12 2 L2(
S)Nii) � 2 R+ the density of the struture, �in = �F�F 2 R+ the inematialvisosityiii) vn 2 W 1 the veloity of the uid326



iv) �0; :::; �n 2 W 2 the veloities of the struture, suh that v0 = �0v) u0 2 W 2 the initial displaement of the strutureOur disret time problem has the following form:Find (vn+1; �n+1; pn+1; �n+1 ) 2 W 1�W 2�Q�M where Q = L2(
F )and M = H1=2(�)N , suh that:1�t(vn+1; w1)0;
F + �inaF (vn+1; w1) + 1�t(�n+1; w2)0;
S + �t2� aS(�n+1; w2)� (div w1; pn+1)0;
F � �0(w1)� �(w2); �n+1�1=2;�= (fn+11 ; w1)0;
F + (fn+12 ; w2)0;
S� 1�aS�u0 + �t2 (�0 + 2 nXi=1 �i); w2�+ 1�t(vn; w1)0;
F + 1�t(�n; w2)0;
S8w1 2 W 1 and 8w2 2 W 2 (1)(div vn+1; q)0;
F = 0; 8q 2 Q (2)�0(vn+1)� �(�n+1); ��1=2;� = 0; 8� 2M (3)where 0 : H1(
F )N �! H1=2(�)N is the trae appliation and� : H1(
S)N �! H1=2(�)N is the restrition on � of the trae appliation.Remark 1 At eah time step, we have to solve the system with La-grange multipliers (1)-(3). This is a Babuska-Brezzi type variational pro-blem, where the Lagrange multipliers are p and �, whih treat respetivelythe two onstraints of the problem: the free-divergene for the uid and theontinuity of the veloity on the ontat interfae.The system (1)-(3) is the proposed algorithm whih approximates thesolution of the mathematial model studied by J.L. Lions. 2We shall show that the disret time problem is well de�ned using theresults of Babuska and Brezzi. Firstly, the surjetivity of the onstraintsoperator is proved.Proposition 1 Let 
F and 
S be two open bounded sets in R3 and 
F \
S = �, �
S = � [ �1 [ �2 suh that:8>>><>>>: 
F 2 C2;1 and 
S 2 C0;1mes(�) > 0; mes(�1) > 0; mes(�2) > 0� \ �1 = ;�; �1; �2 are manifolds in RN�1 of C2 lass (4)Then the onstraint operator B de�ned by:(B : W 1 �W 2 �! Q�MB(w1;w2) = (div w1; 0(w1)� �(w2)) (5)is surjetive and ontinuous. 327



Proof: The proof is divided in two steps:1st Step: It is proved that the operator div from H1(
F )N into L2(
F )is surjetive. The following lassial result is used:If 
F 2 C2;1 and q 2 L2(
F ), then there exists an unique solution u 2H2(
F ) \H10 (
F ) to the system: �u = q (6)Sine �u = div(grad u) and if we set w1 = grad u, we obtain w1 2H1(
F ).2nd Step: As a onsequene of the theorem (7.2) due to Kikuki & Oden[4, p. 177℄, we have the following result:If 
S 2 C0;1, then for all g 2 H1=2(�) we an �nd w2 2 H1(
S) suhthat: (�(w2) = g�1(w2) = 0 (7)Now, the surjetivity of B an be proved. Let (q; �) 2 Q�M . Aordingto the �rst step, there exists w1 2 W 1 suh that div w1 = q and from theseond step, there exists w2 2 W 2 suh that:�(w2) = ��+ 0(w1) (8)therefore the surjetivity is obtained.The ontinuity of B is a simple onsequene of the ontinuity of theoperators trae and div. 2Proposition 2 Under the same hypotheses of the proposition 1, the ondi-tion inf-sup holds, i.e. there exists � > 0 suh that:8q 2 Q; 8� 2M; �(k q k0;
F + k � k1=2;�)� sup(w1;w2)2W 1�W 2(w1;w2)6=(0;0) j (div w1; q) + �0(w1)� �(w2); ��1=2;� j(k w1 k21;
F + k w2 k21;
S)1=2The proposition 2 is a onsequene of the losed range theorem and theproposition 1.Theorem 1 Under the same hypotheses of the proposition 1, the disrettime problem (1)-(3) has an unique solution.Proof : Let X = W 1 �W 2. The appliation:a : X �X �! R; de�ned bya((v; �); (w1; w2))= 1�t(v; w1)0;
F + �inaF (v; w1) + 1�t(�; w2)0;
S + �t2� aS(�; w2)328



is X�ellipti, beause aF is oerive, aS isW 2�ellipti and all the onstantsare positive. Now, we an use the theory of Babuska-Brezzi. In view of thistheory and the proposition 2, the onlusion holds. 23 Time stability of the algorithmIn this setion the time stability of the algorithm de�ned by the equations(1){(3) is proved, under ertains asumptions. The proof is originaly: wedon't use separately the existent stability theories for the uid problem,respetively for the struture problem, but we prove the stability for theuid and the struture, simultaneously. The veloity is evaluated in thenorm H1, hene better than the usual evaluation in the norm L2 used inthe approximation of Stokes equation.Hypothesis 1 (fn1 ; fn2 ) = (f1; f2) 2 H; 8n � 0Hypothesis 2There exists K1 a onstant, whih doesn't depend on �t, suh that:k �1 k1;
S� K1; 8�t � THypothesis 3There exists K2 a onstant, whih doesn't depend on �t, suh that:�k v1 � v0 k20;
F + k �1 � �0 k20;
S�1=2 � (�t)K2; 8�t � TRemark 2 In the hypotheses 2 and 3, only the initial data and the �rststep of the algorithm (1)-(3) are onerned. 2Theorem 2 Under the hypotheses 1, 2 and 3, the algorithm de�ned bythe equations (1){(3) is not-onditionaly stable in the following sens: thereexists a onstant K, whih doesn't depend upon n and �t, suh that:k vn k1;
F + k �n k1;
S + k pn k0;
F + k �n k1=2;�� K; (9)for all n and �t verifying n(�t) � T .Proof: The demonstration is divided in tree steps:1) 9K3 > 0 suh that k vn k0;
F + k �n k0;
S� K32) 9K4 > 0 suh that k vn k1;
F + k �n k1;
S� K43) 9K5 > 0 suh that k pn k0;
F + k �n k1=2;�� K51st Step: We write the equality (1) for n, after we substrat it from therelation (1) written for n + 1. We substitute w1 by vn+1 � vn and w2 by�n+1� �n. From the equalities (2) and (3), the terms whih ontain pn and329



�n will disappear. Aording to hypothesis 1, the terms whih ontain f1et f2 will disappear, too. So, we have:1�t(vn+1 � vn; vn+1 � vn)0;
F � 1�t(vn � vn�1; vn+1 � vn)0;
F+ 1�t(�n+1 � �n; �n+1 � �n)0;
S � 1�t(�n � �n�1; �n+1 � �n)0;
S+�inaF (vn+1 � vn; vn+1 � vn) + �t2� aS(�n+1 + �n; �n+1 � �n) = 0 (10)The equality 2(a; a� b) =k a k2 � k b k2 + k a� b k2 is used twie, witha = vn+1 � vn (resp a = vn � vn�1) and b = �n+1 � �n(resp b = �n � �n�1).From the fat that aS is symmetrial, it follows that:k vn+1 � vn k20;
F + k vn+1 � 2vn + vn�1 k20;
F+ k �n+1 � �n k20;
S + k �n+1 � 2�n + �n�1 k20;
S+2(�t)�inaF (vn+1 � vn; vn+1 � vn) + (�t)2� aS(�n+1; �n+1)�k vn � vn�1 k20;
F + k �n � �n�1 k20;
S + (�t)2� aS(�n; �n) (11)Sine 0 � aF (v; v), we obtain:k vn+1 � vn k20;
F + k �n+1 � �n k20;
S +(�t)2� aS(�n+1; �n+1)�k vn � vn�1 k20;
F + k �n � �n�1 k20;
S + (�t)2� aS(�n; �n) (12)and this impliesk vn+1 � vn k20;
F + k �n+1 � �n k20;
S +(�t)2� aS(�n+1; �n+1)�k v1 � v0 k20;
F + k �1 � �0 k20;
S +(�t)2� aS(�1; �1) (13)Aording to the hypotheses 2 et 3, we an verify:�k vn+1 � vn k20;
F + k �n+1 � �n k20;
S�1=2 � (�t)K3; 8n = 0; 1; : : :(14)Using the triangle inequality, we have:�k vn+1 k20;
F + k �n+1 k20;
S�1=2 � �k vn k20;
F + k �n k20;
S�1=2� �k vn+1 � vn k20;
F + k �n+1 � �n k20;
S�1=2 (15)From the inequalities (14) and (15), it follows:�k vn+1 k20;
F + k �n+1 k20;
S�1=2��k vn k20;
F + k �n k20;
S�1=2 � (�t)K3 (16)330



We write the inequality (16) for n = 0; 1; : : : and we sum them. It isobtained: �k vn k20;
F + k �n k20;
S�1=2��k v0 k20;
F + k �0 k20;
S�1=2 � (n�t)K3 (17)But n�t � T , so that the onlusion of the �rst step is established.2nd Step: Aording to the hypotheses 2 et 3 and sine the inequality(13), it follows that: (�t)2� aS(�n+1; �n+1) � (�t)2K3 (18)It is known that aS is W 2�ellipti, onsequently there exists a onstant K6,suh that: k �n+1 k1;
S� K6 (19)If we write the relation (1) for w1 = vn+1 and w2 = �n+1, we obtain:1�t(vn+1 � vn; vn+1)0;
F + 1�t(�n+1 � �n; �n+1)0;
S + �inaF (vn+1; vn+1)+1�aS�u0 + �t2 (�0 + 2( nXi=1 �i) + �n+1); �n+1�= (f1; vn+1)0;
F + (f2; �n+1)0;
S (20)The following inequalities hold:1�t(vn+1 � vn; vn+1)0;
F + 1�t(�n+1 � �n; �n+1)0;
S� 1�t k vn+1 � vn k0;
F k vn+1 k0;
F + 1�t k �n+1 � �n k0;
Sk �n+1 k0;
S� 1�t�k vn+1 � vn k20;
F + k �n+1 � �n k20;
S�1=2��k vn+1 k20;
F + k �n+1 k20;
S�1=2 � K7 (21)The Cauhy inequality was used to �nd out the �rst inequality of (21), theCauhy-Buniakowski-Shwartz inequality for the seond, the inequality (14)and the onlusion of the �rst step for the third. Also, aording to the �rststep, we have: (f1; vn+1)0;
F + (f2; �n+1)0;
S�k f1 k0;
F k vn+1 k0;
F + k f2 k0;
Sk �n+1 k0;
S� K8 (22)Sine aS is ontinuous, it follows:aS�u0 + �t2 (�0 + 2( nXi=1 �i) + �n+1); �n+1��M k �n+1 k1;
S �k u0 k1;
S +(n+ 1)(�t)K6�� MK6�k u0 k1;
S +TK6� (23)331



From the equality (20) and the inequalities (21)-(23), it results thatthere exists a onstant K10, suh that:�inaF (vn+1; vn+1) � K10Finally, sine aF is oerive and from the fat that k �n+1 k0;
S is bounded,the inequality proposed to be solved in the seond step holds.3rd Step: Using in the equality (1), the inequalities (14 ), the hypothesis1, the ontinuity of aF and aS, the fat that k vn+1 k1;
F , k �n+1 k1;
S andk u0 + �t2 (�0 + 2(Pni=1 �i) + �n+1) k1;
S are bounded, we obtain:(div w1; pn+1)0;
F + �0(w1)� �(w2); �n+1�1=2;�� K11(k w1 k21;
F + k w2 k21;
S)1=2 8w1 2 W 1; 8w2 2 W 2 (24)Finally, in view of the proposition 2 and from the previous inequality,we have: k pn+1 k0;
F + k �n+1 k1=2;�� K12and the proof is �nished. 2ConlusionsThe utilisation of Lagrange multipliers to treat the boundary values on theontat surfae is very attrative: the problem an be deouplated and theimplementation of the algorithm is easy if we have a software, whih ansolve the uid problem and the struture problem, separately.Also, this method an be used in the ase when the ontat interfae isa free surfae.Referenes[1℄ Babuska (I.)-Error Bounds for Finite Elements Method, Numer. Math.,1971, t. 16, p. 322-333[2℄ Brezzi (F.)-On the Existene, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers , RAIRO, 1974, t.8, p. 129-151[3℄ Dautray (R.), Lions (J.L.)-Analyse math�ematique et alul num�eriquepour les sienes et les tehniques, Masson, 1988[4℄ Kikuki (N.), Oden (J.T.)-Contat Problems in Elastiity, SIAM, 1988[5℄ Lions (J.L.)-Quelques M�ethodes de Resolution des Probl�emes aux Limi-tes Nonli�eaires, Dunod, 1969 332


