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A stable algorithm for a 
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ure�sti, Fa
ultatea de Matemati
�a, 14str. A
ademiei, 70109-Bu
ure�sti, RomaniaUniversit�e de Fran
he-Comt�e, Laboratoire de Cal
ul S
ienti-�que URA-CNRS 741, 16 Route de Gray, 25030 Besan�
onCedex, Fran
eAbstra
tA 
uid-stru
ture intera
tion problem is studied in the following hypotheses:the 
uid is in
ompressible and it is governed by the time-dependent Stokesequations and the sru
ture is governed by the linear elasti
ity equations.The intera
tion beetwen the blood and the left ventri
le of the heart isthe physi
al system whi
h is modeled.This paper presents a stable algorithm wi
h 
omputs the velo
ity andthe pressure of the 
uid and the velo
ity of the stru
ture, using the Lagrangemultiplier method.1 Introdu
tionA mathemati
al model for the biome
hani
s 
onta
t problems beetwen theblood and an elasti
 stru
ture has been studied by J.L. Lions in [5, p. 120{129℄ and [3, vol. 8, 
hap. XVIII, p. 795{801℄. In the linear 
ase, i.e.the 
uid is in
ompressible and it is governed by the time-dependent Stokesequations and the sru
ture is governed by linear elasti
ity equations, it hasbeen proved the existen
e and the uniqueness of the solution to 3D problem.In order to approximate the solution of this model, we propose an algo-rithm where the Lagrange multipliers are used to treat the both 
onstraintsof the problem: the free-divergen
e and the 
ontinuity of the velo
ity onthe 
onta
t surfa
e.We 
an de
ouple the problem by introdu
ing the Lagrange multiplierto treat the boundary value on the 
onta
t surfa
e. This fa
t has positive
onsequen
es: we 
an use the existent theories and the numeri
al pro
eduresto solve the 
uid problem and the stru
ture problem, separately.325



Another attra
tive point is the simpli
ity of the implementation: at ea
htime step, the linear system is solved by Uzawa algorithm. At ea
h iteration,the algorithm solves two de
ouplated problems, one for the 
uid and one forthe stru
ture, the both problems have as parameter the Lagrange multiplieron the 
onta
t surfa
e. The Uzawa algorithm �nds the 
onta
t Lagrangemultiplier, su
h that the velo
ities of 
uid and stru
ture are equal on the
onta
t surfa
e.In this paper, a dis
ret time algorithm is presented.In the se
ond se
tion, it is proved that the dis
ret time problem is wellde�ned, using the results of Babuska [1℄ and Brezzi [2℄. Firstly, the surje
-tivity of the 
onstraint operator is proved. Using a 
hara
terization theoremof the surje
tive operators, the inf-sup 
ondition is obtained.In the third se
tion, the time stability of the algorithm is proved. Theproof is originaly: we don't use separately the existent stability theories forthe 
uid problem, respe
tively for the stru
ture problem, but we prove thestability for the 
uid and for the stru
ture, simultaneously. The velo
ity isevaluated in the norm H1, hen
e better than the usual evaluation in thenorm L2 used in the approximation of Stokes equation.2 Dis
ret time variational formulationLet 
F (resp. 
S) be the domain in R3 of the 
uid (resp. of the stru
ture),su
h that: 
F \ 
S = �, �
F = � and �
S = � [ �1 [ �2.Let W 1 = H1(
F )N and W 2 = fw2 2 H1(
S)N ; w2 = 0 on �1g be thevelo
ity spa
es for the 
uid and for the stru
ture.Let aF and aS be two bilinear appli
ations, de�ned by:8><>: aF : W 1 �W 1 �! RaF (v; w1) = NXi;j=1 Z
F �vi�xj �w1i�xj dx8><>: aS :W 2 �W 2 �! RaS(�; w2) = NXi;j=1 Z
S �ij(�)�ij(w2)dxwhere N = 3, �ij = �S( NXk=1 �kk) + 2�S�ij, �ij(w2) = 12(�w2i�xj + �w2j�xi ) and�S; �S > 0.The following quantities are given:i) fn+11 2 L2(
F )N and fn+12 2 L2(
S)Nii) � 2 R+ the density of the stru
ture, �
in = �F�F 2 R+ the 
inemati
alvis
osityiii) vn 2 W 1 the velo
ity of the 
uid326



iv) �0; :::; �n 2 W 2 the velo
ities of the stru
ture, su
h that v0 = �0v) u0 2 W 2 the initial displa
ement of the stru
tureOur dis
ret time problem has the following form:Find (vn+1; �n+1; pn+1; �n+1 ) 2 W 1�W 2�Q�M where Q = L2(
F )and M = H1=2(�)N , su
h that:1�t(vn+1; w1)0;
F + �
inaF (vn+1; w1) + 1�t(�n+1; w2)0;
S + �t2� aS(�n+1; w2)� (div w1; pn+1)0;
F � �
0(w1)� 
�(w2); �n+1�1=2;�= (fn+11 ; w1)0;
F + (fn+12 ; w2)0;
S� 1�aS�u0 + �t2 (�0 + 2 nXi=1 �i); w2�+ 1�t(vn; w1)0;
F + 1�t(�n; w2)0;
S8w1 2 W 1 and 8w2 2 W 2 (1)(div vn+1; q)0;
F = 0; 8q 2 Q (2)�
0(vn+1)� 
�(�n+1); ��1=2;� = 0; 8� 2M (3)where 
0 : H1(
F )N �! H1=2(�)N is the tra
e appli
ation and
� : H1(
S)N �! H1=2(�)N is the restri
tion on � of the tra
e appli
ation.Remark 1 At ea
h time step, we have to solve the system with La-grange multipliers (1)-(3). This is a Babuska-Brezzi type variational pro-blem, where the Lagrange multipliers are p and �, whi
h treat respe
tivelythe two 
onstraints of the problem: the free-divergen
e for the 
uid and the
ontinuity of the velo
ity on the 
onta
t interfa
e.The system (1)-(3) is the proposed algorithm whi
h approximates thesolution of the mathemati
al model studied by J.L. Lions. 2We shall show that the dis
ret time problem is well de�ned using theresults of Babuska and Brezzi. Firstly, the surje
tivity of the 
onstraintsoperator is proved.Proposition 1 Let 
F and 
S be two open bounded sets in R3 and 
F \
S = �, �
S = � [ �1 [ �2 su
h that:8>>><>>>: 
F 2 C2;1 and 
S 2 C0;1mes(�) > 0; mes(�1) > 0; mes(�2) > 0� \ �1 = ;�; �1; �2 are manifolds in RN�1 of C2 
lass (4)Then the 
onstraint operator B de�ned by:(B : W 1 �W 2 �! Q�MB(w1;w2) = (div w1; 
0(w1)� 
�(w2)) (5)is surje
tive and 
ontinuous. 327



Proof: The proof is divided in two steps:1st Step: It is proved that the operator div from H1(
F )N into L2(
F )is surje
tive. The following 
lassi
al result is used:If 
F 2 C2;1 and q 2 L2(
F ), then there exists an unique solution u 2H2(
F ) \H10 (
F ) to the system: �u = q (6)Sin
e �u = div(grad u) and if we set w1 = grad u, we obtain w1 2H1(
F ).2nd Step: As a 
onsequen
e of the theorem (7.2) due to Kikuki & Oden[4, p. 177℄, we have the following result:If 
S 2 C0;1, then for all g 2 H1=2(�) we 
an �nd w2 2 H1(
S) su
hthat: (
�(w2) = g
�1(w2) = 0 (7)Now, the surje
tivity of B 
an be proved. Let (q; �) 2 Q�M . A

ordingto the �rst step, there exists w1 2 W 1 su
h that div w1 = q and from these
ond step, there exists w2 2 W 2 su
h that:
�(w2) = ��+ 
0(w1) (8)therefore the surje
tivity is obtained.The 
ontinuity of B is a simple 
onsequen
e of the 
ontinuity of theoperators tra
e and div. 2Proposition 2 Under the same hypotheses of the proposition 1, the 
ondi-tion inf-sup holds, i.e. there exists � > 0 su
h that:8q 2 Q; 8� 2M; �(k q k0;
F + k � k1=2;�)� sup(w1;w2)2W 1�W 2(w1;w2)6=(0;0) j (div w1; q) + �
0(w1)� 
�(w2); ��1=2;� j(k w1 k21;
F + k w2 k21;
S)1=2The proposition 2 is a 
onsequen
e of the 
losed range theorem and theproposition 1.Theorem 1 Under the same hypotheses of the proposition 1, the dis
rettime problem (1)-(3) has an unique solution.Proof : Let X = W 1 �W 2. The appli
ation:a : X �X �! R; de�ned bya((v; �); (w1; w2))= 1�t(v; w1)0;
F + �
inaF (v; w1) + 1�t(�; w2)0;
S + �t2� aS(�; w2)328



is X�ellipti
, be
ause aF is 
oer
ive, aS isW 2�ellipti
 and all the 
onstantsare positive. Now, we 
an use the theory of Babuska-Brezzi. In view of thistheory and the proposition 2, the 
on
lusion holds. 23 Time stability of the algorithmIn this se
tion the time stability of the algorithm de�ned by the equations(1){(3) is proved, under 
ertains asumptions. The proof is originaly: wedon't use separately the existent stability theories for the 
uid problem,respe
tively for the stru
ture problem, but we prove the stability for the
uid and the stru
ture, simultaneously. The velo
ity is evaluated in thenorm H1, hen
e better than the usual evaluation in the norm L2 used inthe approximation of Stokes equation.Hypothesis 1 (fn1 ; fn2 ) = (f1; f2) 2 H; 8n � 0Hypothesis 2There exists K1 a 
onstant, whi
h doesn't depend on �t, su
h that:k �1 k1;
S� K1; 8�t � THypothesis 3There exists K2 a 
onstant, whi
h doesn't depend on �t, su
h that:�k v1 � v0 k20;
F + k �1 � �0 k20;
S�1=2 � (�t)K2; 8�t � TRemark 2 In the hypotheses 2 and 3, only the initial data and the �rststep of the algorithm (1)-(3) are 
on
erned. 2Theorem 2 Under the hypotheses 1, 2 and 3, the algorithm de�ned bythe equations (1){(3) is not-
onditionaly stable in the following sens: thereexists a 
onstant K, whi
h doesn't depend upon n and �t, su
h that:k vn k1;
F + k �n k1;
S + k pn k0;
F + k �n k1=2;�� K; (9)for all n and �t verifying n(�t) � T .Proof: The demonstration is divided in tree steps:1) 9K3 > 0 su
h that k vn k0;
F + k �n k0;
S� K32) 9K4 > 0 su
h that k vn k1;
F + k �n k1;
S� K43) 9K5 > 0 su
h that k pn k0;
F + k �n k1=2;�� K51st Step: We write the equality (1) for n, after we substra
t it from therelation (1) written for n + 1. We substitute w1 by vn+1 � vn and w2 by�n+1� �n. From the equalities (2) and (3), the terms whi
h 
ontain pn and329



�n will disappear. A

ording to hypothesis 1, the terms whi
h 
ontain f1et f2 will disappear, too. So, we have:1�t(vn+1 � vn; vn+1 � vn)0;
F � 1�t(vn � vn�1; vn+1 � vn)0;
F+ 1�t(�n+1 � �n; �n+1 � �n)0;
S � 1�t(�n � �n�1; �n+1 � �n)0;
S+�
inaF (vn+1 � vn; vn+1 � vn) + �t2� aS(�n+1 + �n; �n+1 � �n) = 0 (10)The equality 2(a; a� b) =k a k2 � k b k2 + k a� b k2 is used twi
e, witha = vn+1 � vn (resp a = vn � vn�1) and b = �n+1 � �n(resp b = �n � �n�1).From the fa
t that aS is symmetri
al, it follows that:k vn+1 � vn k20;
F + k vn+1 � 2vn + vn�1 k20;
F+ k �n+1 � �n k20;
S + k �n+1 � 2�n + �n�1 k20;
S+2(�t)�
inaF (vn+1 � vn; vn+1 � vn) + (�t)2� aS(�n+1; �n+1)�k vn � vn�1 k20;
F + k �n � �n�1 k20;
S + (�t)2� aS(�n; �n) (11)Sin
e 0 � aF (v; v), we obtain:k vn+1 � vn k20;
F + k �n+1 � �n k20;
S +(�t)2� aS(�n+1; �n+1)�k vn � vn�1 k20;
F + k �n � �n�1 k20;
S + (�t)2� aS(�n; �n) (12)and this impliesk vn+1 � vn k20;
F + k �n+1 � �n k20;
S +(�t)2� aS(�n+1; �n+1)�k v1 � v0 k20;
F + k �1 � �0 k20;
S +(�t)2� aS(�1; �1) (13)A

ording to the hypotheses 2 et 3, we 
an verify:�k vn+1 � vn k20;
F + k �n+1 � �n k20;
S�1=2 � (�t)K3; 8n = 0; 1; : : :(14)Using the triangle inequality, we have:�k vn+1 k20;
F + k �n+1 k20;
S�1=2 � �k vn k20;
F + k �n k20;
S�1=2� �k vn+1 � vn k20;
F + k �n+1 � �n k20;
S�1=2 (15)From the inequalities (14) and (15), it follows:�k vn+1 k20;
F + k �n+1 k20;
S�1=2��k vn k20;
F + k �n k20;
S�1=2 � (�t)K3 (16)330



We write the inequality (16) for n = 0; 1; : : : and we sum them. It isobtained: �k vn k20;
F + k �n k20;
S�1=2��k v0 k20;
F + k �0 k20;
S�1=2 � (n�t)K3 (17)But n�t � T , so that the 
on
lusion of the �rst step is established.2nd Step: A

ording to the hypotheses 2 et 3 and sin
e the inequality(13), it follows that: (�t)2� aS(�n+1; �n+1) � (�t)2K3 (18)It is known that aS is W 2�ellipti
, 
onsequently there exists a 
onstant K6,su
h that: k �n+1 k1;
S� K6 (19)If we write the relation (1) for w1 = vn+1 and w2 = �n+1, we obtain:1�t(vn+1 � vn; vn+1)0;
F + 1�t(�n+1 � �n; �n+1)0;
S + �
inaF (vn+1; vn+1)+1�aS�u0 + �t2 (�0 + 2( nXi=1 �i) + �n+1); �n+1�= (f1; vn+1)0;
F + (f2; �n+1)0;
S (20)The following inequalities hold:1�t(vn+1 � vn; vn+1)0;
F + 1�t(�n+1 � �n; �n+1)0;
S� 1�t k vn+1 � vn k0;
F k vn+1 k0;
F + 1�t k �n+1 � �n k0;
Sk �n+1 k0;
S� 1�t�k vn+1 � vn k20;
F + k �n+1 � �n k20;
S�1=2��k vn+1 k20;
F + k �n+1 k20;
S�1=2 � K7 (21)The Cau
hy inequality was used to �nd out the �rst inequality of (21), theCau
hy-Buniakowski-S
hwartz inequality for the se
ond, the inequality (14)and the 
on
lusion of the �rst step for the third. Also, a

ording to the �rststep, we have: (f1; vn+1)0;
F + (f2; �n+1)0;
S�k f1 k0;
F k vn+1 k0;
F + k f2 k0;
Sk �n+1 k0;
S� K8 (22)Sin
e aS is 
ontinuous, it follows:aS�u0 + �t2 (�0 + 2( nXi=1 �i) + �n+1); �n+1��M k �n+1 k1;
S �k u0 k1;
S +(n+ 1)(�t)K6�� MK6�k u0 k1;
S +TK6� (23)331



From the equality (20) and the inequalities (21)-(23), it results thatthere exists a 
onstant K10, su
h that:�
inaF (vn+1; vn+1) � K10Finally, sin
e aF is 
oer
ive and from the fa
t that k �n+1 k0;
S is bounded,the inequality proposed to be solved in the se
ond step holds.3rd Step: Using in the equality (1), the inequalities (14 ), the hypothesis1, the 
ontinuity of aF and aS, the fa
t that k vn+1 k1;
F , k �n+1 k1;
S andk u0 + �t2 (�0 + 2(Pni=1 �i) + �n+1) k1;
S are bounded, we obtain:(div w1; pn+1)0;
F + �
0(w1)� 
�(w2); �n+1�1=2;�� K11(k w1 k21;
F + k w2 k21;
S)1=2 8w1 2 W 1; 8w2 2 W 2 (24)Finally, in view of the proposition 2 and from the previous inequality,we have: k pn+1 k0;
F + k �n+1 k1=2;�� K12and the proof is �nished. 2Con
lusionsThe utilisation of Lagrange multipliers to treat the boundary values on the
onta
t surfa
e is very attra
tive: the problem 
an be de
ouplated and theimplementation of the algorithm is easy if we have a software, whi
h 
ansolve the 
uid problem and the stru
ture problem, separately.Also, this method 
an be used in the 
ase when the 
onta
t interfa
e isa free surfa
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