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Abstract

A fluid-structure interaction problem is studied in the following hypotheses:
the fluid is incompressible and it is governed by the time-dependent Stokes
equations and the sructure is governed by the linear elasticity equations.

The interaction beetwen the blood and the left ventricle of the heart is
the physical system which is modeled.

This paper presents a stable algorithm wich computs the velocity and
the pressure of the fluid and the velocity of the structure, using the Lagrange
multiplier method.

1 Introduction

A mathematical model for the biomechanics contact problems beetwen the
blood and an elastic structure has been studied by J.L. Lions in [5, p. 120
129] and [3, vol. 8, chap. XVIII, p. 795-801]. In the linear case, i.e.
the fluid is incompressible and it is governed by the time-dependent Stokes
equations and the sructure is governed by linear elasticity equations, it has
been proved the existence and the uniqueness of the solution to 3D problem.

In order to approximate the solution of this model, we propose an algo-
rithm where the Lagrange multipliers are used to treat the both constraints
of the problem: the free-divergence and the continuity of the velocity on
the contact surface.

We can decouple the problem by introducing the Lagrange multiplier
to treat the boundary value on the contact surface. This fact has positive
consequences: we can use the existent theories and the numerical procedures
to solve the fluid problem and the structure problem, separately.
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Another attractive point is the simplicity of the implementation: at each
time step, the linear system is solved by Uzawa algorithm. At each iteration,
the algorithm solves two decouplated problems, one for the fluid and one for
the structure, the both problems have as parameter the Lagrange multiplier
on the contact surface. The Uzawa algorithm finds the contact Lagrange
multiplier, such that the velocities of fluid and structure are equal on the
contact surface.

In this paper, a discret time algorithm is presented.

In the second section, it is proved that the discret time problem is well
defined, using the results of Babuska [1] and Brezzi [2]. Firstly, the surjec-
tivity of the constraint operator is proved. Using a characterization theorem
of the surjective operators, the inf-sup condition is obtained.

In the third section, the time stability of the algorithm is proved. The
proof is originaly: we don’t use separately the existent stability theories for
the fluid problem, respectively for the structure problem, but we prove the
stability for the fluid and for the structure, simultaneously. The velocity is
evaluated in the norm H', hence better than the usual evaluation in the
norm L? used in the approximation of Stokes equation.

2 Discret time variational formulation

Let QF (resp. Q%) be the domain in R? of the fluid (resp. of the structure),
such that: QF N QS =T, 90 =T and 9% =T U XTI U Y2

Let Wt = HY Q)N and W2 = {w? € HY(Q*)N,w? = 0 on X'} be the
velocity spaces for the fluid and for the structure.

Let ar and ag be two bilinear applications, defined by:

W x W1 — R
ov; Bw

Z /QF 0 83;]

1,j=1
W2><W2—>R

Z / oij(v)€ij(w w?)dw

t,j=1

N 2
1.0 ows
where N = 3, 045 = )\S(Z Gk]g) + QMSGij, qj(wz) w J

=( + ) and
k=1 2 83:] al‘l

A S > 0.
The following quantities are given:

i) fit e L2(QF)N and fot! e L2(Q5N

ii) p € R, the density of the structure, v, = ;‘—; € R, the cinematical
viscosity

iii) v™ € W' the velocity of the fluid
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iv) 0 ..., " € W2 the velocities of the structure, such that v* = »/°

v) ug € W? the initial displacement of the structure

Our discret time problem has the following form:
Find (v"F1pntt pntl Aty e W x W2 x Q x M where Q = L?(QF)
and M = HY2(T)Y, such that:
1 1 At
E(Un+17 wl)ngF + chaF(UnJrl, wl) + E(Vn+17 ’U)2)0’QS + 2_paS(Vn+1; w2)
_ (div wl,pnﬂ)mQF o (70(w1) B 'Yr(wz), )\n+1)1/2F
= ( n+17 wl)O,QF + (f2n+17 wz)O,QS
1 At L. 1 1
— ;as (uo + 7(1/0 + 2; V'), w2) + Kt(v", wl)o,ﬂp + Kt(u”, wQ)O,Qs
vVw' € W' and Vu?* € W?

(div o™ qoqr =0, Vg€ Q 2)
(™) = 9w ("), u), , =0, VueM (3)

where 7o : HY(QF)Y — HY2(T)N is the trace application and
vp o HY Q)N — HY2(T)N is the restriction on I' of the trace application.

/20

Remark 1 At each time step, we have to solve the system with La-
grange multipliers (1)-(3). This is a Babuska-Brezzi type variational pro-
blem, where the Lagrange multipliers are p and A, which treat respectively
the two constraints of the problem: the free-divergence for the fluid and the
continuity of the velocity on the contact interface.

The system (1)-(3) is the proposed algorithm which approximates the
solution of the mathematical model studied by J.L. Lions. O

We shall show that the discret time problem is well defined using the
results of Babuska and Brezzi. Firstly, the surjectivity of the constraints
operator is proved.

Proposition 1 Let&F and QF be two open bounded sets in R® and QF N
Q5 =T, 090° =T UX' U X2 such that:

QF € C*! and Q° € C™!
mes(T) > 0, mes(X') > 0, mes(X?) >0
rnxt=9
I, ¥, X2 are manifolds in RN ' of C? class
Then the constraint operator B defined by:
B:W'xW? —QxM (5)
B(whw?) = (div w';y(w') —r(w?))

18 surjective and continuous.
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Proof: The proof is divided in two steps:
15t Step: It is proved that the operator div from H'(QF)" into L2(QF)
is surjective. The following classical result is used:

If QF € C*' and q € L*(QF), then there exists an unique solution u €
H?2(QF) N H(QF) to the system:

Au=gq (6)

Since Au = div(grad u) and if we set w! = grad u, we obtain w! €
H'(QF).

ond Step: As a consequence of the theorem (7.2) due to Kikuki & Oden

[4, p. 177], we have the following result:
If Q% € C%', then for all g € HY?(I') we can find w? € H'(Q%) such

that: ,
r(w?) =g 7
{721(?”2) =0 ™)
Now, the surjectivity of B can be proved. Let (¢, u) € Qx M. According
to the first step, there exists w! € W such that div w! = ¢ and from the
second step, there exists w? € W? such that:

T (w?) = —p+ o (w') (8)

therefore the surjectivity is obtained.
The continuity of B is a simple consequence of the continuity of the
operators trace and div. O

Proposition 2 Under the same hypotheses of the proposition 1, the condi-
tion inf-sup holds, i.e. there exists a > 0 such that:

VgeQ,Ype M, ol qlloor + 1 1 llijzr)
| (div w', q) + (o(w') = yr(w?), 1)
< sup

7w w?ewtxw? (Il wt 1 gr + I w? I gs)"?
(wh,w?)#(0,0)

1/2,0 |

The proposition 2 is a consequence of the closed range theorem and the
proposition 1.

Theorem 1 Under the same hypotheses of the proposition 1, the discret
time problem (1)-(3) has an unique solution.

Proof : Let X = W' x W?2. The application:

a:X x X — R, defined by
a((v,v); (w', w?))
1

= Kt(v, wl)o,ﬂp + Veinap (v, wh)

At
+ Kt(ya w2)0,QS + 2_paS(V7 ’U)2)
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is X —elliptic, because a is coercive, ag is W2—elliptic and all the constants
are positive. Now, we can use the theory of Babuska-Brezzi. In view of this
theory and the proposition 2, the conclusion holds. O

3 Time stability of the algorithm

In this section the time stability of the algorithm defined by the equations
(1)—(3) is proved, under certains asumptions. The proof is originaly: we
don’t use separately the existent stability theories for the fluid problem,
respectively for the structure problem, but we prove the stability for the
fluid and the structure, simultaneously. The velocity is evaluated in the
norm H', hence better than the usual evaluation in the norm L? used in
the approximation of Stokes equation.
Hypothesis 1

(1 f) =(fi,fo)eH,  Yn>0

Hypothesis 2
There exists K; a constant, which doesn’t depend on At, such that:

| V' 1as< Ky,  VAt<T

Hypothesis 3
There exists Ky a constant, which doesn’t depend on At, such that:

1/2
(o' =" Bar + 17" =" [30s) "~ < (ADK,,  VALLT

Remark 2 In the hypotheses 2 and 3, only the initial data and the first
step of the algorithm (1)-(3) are concerned. O

Theorem 2 Under the hypotheses 1, 2 and 3, the algorithm defined by
the equations (1)—-(8) is not-conditionaly stable in the following sens: there
exists a constant K, which doesn’t depend upon n and At, such that:

| v lor + 1 V" las + | 2" [lor + | A" |l120r< K, (9)

for all n and At verifying n(At) < T.
Proof: The demonstration is divided in tree steps:

1) JK5 > 0 such that || v" [[gor + || " [loas< K3
2) K4 > 0 such that || v" || or + || V" ||1os< Ky
3) JK5 > 0 such that || p" ||oor + || A" ||li/20< Ks

15t Step: We write the equality (1) for n, after we substract it from the
relation (1) written for n + 1. We substitute w' by v"*' — ¢™ and w? by
y" 1 — " From the equalities (2) and (3), the terms which contain p" and
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A" will disappear. According to hypothesis 1, the terms which contain f;
et fo will disappear, too. So, we have:

1 1

Kf(UTH»l - ,Un, ,Un+1 - Un)[]’QF - Kf(Un - ,Unfl, ,Un+1 - Un)[]’QF
+E(Vn+1 - Vn) Vn+1 - Vn)O,QS - E(Vn - Vn717 Vn+1 o Vn)(),QS (10)
At
+chaF(vn+1 _ Un, ot Un) + Q—GS(VH+1 + Vn, vl l/n) -0
1%

The equality 2(a,a—0b) =|| a [|* — || b ||* + || a — b ||* is used twice, with
a=v"" — " (resp a = v — 0" ') and b = " — V" (resp b = " — V7).
From the fact that ag is symmetrical, it follows that:

[ o™t =™ |5 gr + (| 0" = 20" + 0" R o
+ || vt = ||(2ms + [| vt — 2pm 4l ||(2ms

+2(At)VcinaF(Un+1 — ", ot Un) + %GS(VH+1; Vn+1) (11)
<0 =0 B+ |07 = 7 (B g + C g, )

Since 0 < ap(v,v), we obtain:

At)?
[0 v e+ | 0 s + D, )
12)
At)? (
R O L T R R
and this implies
At)?
[0 = o e + 0 = 0 s+ g0, 1)
<[ vt =" G + | " = 2" [[g0s + as(v',v')
According to the hypotheses 2 et 3, we can verify:
n+1 n |2 n+1 n (|2 1/2
(o™ = v [Bor + [ " = 2" Bos) ™ < (A)K3,  Yn=0,1,...
(14)
Using the triangle inequality, we have:
. . 1/2 . . 1/2
(P W + 1 i) = (1" Wr 102" W) ™ 5
1/2
< (“ oL g ||3QF + || prtt — 3,95)
From the inequalities (14) and (15), it follows:
1/2
+1 2 +1 2
(0"t Br + 17" I 0s) (16)

n n 1/2
(o B ge + 1107 [Bgs) " < (At)K;
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We write the inequality (16) for n = 0,1,... and we sum them. It is
obtained:

1/2
(1o B + 110" 13 0s)
1/2
—(1 00 [ gr + 1100 [2gs) < (nA)EG
But nAt < T, so that the conclusion of the first step is established.

(17)

ond Step: According to the hypotheses 2 et 3 and since the inequality
(13), it follows that:

(At)*
P

It is known that ag is W2—elliptic, consequently there exists a constant Kg,
such that:

as(V" T v < (At)?K; (18)

" lLes < Ko (19)
If we write the relation (1) for w! = v"*! and w? = v"*!, we obtain:
i(vnﬂ ", o) or + i(ynﬂ — U ) s + vemap (0™, v
+%a5 (un + %(1/0 + 2(;} V') + v, V”“)
= (f1, Un+1)0,QF + (f2, Vn“)o,sﬁ
The following inequalities hold: 2
i(vn—l—l S Ai(yn—l—l — ) s
< i | o™ —on lo.or |l U llo.or +E [z % lo.s]l . lo.s
< (10 = o e + 1[0 =07 s

X (0 Be + 107 B os)” < K
(21)
The Cauchy inequality was used to find out the first inequality of (21), the
Cauchy-Buniakowski-Schwartz inequality for the second, the inequality (14)
and the conclusion of the first step for the third. Also, according to the first
step, we have:

(flJ Un+1)0,QF + (f27 Vn+1)0,ﬂs (22)
<Il fi lloor [ v Hloor + Il f2 loos]l " [loos < Ks

Since ag is continuous, it follows:

At .
as (UO + 7(V0 + 2(2 l/l) + Vn+1), Vn+1)
=1
< M || v s (Il uo lhes +(n+ 1)(At)K)

< MEq(|| uo || o5 +TKs)
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From the equality (20) and the inequalities (21)-(23), it results that
there exists a constant Kj, such that:

n+1 _n+l
VcinaF(U Y ) S KlO

Finally, since ap is coercive and from the fact that || ™! ||y os is bounded,
the inequality proposed to be solved in the second step holds.

rd Step: Using in the equality (1), the inequalities (14 ), the hypothesis
1, the continuity of ar and ag, the fact that || v™*! ||, or, || v"*! ||| qs and
| wo + 5L(° + 2(Xf, V') + v 1) || 0s are bounded, we obtain:

. 1, n+l 1y 2\ yn+l
(div w',p" oar + (s0(w)) —or@?), A1), (24)
<Kl 0! [Por + | 0? [Eg)? V' € W vu? e W2

Finally, in view of the proposition 2 and from the previous inequality,
we have:
2™ oo + [ A" [ljo,r< Ko

and the proof is finished. O
Conclusions

The utilisation of Lagrange multipliers to treat the boundary values on the
contact surface is very attractive: the problem can be decouplated and the
implementation of the algorithm is easy if we have a software, which can
solve the fluid problem and the structure problem, separately.

Also, this method can be used in the case when the contact interface is
a free surface.
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