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Abstrat. A three-dimensional uid-able interation is studied. The uid is governedby the Stokes equations and the able is governed by the beam equations without shearingstress. Only steady equations are studied in this paper. The uid equations are desribedusing arbitrary lagrangian eulerian oordinates.The ontat surfae between uid and able is unknown a priori, therefore it is a freeboundary like problem.The uid-able interation is modeled by an optimal ontrol system with Neumann likeboundary ontrol and Dirihlet like boundary observation. The ontrol appears also in theoeÆients of the uid equations.It's a nonlinear and non-onvex optimal ontrol problem.The existene of a solution is proved.AMS Mathematis Subjet Classi�ation. 49Q10, 49J20Key words. uid-struture interation, free boundary problem, optimal ontrol, Neumannboundary ontrol, Dirihlet boundary observation, ontrol in the oeÆients, arbitrary la-grangian eulerian oordinates1 IntrodutionWe study the behavior of a three-dimensional able under the ation of an external ow.The real system to be modeled is the behavior of an eletri able with �xed extremities under thewind ation. We are interested by the displaement of the able and by the veloity and the pressureof the uid.The ontat surfae between uid and able is unknown a priori, therefore it is a free boundary likeproblem.We suppose that the uid is governed by the Stokes equations and the able is governed by thebeam equations without shearing stress. Only steady equations will be studied in this paper.The uid and able equations are oupled via two boundary onditions: equality of the uid's andable's veloities at the ontat surfae (whih is a Dirihlet like boundary ondition) and equality ofthe fores at the ontat surfae (whih is a Neumann like boundary ondition).�Reeived ...yUniversity of Buharest, Faulty of Mathematis, 14, str. Aademiei, 70109 Buharest, Romania, e-mail:murea�math.unibu.ro and Universit�e Paris Sud, Laboratoire ASCI CNRS-UPR 9029, Bât. 506, 91405 Orsay Cedex,FranezUniversit�e Pierre et Marie Curie, Laboratoire d'Analyse Num�erique, 4, Plae Jussieu, Tour 55-65, 5�eme �etage, 75252Paris Cedex 05, Frane and Universit�e Paris Sud, Laboratoire ASCI CNRS-UPR 9029, Bât. 506, 91405 Orsay Cedex,Frane 1



The oupled uid-able problem is modeled by an optimal ontrol variational system. It's a Neu-mann like boundary ontrol with Dirihlet like boundary observation. The ontrol appears also in theoeÆients of the uid equations.This mathematial model permits to solve numerially the oupled uid-able problem via parti-tioned proedures (i.e. in a deoupled way, more preisely the uid and the able equations are solvedseparately).The aim of this paper is to prove the existene of an optimal ontrol for this uid-able interationproblem.2 NotationsLet us onsider a able of ross setion S. We assume that S � R2 has the following properties:non-empty, open, bounded, onneted, with Lipshitz boundary and (0; 0) 2 S.
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Figure 1: The geometrial on�guration of the uid-able interationThe displaement of the able will be desribed using the displaement of the median thread notedhere by: u = (u1; u2; u3) : [0; L℄! R3 :For instant, we assume that u1 = 0.The three-dimensional domain oupied by the able is
Su = �(x1; x2; x3) 2 R3 ;x1 2 ℄0; L[ ; (x2 � u2 (x1) ; x3 � u3 (x1)) 2 S	 (2.1)and the domain oupied by the uid is 
Fu = R3 n
Su : (2.2)2



The ontat surfae between uid and able is�u = �(x1; x2; x3) 2 R3 ;x1 2 ℄0; L[ ; (x2 � u2 (x1) ; x3 � u3 (x1)) 2 �S	 (2.3)whih is the free boundary of our problem.The extremities of the able are noted:�1 = �(0; x2; x3) 2 R3 ; (x2; x3) 2 S	 ; (2.4)�2 = �(L; x2; x3) 2 R3 ; (x2; x3) 2 S	whih are �xed.3 Variational formulation for the able equationsNow, we present the variational formulation for the able equations. We have supposed that the ableis governed by the beam equations without shearing stress (see [4℄).Let D2 2 R �+ be given. We set( aS : H20 (℄0; L[)�H20 (℄0; L[)! RaS (�;  ) = D2 � R℄0;L[ d2�dx21 (x1) d2 dx21 (x1) dx1 (3.1)The form aS is evidently symmetri, bilinear, ontinuous. In addition, applying the Poinar�e in-equality (see [8, vol. 3, hap. IV, p. 920℄), we obtain that aS is H20 (℄0; L[)-ellipti.Let H�2 (℄0; L[) be the dual of the H20 (℄0; L[). In this setion, we denote by h�; �i the duality pairingbetween H�2 (℄0; L[) and H20 (℄0; L[).As a simple onsequene of the Lax-Milgram Theorem (see [8, vol. 4, hap. VII, p. 1217℄), we havethe following result:Proposition 1 Let fSi 2 H�2 (℄0; L[) and �i 2 L2 (℄0; L[) for i = 2; 3. Then, the problem:Find u2, u3 in H20 (℄0; L[) suh thataS (ui;  ) = Z℄0;L[ �i (x1) (x1) dx1 + 
fSi ;  � ; 8 2 H20 (℄0; L[) ; i = 2; 3 (3.2)has a unique solution.In order to ouple the 3D Stokes equations of the uid with the beam equations desribed using themedian thread, whih is a urve in R3 , we shall need the following result:Proposition 2 There is a linear and ontinuous operator D mappingL2 (℄0; L[� �S) onto L2 (℄0; L[) suh that:(Dg) (x1) = Z�S g (x1; �) d�; a:e: x1 2 ℄0; L[ : (3.3)
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Proof. Let g be an element of L2 (℄0; L[� �S). Applying the Fubini's Theorem (see [12, p. 140℄ forexample), we have g (x1; �) 2 L1 (�S), a.e. x1 2 ℄0; L[ and the mapx1 2 ℄0; L[ 7! Z�S g (x1; �) d�is Lebesgue measurable.From the Shwarz inequality (see [12, p. 62℄), it follows that�Z�S g (x1; �) d��2 � �Z�S 1d��Z�S g2 (x1; �) d�; a:e: x1 2 ℄0; L[ :Integrating the above inequality on ℄0; L[, we haveZ℄0;L[�Z�S g (x1; �) d��2 � L�Z�S 1d��Z℄0;L[�Z�S g2 (x1; �) d�� dx1:Using one again the Fubini's Theorem, we obtainZ℄0;L[�Z�S g2 (x1; �) d�� dx1 = Z℄0;L[��S g2 (x1; �) d�dx1 = kgk20;℄0;L[��Stherefore Dg 2 L2 (℄0; L[) and kDgk20;℄0;L[ � L�Z�S 1d�� kgk20;℄0;L[��S : (3.4)The operator D is linear from the linearity of the Lebesgue integral.The inequality (3.4) implies the ontinuity of the linear operator D. 24 Mixed formulation for the uid equations in moving exteriordomainLet u2 and u3 be the solutions of the equation (3.2) and 
Fu be the domain oupied by the uid givenby the relations (2.2) and (2.1).Let us onsider the Sobolev spae with weights:W 1 �
Fu � =8><>:w 2 D0 �
Fu � ; w (x)�1 + kxk2�1=2 2 L2 �
Fu � ; �w�xi 2 L2 �
Fu � ; i = 1; 2; 39>=>;where kxk = �P3i=1 x2i �1=2 is the eulerian norm in R3 .We set jwj1;
Fu =  3Xi=1 Z
Fu ���� �w�xi (x)����2 dx!1=2whih is a semi-norm and kwk1;
Fu =  Z
Fu jw (x)j21 + kxk2 dx+ jwj21;
Fu!1=24



whih is a norm.We denote by W 10 �
Fu � the losure of D �
Fu � in W 1 �
Fu � for the norm k�k1;
Fu .From the Theorem 1 [8, vol. 6, hap. XI B, p. 650℄, we have that the semi-norm j�j1;
Fu is a normfor the spaes W 1 �
Fu � and W 10 �
Fu �. Moreover, it's equivalent to k�k1;
Fu .In view of the Remark 2 [8, vol. 6, hap. XI B, p. 651℄, the spaes W 1 �
Fu � and W 10 �
Fu � areidential with the Beppo-Levi spaes BL �
Fu � and D̂1 �
Fu � respetively. So, the spaes W 1 �
Fu � andW 10 �
Fu � are the Hilbert spaes for the salar produt:(�;  ) = 3Xi=1 Z
Fu ���xi � �xi dx(see also the Remark 7 [8, vol. 5, hap. IX A, p. 264℄).In view of the Sobolev Embedding Theorem (see [1℄), we haveH20 (℄0; L[) ,! C1 ([0; L℄)therefore the boundary �u is Lipshitz, so we an de�ne the spae H1=2 (�u).From the Theorem 2 [8, vol. 6, hap. XI B, p. 652℄, there exists the trae appliation mappingW 1 �
Fu � onto H1=2 (�u) denoted by w �! wj�uwhih is ontinuous and surjetive andW 10 �
Fu � = nw 2 W 1 �
Fu � ; wj�u[�1[�2 = 0oLet us onsider the following Hilbert spae:Wu = nw 2 �W 1 �
Fu ��3 ; w = 0 on �1 [�2oequipped with the salar produt (v; w) = 3Xi;j=1 Z
Fu �vi�xj �wi�xj dxwhere v = (v1; v2; v3) and w = (w1; w2; w3) are in Wu.Also, let us onsider the Hilbert spae: Qu = L2 �
Fu �equipped with the habitual salar produt.We use the notation div w = �w1�x1 + �w2�x2 + �w3�x3 for all w = (w1; w2; w3) in �W 1 �
Fu ��3.Lemma 1 For all u2 and u3 in H20 (℄0; L[), the operator div mapping Wu onto Qu is surjetif.Proof. Let u2 and u3 be in H20 (℄0; L[).Let us denote: L20 �
Fu � = (q 2 L2 �
Fu � ; Z
Fu q dx = 0)5



It is known (see [8, vol. 5, hap IX A, p. 267, Remark 8℄ for example) that div �W 10 �
Fu ��3 =L20 �
Fu �. Evidently we have �W 10 �
Fu ��3 �Wu, soL20 �
Fu � � div (Wu) � L2 �
Fu � (4.1)Sine the operator div is linear, we obtain that div (Wu) is a vetorial subspae.Knowing that the o-dimension of L20 �
Fu � in L2 �
Fu � is one, the inlusions (4.1) imply: div (Wu) =L20 �
Fu � or div (Wu) = L2 �
Fu �.In order to �nish the proof of this Lemma, we shall prove that div (Wu) 6= L20 �
Fu �.To obtain a ontradition, we suppose thatdiv (Wu) = L20 �
Fu � = div �W 10 �
Fu ��3 (4.2)Let w be in Wu suh that P3i=1 R�u wini d� > 0, where n is the unit outward normal to �u.From (4.2) we obtain that there is  in �W 10 �
Fu ��3 suh that div  = div w.From the Green's formula we have0 = Z
Fu div (w �  ) dx = 3Xi=1 Z�1[�2[�u (wi �  i)ni d� = 3Xi=1 Z�u wini d� > 0and we have obtained a ontradition. Then the proof of this Lemma is �nished. 2Remark. As good as for a bounded domain, the Green's formula holds for an exterior domain, i.e.omplement of a ompat (see [8, vol. 6, hap. XI B, p. 694℄).We set 8><>: aF : �H20 (℄0; L[)�3 �Wu �Wu ! RaF (u; v; w) = 3Xi;j=1 Z
Fu �vi�xj �wi�xj dx (4.3)and 8<: bF : �H20 (℄0; L[)�3 �Wu �Qu ! RbF (u;w; q) = � Z
Fu (div w) q dx (4.4)Proposition 3 For all u2; u3 in H20 (℄0; L[), � = (�1; �2; �3) in �L2 (�u)�3, the problem:Find (v; p) 2Wu �Qu suh that8><>: aF (u; v; w) + bF (u;w; p) = 3Xi=1 Z�u �iwi d�; 8w 2 WubF (u; v; q) = 0; 8q 2 Qu (4.5)has a unique solution.Proof. For all u2; u3 in H20 (℄0; L[), the bilinear form aF (u; �; �) is ontinuous and Wu-ellipti for thenorm j�j1;
Fu .Using the Lemma 1 and a property of the surjetif operators [6, Theorem II.19, p. 29℄, we obtainthat the inf-sup ondition holds for the bilinear form bF (u; �; �).Now, the onlusion of our proposition is a simple onsequene of the results of Babuska [3℄ andBrezzi [7℄. 2Remark. The system (4.5) represents the mixed formulation for the Stokes equations in an exteriordomain: v and p are the veloity and the pressure of the uid, � are the fores on the surfae �0.6



5 Mixed formulation for the uid equations in a �xed exteriordomainIn order to obtain the mixed formulation for the uid equations in a �xed exterior domain, the arbitrarylagrangian eulerian oordinates have been used. The formulation in a �xed domain permits us to obtainthe existene of the solution for the able-uid oupled problem.We set 
S0 = �(x1; x2; x3) 2 R3 ; x1 2 ℄0; L[ ; (x2; x3) 2 S	 ;
F0 = R3 n 
S0 ;�0 = �(x1; x2; x3) 2 R3 ; x1 2 ℄0; L[ ; (x2; x3) 2 �S	 :Let u2; u3 in H20 (℄0; L[) be given. We have H20 (℄0; L[) ,! C1 ([0; L℄) and we extend u2; u3 by zeroin the exterior of the interval [0; L℄. Without risk of onfusion, we use the same notations u2; u3 forthe extended funtions, so u2 (x1) = u3 (x1) = 0; 8x1 =2 [0; L℄Therefore we have ui 2 C1 (R) and we denote by u0i the �rst derivate of ui for i = 2; 3.Let us onsider the following one-to-one ontinuous di�erentiable transformation:Tu : R3 ! R3Tu (bx1; bx2; bx3) = (bx1; bx2 + u2 (bx1) ; bx3 + u3 (bx1)) (5.1)whih admits the ontinuous di�erentiable inverse below:T�1u : R3 ! R3T�1u (x1; x2; x3) = (x1; x2 � u2 (x1) ; x3 � u3 (x1)) (5.2)We have Tu �
F0 � = 
FuTu (�0) = �uTu (bx) = bx; 8bx 2 �1 [ �2We denote by Ja Tu (bx) = 0� 1 0 0u02 (bx1) 1 0u03 (bx1) 0 1 1AJa T�1u (x) = 0� 1 0 0�u02 (x1) 1 0�u03 (x1) 0 1 1Athe Jaobi matries of the transformations Tu and T�1u respetively.We set Tu (bx) = x, where x = (x1; x2; x3) 2 
Fu and bx = (bx1; bx2; bx3) 2 
F0 and Tu (b�) = � where� 2 �u and b� 2 �0.If A is a square matrix, we denote by det (A) ; A�1; At its determinant, the inverse and the transposematrix, respetively.Lemma 2 We have: 8<: � 2 L1 �
Fu � , b� = � Æ Tu 2 L1 �
F0 �Z
Fu � (x) dx = Z
F0 b� (bx) dbx (5.3)8<: b� 2 L1 (�0) ) �!u 2 L1 (�u)Z�0 b� (b�) db� = Z�u � (�)!u (�) d� (5.4)7



where � = �b� Æ T�1u �, !u (�) = det �Ja T�1u (�)� ��Ja T�1u (�)��1�t n (�)R3 and n (�) is the unitoutward normal to �u in �;8>>>>>>>><>>>>>>>>:
� 2 W 1 �
Fu � , b� = � Æ Tu 2 W 1 �
F0 �0BBBBB� ���x1 (x)���x2 (x)���x3 (x)

1CCCCCA = �(Ja Tu (bx))�1�t0BBBBBB� �b��bx1 (bx)�b��bx2 (bx)�b��bx3 (bx)
1CCCCCCA (5.5)

Proof. Sine det (Ja Tu (bx)) = det �Ja T�1u (x)� = 1 for all x and bx in R3 , the assertion (5.3) is aonsequene of the hange-of-variable formula for the unbounded domains (see [2, Theorem VIII.5.1,p. 352℄).The proof of (5.4) an be founded in [13, Prop. 2.47, p. 78℄.Let us prove (5.5). Let � 2W 1 �
Fu � be given.From the hange-of-variable formula (5.3), we haveZ
Fu j� (x)j21 + kxk2 dx = Z
F0 ���b� (bx)���21 + kbxk2 dbxLet  2 D �
F0 � and supp  � O where O is a open and bounded set in 
F0 .Sine Tu is a di�eomorphism, we have than Tu (O) is a open and bounded set in 
Fu .From the Remark 7 [8, vol. 5, hap IX A, p. 264℄, we have � 2 H1 (Tu (O)) and using [6, Prop.IX.6, p. 156℄, we obtain that b� 2 H1 (O) andZO (� Æ Tu) (bx) � �bxj (bx) dbx = � 3Xi=1 ZO ���xi (Tu (bx)) �Tu;i�bxj (bx) (bx) dbxThe above equality holds also if we hange O by 
F0 beause supp  � O � 
F0 then the equalityfrom the seond row of the system (5.5) holds.Sine Ja Tu is in �L1 �
F0 ��9, we have that �b��bxj are in L2 �
F0 � for j = 1; 2; 3, so b� 2 W 1 �
F0 �.2 Let us onsider the following Hilbert spae:W = nbw 2 �W 1 �
F0 ��3 ; bw = 0 on �1 [ �2oequipped with the salar produt (bv; bw) = 3Xi;j=1 Z
F0 �bvi�bxj � bwi�bxj dbx (5.6)where bv = (bv1; bv2; bv3) and bw = ( bw1; bw2; bw3) are in W .8



Also, let us onsider the Hilbert spae: bQ = L2 �
F0 �equipped with the habitual salar produt.We set baF : �H20 (℄0; L[)�3 �W �W ! RbaF (u; bv; bw)= 3Xi=1 Z
F0 � �bvi�bx1 � u02 �bvi�bx2 � u03 �bvi�bx3��� bwi�bx1 � u02 � bwi�bx2 � u03� bwi�bx3� dbx+ 3Xi=1 Z
F0 � �bvi�bx2 � bwi�bx2 + �bvi�bx3 � bwi�bx3� dbx (5.7)and 8><>: bbF : �H20 (℄0; L[)�3 �W � bQ! RbbF (u; bw; bq) = � Z
F0 �� bw1�bx1 + � bw2�bx2 + � bw3�bx3 � u02 � bw2�bx1 � u03 � bw3�bx1 � bq dbx (5.8)Proposition 4 For all u2; u3 in H20 (℄0; L[), b� = �b�1; b�2; b�3� in �L2 (�0)�3, the problem:Find (bv; bp) 2 W � bQ suh that8><>: baF (u; bv; bw) +bbF (u; bw; bp) = 3Xi=1 Z�0 b�i bwi db�; 8 bw 2 WbbF (u; bv; bq) = 0; 8bq 2 bQ (5.9)has a unique solution.Proof.Existene: Let u2; u3 in H20 (℄0; L[) and b� = �b�1; b�2; b�3� in �L2 (�0)�3 be given. We set � (�) =�b� Æ T�1u � (�)!u (�) where!u (�) = det �Ja T�1u (�)� ��Ja T�1u (�)��1�t n (�)R3and n (�) is the unit outward normal to �u in �.From the Lemma 2, we obtain that � is well de�ned and � 2 �L2 (�0)�3.Aording to the Proposition 3, there exits an unique solution (v; p) of the mixed system (4.5) andwe set bv = v Æ Tu; bp = p Æ Tu.From the Lemma 2, we have that bv 2 W and bp 2 bQ. Using the hange-of-variable formula, weobtain that (5.9) holds.Uniqueness: Let �bv1; bp1� and �bv2; bp2� be two solutions of the (5.9).We set v1 = bv1 Æ T�1u , p1 = bp1 Æ T�1u , v2 = bv2 Æ T�1u and p2 = bp2 Æ T�1u . Using one again thehange-of-variable formula, we have that �v1; p1� and �v2; p2� are solutions for (4.5), but this problemhas a unique solution, then �v1; p1� = �v2; p2�.It follows that bv1 = �bv1 Æ T�1u � Æ Tu = �bv2 Æ T�1u � Æ Tu = bv2and in the same way, bp1 = bp2.So, the onlusion of the proposition holds. 29



6 Existene of an optimal ontrol for the uid-able interationproblemThe oupled uid-able problem will be modeled by an optimal ontrol variational system.In this setion, the existene of an optimal ontrol for the uid-able interation problem will beproved.Let fSi in H�2 (℄0; L[), i = 2; 3 and bK ompat in �L2 (�0)�3 be given. Let D be the operatorde�ned by the Proposition 2.We denote by bvj�0 the trae on �0 of bv 2 W and by k�k0;�0 the habitual norm in �L2 (�0)�3.We onsider the following optimal ontrol problem P :inf 12 bvj�020;�0subjet toa) b� 2 bKb) u2; u3 2 H20 (℄0; L[)) aS (ui;  ) = � Z℄0;L[ �Db�i� (x1) (x1) dx1 + 
fSi ;  � ; 8 2 H20 (℄0; L[) ; i = 2; 3d) (bv; bp) 2 W � bQe) 8><>: baF (u; bv; bw) +bbF (u; bw; bp) = 3Xi=1 Z�0 b�i bwi db�; 8 bw 2 WbbF (u; bv; bq) = 0; 8bq 2 bQIt's an optimal ontrol problem with Neumann like boundary ontrol (b�) and Dirihlet like boundaryobservation (bvj�0). The ontrol appears also in the oeÆients of the uid equations ( relation e) ).The relation a) represents the ontrol onstraint and the seond relation of the system e) representsthe state onstraint.This mathematial model permits to solve numerially the oupled uid-able problem via parti-tioned proedures (i.e. in a deoupled way, more preisely the uid and the able equations are solvedseparately).The relations b) and ) represent the able equations and the relations d) and e) represent the uidequations.In the lassial approahes, the uid and struture equations are oupled by two boundary on-ditions: equality of the uid's and struture's veloities at the ontat surfae (whih is a Dirihletlike boundary ondition) and equality of the fores at the ontat surfae (whih is a Neumann likeboundary ondition).In our approah, we start with a guess for the ontat fores (step a). The displaement of thestruture an be omputed (steps b and ). We suppose that domain oupied by the uid is ompletelydetermined by the displaement of the struture. Knowing the atual domain of the uid and the ontatfores, we an ompute the veloity and the pressure of the uid (steps d and e).In this way, the Neumann like ontat boundary ondition is trivially aomplished: we use thesame value b� for the ontat fores on �0 in the equations ) (for the able) and in the equations e)(for the uid).The Dirihlet like ontat boundary ondition bvj�0 = 0 is treated by the Least Squares Methodinf 12 bvj�020;�010



We denote by j�j1;
F0 the norm indued by the salar produt (5.6). We have that W is a Hilbertspae for this salar produt.If A is a matrix, we denote by At the transpose matrix and if y is a olumn vetor of R3y = 0� y1y2y3 1A ;we denote by yt the transpose vetor yt = (y1; y2; y3).Lemma 3 Let B be a bounded set in H20 (℄0; L[).Then the following inequalities hold:9mB > 0;8u2; u3 2 B;8 bw 2 W; mB j bwj21;
F0 � baF (u; bw; bw)9MB > 0;8u2; u3 2 B;8 bw1; bw2 2 W; baF �u; bw1; bw2� �MB �� bw1��1;
F0 �� bw2��1;
F0Proof. The equality (5.7) an be rewritten in the formbaF (u; bv; bw) =3Xi=1 Z
F0 � �bvi�bx1 ; �bvi�bx2 ; �bvi�bx3�Ltu (bx1)Lu (bx1)�� bwi�bx1 ; � bwi�bx2 ; � bwi�bx3�t dbx (6.1)where for all bx1 in [0; L℄ we denote:Lu (bx1) = 0� 1 �u02 (bx1) �u03 (bx1)0 1 00 0 1 1A = ��Ja T�1u (bx)��1�tEvidently, L is an invertible matrix and we have:L�1u (bx1) = 0� 1 u02 (bx1) u03 (bx1)0 1 00 0 1 1AWe denote by kyk = (yty)1=2 the eulidean norm of R3 . Now, we evaluate the eulidean norm ofthe matrix L�1. L�1u (bx1) = maxkyk�1 L�1u (bx1) y= maxkyk�1q(y1 + u02 (bx1) y2 + u03 (bx1) y3)2 + y22 + y23� maxkyk�1r�1 + (u02 (bx1))2 + (u03 (bx1))2� (y21 + y22 + y23) + y22 + y23�q2 + (u02 (bx1))2 + (u03 (bx1))2We have ju0i (bx1)j = �����Z bx10 u00i (s) ds����� � Z bx10 ju00i (s)j ds� Z L0 ju00i (s)j ds � pL Z L0 (u00i (s))2 ds!1=2 � pL kuik2;℄0;L[ (6.2)11



The set B is bounded in H20 (℄0; L[), then9�B > 0;8u2; u3 2 B;8bx1 2 [0; L℄ ; L�1u (bx1) � p�BIt follows that 8u2; u3 2 B;8bx1 2 [0; L℄ ;8y 2 R3 ;kLu (bx1) yk2 = ytLtu (bx1)Lu (bx1) y � 1�B kyk2Using the last inequality, we obtain from (6.1) the following relation:8u2; u3 2 B;8 bw 2 W;1�B j bwj1;
F0 = 1�B 3Xi=1 3Xj=1 Z
F0 ����� bwi�bxj (bx)����2 dbx � baF (u; bw; bw)In the same way, we have8u2; u3 2 B;8bx1 2 [0; L℄ ; kLu (bx1)k � p�Band then 8u2; u3 2 B;8bx1 2 [0; L℄ ;8y; z 2 R3 ;ztLtu (bx1)Lu (bx1) y � �BztyUsing the last inequality, we obtain from (6.1) the following relation:8u2; u3 2 B;8 bw1; bw2 2 W;baF �u; bw1; bw2� � �B 3Xi=1 3Xj=1 Z
F0 � bw1i�bxj � bw2i�bxj dbx � �B �� bw1��1;
F0 �� bw2��1;
F0We set mB = 1=�B, MB = �B and then the proof of this lemma is �nished. 2Lemma 4 Let u2 and u3 be given in H20 (℄0; L[). Then9Æu > 0;8bw 2 W;8bq 2 bQ; Æu j bwj1;
F0 kbqk0;
F0 � bbF (u; bw; bq)Proof. Using the hange-of-variable formula (5.5), we obtain that�w1�x1 (x) = � bw1�bx1 (bx)� u02 (bx1) � bw1�bx2 (bx)� u03 (bx1) � bw1�bx3 (bx)�w2�x2 (x) = � bw2�bx2 (bx)�w3�x3 (x) = � bw3�bx3 (bx)From the Lemma 1 and the above equalities, we obtain that the operator mapping W onto bQbw 7�! � bw1�bx1 + � bw2�bx2 + � bw3�bx3 � u02 � bw1�bx2 � u03 � bw1�bx3is surjetif.In a standard way, from the property of the surjetif operators [6, Theorem II.19, p. 29℄, we obtainthe onlusion of this Lemma. 2 12



Lemma 5 Let u2, u3, u2, u3 be given in H20 (℄0; L[). We denote u = (0; u2; u3) and u = (0; u2; u3).Then there exists a onstant � not depending upon u, u suh that8bw 2 W;8bq 2 bQ; bbF (u; bw; bq) � bbF (u; bw; bq)� � ku� uk2;℄0;L[ j bwj1;
F0 kbqk0;
F0Proof. We havebbF (u; bw; bq)�bbF (u; bw; bq) = � Z
F0 (u2 � u2)0 � bw1�bx2 bq dbx � Z
F0 (u3 � u3)0 � bw1�bx2 bq dbxUsing the inequality (6.2) and after the Cauhy-Shwartz inequality, we obtainZ
F0 (ui � ui)0 � bw1�bxi bq dbx � pL kui � uik2;℄0;L[ � bw1�bxi 0;
F0 kbqk0;
F0 for i = 2; 3and the proof of this Lemma is �nished. 2Theorem 1 For all fSi in H20 (℄0; L[), i = 2; 3 and bK ompat in �L2 (�0)�3, the problem P has atleast one optimal solution hb��; u�; bv�; bp�i, where b�� is the density of the fores on the ontat surfae,u� = (0; u�2; u�3) is the displaement of the able, bv� and bp� are the veloity and the pressure of the uidin the arbitrary lagrangian eulerian oordinates. In order to obtain the veloity and the pressure in thereal domain we must use the transformation v� = bv� Æ T�1u� and p� = bp� Æ T�1u� .Proof. I) The ost funtional of the problem P is evidently positiv, then there exits a real number dsuh that inf 12 bvj�020;�0 = d (6.3)The observation bv was omputed from the ontrol b� using the relations a) - e) of the problem P .Let nb�kok2N be a minimizing sequene, i.e.limk!1 12 bvkj�020;�0 = d (6.4)where bvk was omputed from b�k using the following relations:a0) b�k 2 bKb0) uk2 ; uk3 2 H20 (℄0; L[)0) aS �uki ;  � = � Z℄0;L[ �Db�ki � (x1) (x1) dx1 + 
fSi ;  � ; 8 2 H20 (℄0; L[) ; i = 2; 3d0) �bvk; bpk� 2 W � bQe0) 8><>: baF �uk; bvk; bw�+bbF �uk; bw; bpk� = 3Xi=1 Z�0 b�ki bwi db�; 8 bw 2 WbbF �uk; bvk; bq� = 0; 8bq 2 bQThe set bK is ompat, then there exits a subsequene of nb�kok2N strongly onvergent in �L2 (�0)�3.Without risk of onfusion, we use the same notation nb�kok2N for this subsequene. We denote b�� itslimit, so b�k ! b�� strongly in �L2 (�0)�313



II) Let u� = (0; u�2; u�3) be the displaement of the able omputed using the variational equationsb) - ) for the density of the ontat fores b��. Sine nb�kok2N is strongly onvergent in �L2 (�0)�3to b��, from b0) and 0) we obtain that uk = �0; uk2 ; uk3� is strongly onvergent to u� in �H20 (℄0; L[)�3.Consequently, there exists a ompat B in H20 (℄0; L[) suh that uk2 , uk3 belong to B for all k. Also, u�2,u�3 belong to B.III) From e0) we have baF �uk; bvk; bvk� = 3Xi=1 Z�0 b�ki bvki db�and using the Lemma 3 and the Cauhy-Shwartz inequality, we obtainmB ��bvk��21;
F0 � b�k0;�0 bvkj�00;�0From the Trae Theorem, we have for all bw in W bwj�00;�0 �  �
F0 � j bwj1;
F0where  �
F0 � is a onstant only depending upon 
F0 whih is �xed.It follows that mB ��bvk��21;
F0 �  �
F0 � b�k0;�0 ��bvk��1;
F0Sine b�k is strongly onvergent, then b�k0;�0 is bounded whih implies that ��bvk��1;
F0 is bounded,too.From the �rst equality of the system e0) and the Lemma 3, we havebbF �uk; bw; bpk� = 3Xi=1 Z�0 b�ki bwi db� � baF �uk; bvk; bw�� 3Xi=1 Z�0 b�ki bwi db� +MB ��bvk��1;
F0 j bwj1;
F0From the Cauhy Shwartz inequality and the trae theorem, it follows3Xi=1 Z�0 b�ki bwi db� � b�k0;�0  bwj�00;�0 �  �
F0 � b�k0;�0 j bwj1;
F0From the above inequalities, we obtainbbF �uk; bw; bpk� �  �
F0 � b�k0;�0 j bwj1;
F0 +MB ��bvk��1;
F0 j bwj1;
F0 (6.5)From the Lemmas 4 and 5, we haveÆu� j bwj1;
F0 bpk0;
F0 � � uk � u�2;℄0;L[ j bwj1;
F0 bpk0;
F0� bbF �u�; bw; bpk�� � uk � u�2;℄0;L[ j bwj1;
F0 bpk0;
F0� bbF �uk; bw; bpk� (6.6)Using the inequalities (6.5) and (6.6), we obtain for all k in N and bw in W�Æu� � � uk � u�2;℄0;L[�bpk0;
F0 j bwj1;
F0� � �
F0 � b�k0;�0 +MB ��bvk��1;
F0 � j bwj1;
F014



Sine Æu� > 0 is �xed, ��bvk��1;
F0 and b�k0;�0 are bounded andlimk!Nuk � u�2;℄0;L[ = 0we obtain that bpk0;
F0 is bounded.The spaes W and bQ are Hilbert, then there exists a subsequene �bvkl	l2N weakly onvergent inW and �bpkl	l2N weakly onvergent in bQ. We denote by bv�� and bp�� the limits of these subsequenes.IV) We have from the previous stepsb�k ! b�� strongly in �L2 (�0)�3uk ! u� strongly in �H20 (℄0; L[)�3bvkl ! bv�� weakly in Wbpkl ! bp�� weakly in bQWe denote by (bv�; bp�) the solution of the problem (5.9) omputed for the displaement u� and forthe fores b�� on the surfae �0.We shall prove that bv�� = bv�, bp�� = bp�, the whole sequene �bvk	k2N is weakly onvergent to bv� inW and the whole sequene �bpk	k2N is weakly onvergent to bp� in bQ. In order to prove this, we shallshow that the following equalities hold:8bw 2 W; liml!NbaF �ukl ; bvkl ; bw� = baF (u�; bv��; bw)8 bw 2 W; liml!NbbF �ukl ; bw; bpkl� = bbF (u�; bw; bp��)8bq 2 bQ; liml!NbbF �ukl ; bvkl ; bq� = bbF (u�; bv��; bq)Aording to (5.7), we have that baF �ukl ; bvkl ; bw� is a sum of terms like these:i) Z
F0 �bvkli�bxj � bwi�bxj dbx; j = 1; 2; 3ii) Z
F0 �bvkli�bx1 � bwi�bxj �uklj �0 dbx; j = 2; 3iii) Z
F0 �bvkli�bxj � bwi�bx1 �uklj �0 dbx; j = 2; 3iv) Z
F0 �bvkli�bxj � bwi�bxp �uklj �0 �uklp �0 dbx; j; p = 2; 3From the de�nition of the weak onvergene, we have8 bw 2 W; liml!NZ
F0 �bvkli�bxj � bwi�bxj dbx = Z
F0 �bv��i�bxj � bwi�bxj dbxThe terms ii), iii) and iv) have the same form:Z
F0 �bvkli�bxj � bwi�bxp akldbx; j; p = 2; 3:15



Sine uklj and uklp are strongly onvergent to u�j and u�p in H20 (℄0; L[) respetively, we obtain that�uklj �0 and �uklp �0 are strongly onvergent to �u�j�0 and �u�p�0in H10 (℄0; L[) respetively. Easily, it followsthat the produt �uklj �0 �uklp �0 is strongly onvergent to �u�j�0 �u�p�0 in H10 (℄0; L[).Therefore, we have that the sequene �akl	kl2N is strongly onvergent in the spae H10 ([0; L℄). Wedenote by a its limit.In the following, it will be useful the well known below result:Lemma 6 Let X be a reexive Banah spae with dual X 0. For all sequene �wl	l2N weakly onvergentto w in X and all sequene of linear operators fAlgl2N strongly onvergent to A in L (X;X 0), then thesequene �Alwl	l2N is weakly onvergent to Aw in X 0.In order to apply this Lemma, let us onsider the Hilbert spaeX = �� 2W 1 �
F0 � ; � = 0 on �1 [ �2	equipped with the salar produt ( ; �)X = 3Xj=1 Z
F0 � �bxj ���bxj dbxand the indued norm k�kX =p(�; �)X .Also, let us onsider the operators Al; A 2 L (X;X 0) de�nited byhAl�;  iX0;X = Z
F0 � �bxj ���bxp akldbx; 8�;  2 XhA�;  iX0;X = Z
F0 � �bxj ���bxp a dbx; 8�;  2 X:We have k(Al �A)�kX = supk kX�1 h(Al �A) �;  i = supk kX�1Z
F0 � �bxj ���bxp �akl � a� dbx�  Z
F0 � ���bxp�2 �akl � a�2 dbx!1=2 � maxbx12[0;L℄ ���akl � a� (bx1)�� Z
F0 � ���bxp�2 dbx!1=2� maxbx12[0;L℄ ���akl � a� (bx1)�� k�kX ; 8� 2 XTherefore k(Al �A)kL(X;X0) � maxbx12[0;L℄ ���akl � a� (bx1)��But ���akl � a� (bx1)�� = �����Z bx10 �akl � a�0 (s) ds����� � Z bx10 ����akl � a�0 (s)��� ds� Z L0 ����akl � a�0 (s)��� ds � pL Z L0 ��akl � a�0 (s)�2 ds!1=2 � pLakl � a1;℄0;L[then Al is strongly onvergent to A in L (X;X 0). 16



Applying the Lemma 6, we obtain thatliml!1DAlbvkli ; bwiEX0;X = hA; bv��i ; bwiiX0;Xand onsequently 8 bw 2 W; liml!1baF �ukl ; bvkl ; bw� = baF (u�; bv��; bw)Using the same tehnique, we obtain8 bw 2 W; liml!1bbF �ukl ; bw; bpkl� = bbF (u�; bw; bp��)8bq 2 bQ; liml!1bbF �ukl ; bvkl ; bq� = bbF (u�; bv��; bq)By passing to the limit in the system e0, we obtain8><>: baF (u�; bv��; bw) +bbF (u�; bw; bp��) = 3Xi=1 Z�0 b��i bwi db�; 8 bw 2 WbbF (u�; bv��; bq) = 0; 8bq 2 bQFrom the Proposition 4, we know that the above system has a unique solution, so bv�� = bv� andbp�� = bp�.Classially (see [8, vol. 4, hap. VI, Prop. 7, p. 1114℄), we obtain that the whole sequene �bvk	k2Nis weakly onvergent to bv� in W and the whole sequene �bpk	k2N is weakly onvergent to bp� in bQ.V) We have:the appliation mapping W onto �L2 (�0)�3 bw ! bwj�0is linear and strong ontinuous,the appliation mapping �L2 (�0)�3 onto R �! k�k0;�0is onvex and strong ontinuous,the appliation mapping R onto R t! 12t2is onvex and ontinuous.From the elementary properties of the omposed funtions, we obtain that the appliation mappingW onto R bw ! 12  bwj�020;�0is onvex and strong ontinuous. It follows lassially that it is weak sequentially lower semi-ontinuous,so 12 bv�j�020;�0 � lim infk!1 12 bvkj�020;�0Aording to (6.3) and (6.4), the ontrol b�� is optimal and 12 bv�j�020;�0 is the optimal value of theost funtion. 2 17



Remark. The etaps of the above proof are standard. Related results, but not inluding theuid-struture interation problems, may be founded in [9℄, [10℄ and [14℄.Remark. Coupling the uid-struture equations using the Neumann boundary ontrol and Dirihletboundary observation on the ontat surfae was employed in [11℄.Remark. An open problem is to �nd additional onditions for the ontrol onstraint b� 2 bK inorder to obtain zero for the optimal value of the ost funtion, i.e. bv�j�0 = 0.ConlusionsThe mathematial model used in this paper permits to solve the oupled uid-able interation problemvia partitioned proedures, i.e. we an use the well established theories and numerial proedures forsolving separately the uid and the able equations.The ontrol b� ould be onsidered as the \mortar" whih ouples the uid equations with the ableequations. The Mortar Method was introdued in [5℄.Using the arbitrary lagrangian eulerian oordinates, we have transformed a free boundary problemin a optimal ontrol problem. Consequently, we have studied our problem in Sobolev spaes whih aremore attrative than working with shape topologies.Other positive onsequene, from the numerial point of view this time, is the following: we an usea �xed mesh for solving the uid equations by the Finite Element Method.AknowledgmentsThe CEMRACS 96 (Centre d'�Et�e M�editerran�een de Reherhes Avan�ees en Calul Sienti�que, Lu-miny, Frane) and the ASCI Laboratory, University Paris Sud are warmly aknowledged for the �nanialsupport of this work.Referenes[1℄ R. Adams - Sobolev spaes, Aademi Press, 1975[2℄ J.M. Arnaudies & H. Fraysse - Compl�ements d'analyse, Dunod, 1989[3℄ I. Babuska - Error Bounds for Finite Elements Method, Numer. Math., 16 (1971), pp. 322-333[4℄ M. Bernardou - Formulation variationnelle, approximation et implementation de probl�emes debarres et de poutre bi- et tri-dimensionnelles. Partie A: barres et de poutre tri-dimensionnelles,Rapport de Reherhe INRIA, no. 731, 1987[5℄ C. Bernardi, Y. Maday & A. Patera - A new non-onforming approah to domain deompo-sition: the mortar element method, in Nonlinear Partial Di�erential Equations and Their Appli-ations, H. Brezis, J.L. Lions, eds., Pitman, 1989[6℄ H. Brezis - Analyse fontionnelle. Th�eorie et appliations, Masson, 1983[7℄ F. Brezzi - On the Existene, Uniqueness and Approximation of Saddle-Point Problems Arisingfrom Lagrangian Multipliers, RAIRO, 8 (1974), pp. 129-151[8℄ R. Dautray & J.L. Lions - Analyse math�ematique et alul num�erique pour les sienes et lestehniques, vol. 3,4,5,6, Masson, 1988 18
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