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Existence of an Optimal Control for a Nonlinear Fluid-Cable
Interaction Problem *

C.M. Murea' Y. Maday*

Abstract. A three-dimensional fluid-cable interaction is studied. The fluid is governed
by the Stokes equations and the cable is governed by the beam equations without shearing
stress. Only steady equations are studied in this paper. The fluid equations are described
using arbitrary lagrangian eulerian coordinates.

The contact surface between fluid and cable is unknown a priori, therefore it is a free
boundary like problem.

The fluid-cable interaction is modeled by an optimal control system with Neumann like
boundary control and Dirichlet like boundary observation. The control appears also in the
coefficients of the fluid equations.

It’s a nonlinear and non-convex optimal control problem.
The existence of a solution is proved.
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1 Introduction

We study the behavior of a three-dimensional cable under the action of an external flow.

The real system to be modeled is the behavior of an electric cable with fixed extremities under the
wind action. We are interested by the displacement of the cable and by the velocity and the pressure
of the fluid.

The contact surface between fluid and cable is unknown a priori, therefore it is a free boundary like
problem.

We suppose that the fluid is governed by the Stokes equations and the cable is governed by the
beam equations without shearing stress. Only steady equations will be studied in this paper.

The fluid and cable equations are coupled via two boundary conditions: equality of the fluid’s and
cable’s velocities at the contact surface (which is a Dirichlet like boundary condition) and equality of
the forces at the contact surface (which is a Neumann like boundary condition).
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The coupled fluid-cable problem is modeled by an optimal control variational system. It’s a Neu-
mann like boundary control with Dirichlet like boundary observation. The control appears also in the
coefficients of the fluid equations.

This mathematical model permits to solve numerically the coupled fluid-cable problem via parti-

tioned procedures (i.e. in a decoupled way, more precisely the fluid and the cable equations are solved
separately).

The aim of this paper is to prove the existence of an optimal control for this fluid-cable interaction
problem.

2 Notations

Let us consider a cable of cross section S. We assume that S C R? has the following properties:
non-empty, open, bounded, connected, with Lipschitz boundary and (0,0) € S.
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Figure 1: The geometrical configuration of the fluid-cable interaction

The displacement of the cable will be described using the displacement of the median thread noted
here by:

u = (u1,us,usz) : [0,L] — R3.
For instant, we assume that u; = 0.
The three-dimensional domain occupied by the cable is

QS = {(331,;1)2,.’1}3) € ]R3;2131 € ]O,L[, (ZEQ — U2 (;L'l) , T3 — U3 (1131)) € S} (21)
and the domain occupied by the fluid is
QF =R\ Q5. (2.2)



The contact surface between fluid and cable is
Ly = {(z1,22,23) € ;21 €]0, L[, (22 — uz (21) , 23 — us (21)) € 95} (2.3)

which is the free boundary of our problem.
The extremities of the cable are noted:

U1 o= {(0,22,335) € R (22,23) € S}, (2.4)
E2 {(L7$27:I"3) € ]Rg) (m27$3) € S}

which are fixed.

3 Variational formulation for the cable equations

Now, we present the variational formulation for the cable equations. We have supposed that the cable
is governed by the beam equations without shearing stress (see [4]).
Let D> € R % be given. We set
as : H3 (]0,L]) x HZ (]0,L]) — R
B a2 a2y (3.1)
{ as (d);’l/}) =D, - f]07L[ da? (xl) z37 (xl)dwl

The form ag is evidently symmetric, bilinear, continuous. In addition, applying the Poincaré in-
equality (see [8, vol. 3, chap. IV, p. 920]), we obtain that ag is HZ (]0, L])-elliptic.

Let H=2(]0, L[) be the dual of the H3 (]0, L[). In this section, we denote by (-,-) the duality pairing
between H~2(]0, L[) and H¢ (]0, L).

As a simple consequence of the Lax-Milgram Theorem (see [8, vol. 4, chap. VII, p. 1217]), we have
the following result:

Proposition 1 Let f7 € H=%(]0,L[) and n; € L? (|0, L[) for i = 2,3. Then, the problem:
Find uy, us in HE (J0,L]) such that

as (ui, ) =/ mi (o) (1) dy + (F5,0), V€ HZ(0,L]), i =2,3 (3.2)
10,L[

has a unique solution.

In order to couple the 3D Stokes equations of the fluid with the beam equations described using the
median thread, which is a curve in R®, we shall need the following result:

Proposition 2 There is a linear and continuous operator D mapping
L2 (]0,L[ x 8S) onto L?(]0, L]) such that:

(Dg) (x1) = /859 (z1,0)do, a.e. x1 €)0,L][. (3.3)



Proof. Let g be an element of L? (J0, L[ x 8S). Applying the Fubini’s Theorem (see [12, p. 140] for
example), we have g (z1,-) € L' (8S), a.e. z; € ]0, L[ and the map

z1 €]0, L[~ [ g(21,0)do
05

is Lebesgue measurable.
From the Schwarz inequality (see [12, p. 62]), it follows that

(/859@1’0”0)2 ([ 1) [ #enoran  acnep.ul

Integrating the above inequality on |0, L[, we have

/]O,L[ (/asg(a:l,a) da>2 <L </8$ 1da> /M[ </3592 (z1,0) da) da:.

Using once again the Fubini’s Theorem, we obtain

/]0 Ll </8592 (1,0) dU) dry = /]0 L 8592 (z1,0) dodz, = ||g||§,]o,L[xas
s ,L[x

therefore Dg € L? (]0, L]) and

DI 0.0, < L ( /3 ) 1da) 19112 0. 2105 - (3.4)

The operator D is linear from the linearity of the Lebesgue integral.
The inequality (3.4) implies the continuity of the linear operator D. O

4 Mixed formulation for the fluid equations in moving exterior
domain

Let us and u3 be the solutions of the equation (3.2) and Qf be the domain occupied by the fluid given
by the relations (2.2) and (2.1).
Let us consider the Sobolev space with weights:

W (QF) = {we D' (0F) ; — &) s € L (Qf); Sw. L2(0F);i=1,2,3
(14 llalP”) "
5 1/2
where ||z|| = (21:1 :cf) is the eulerian norm in R3.
We set
3 o P 1/2
ol 0z = (Z L 5 @ d:c>

which is a semi-norm and

| ()|2 i
w(z 9
[Jw]] = / —— = dz + |w|] o

1,0F or 1 ||]7||2 1,0F



which is a norm.

We denote by Wg () the closure of D () in W' (@) for the norm ||-||; or-

From the Theorem 1 [8, vol. 6, chap. XI B, p. 650], we have that the semi-norm HLQE is a norm
for the spaces W' (Q) and Wy (). Moreover, it’s equivalent to ||-[|, qr -

In view of the Remark 2 [8, vol. 6, chap. XI B, p. 651], the spaces W' (QL) and W (QF) are
identical with the Beppo-Levi spaces BL (95) and D! (QE) respectively. So, the spaces W (95) and
Wi (fo) are the Hilbert spaces for the scalar product:

B Z / 9 0v
o i—1 Qr 8:61 8:61

(see also the Remark 7 [8, vol. 5, chap. IX A, p. 264]).
In view of the Sobolev Embedding Theorem (see [1]), we have

Hg (0, L) < ¢* ([0, L])

therefore the boundary I'y is Lipschitz, so we can define the space H/2 (T).
From the Theorem 2 [8, vol. 6, chap. XI B, p. 652], there exists the trace application mapping
Wt (QF) onto HY/?(T,) denoted by
w — w|r,

which is continuous and surjective and
Wo () = {w €W Q) wir,us,us, = 0}
Let us consider the following Hilbert space:
W, = {w € (W1 (Qf))3, w=0on¥% Ufg}

equipped with the scalar product

ov; 8wl
(v, w)
Z LF 8x] 833]
where v = (v1,v2,v3) and w = (w1, w2, w3) are in W,.
Also, let us consider the Hilbert space:

Qu=L* ()

equipped with the habitual scalar product.

L . 3
We use the notation div w = $2 + J¥2 4 888 for all w = (wy,ws,ws) in (W' (QF))".

Lemma 1 For all us and uz in HZ (]0, L[), the operator div mapping W, onto Q, is surjectif.

Proof. Let uy and uz be in HZ (]0, L).

Let us denote:
L(Z)(Qg) = {qEL2 (95), / qd:czO}
Qf



It is known (see [8, vol. 5, chap IX A, p. 267, Remark 8] for example) that div (W¢ (95))3 =
L2 (2F). Evidently we have (W (2£))* € W, so

L3 (Qf) C div (W, 2 (Qf) (4.1)

W €L
Since the operator div is linear, we obtain that div (W,,) is a vectorial subspace.
Knowing that the co-dimension of L () in L? (Qf) is one, the inclusions (4.1) imply: div (W) =
L3 (L) or div (W) = L* (2F).
In order to finish the proof of this Lemma, we shall prove that div (W,) # Lg ().
To obtain a contradiction, we suppose that

div (W) = L3 () = div (W5 (2F))" (4.2)
Let w be in W, such that Z?:l fFu w;n; do > 0, where n is the unit outward normal to I',.

From (4.2) we obtain that there is ¢ in (Wg (95))3 such that div ¢ = div w.
From the Green’s formula we have
3

3
0= div (w — ) d:c:Z/_ _ (w,-—l,b,-)n,-dazz:/ w;n; do >0
i=1 21UXUlNy, i=1 I'y

Qf
and we have obtained a contradiction. Then the proof of this Lemma is finished. O

Remark. As good as for a bounded domain, the Green’s formula holds for an exterior domain, i.e.
complement of a compact (see [8, vol. 6, chap. XI B, p. 694]).

We set 5
r (HE (0, L[)) X Wy xW, =R
Ov; 6w, (4.3)
(u,v,w)
ljzl /QF 833] a:U]
and 5
br i (Hg (J0,L))" x Wy x Qu = R
bp (u,w,q) = — (div w) q dx (4.4)
Qf
Proposition 3 For all us,us in HZ (]0,L]), A = (A1, A2, A3) in (L2 (Fu))3, the problem:
Find (v, p) € Wy x Q, such that
3
ap (u,v,w)+bF (U,w,p):;/ru Aiw; do, Yw € W, (45)
bp (u,v,q) =0, Vg € Qu

has a unique solution.

Proof. For all us,us in HE (]0, L), the bilinear form ag (u,-,-) is continuous and W,-elliptic for the
norm HLQE'

Using the Lemma 1 and a property of the surjectif operators [6, Theorem II.19, p. 29], we obtain
that the inf-sup condition holds for the bilinear form b (u,-, ).

Now, the conclusion of our proposition is a simple consequence of the results of Babuska [3] and
Brezzi [7]. O

Remark. The system (4.5) represents the mixed formulation for the Stokes equations in an exterior
domain: v and p are the velocity and the pressure of the fluid, A are the forces on the surface I'y.



5 Mixed formulation for the fluid equations in a fixed exterior
domain

In order to obtain the mixed formulation for the fluid equations in a fixed exterior domain, the arbitrary
lagrangian eulerian coordinates have been used. The formulation in a fixed domain permits us to obtain
the existence of the solution for the cable-fluid coupled problem.

We set
Q5 = {($1,$2,$3) €R’; x €]0,L[, (22,23) € S};

Qg‘ =R \Q_g7
Iy = {(;L'l,ZEQ,:Ug) € ]R3; 1 € ]O,L[, (;I,'Q,:Eg) € 65}
Let ua, uz in HZ (]0, L]) be given. We have HZ (]0,L[) < C* ([0, L]) and we extend uz, uz by zero
in the exterior of the interval [0, L]. Without risk of confusion, we use the same notations us, us for

the extended functions, so
U2 (3131) = Uus (;L'l) = 0, V;L‘l ¢ [O,L]

Therefore we have u; € C' (R) and we denote by u} the first derivate of u; for i = 2,3.
Let us consider the following one-to-one continuous differentiable transformation:

T,: R - R?
Ty (Z1,T2,T3) = (T1, T2 + u2 (Z1) , T3 + uz (71))

which admits the continuous differentiable inverse below:

lel RS R
Til (331;332>5U3) = ($1;$2 — U2 (331) , L3 — U3 (371))

We have

We denote by

JacT, "' (z)

JacT, (z) = (ué
( u’3

the Jacobi matrices of the transformations T}, and T, ! respectively.

We set T, (T) = =, where x = (z1,72,73) € QF and 7 = (21, 79,73) € O and T, (5) = o where
ocel,and o ely.

If A is a square matrix, we denote by det (4), A=!, At its determinant, the inverse and the transpose
matrix, respectively.

Lemma 2 We have:

pelr(Qf) o p=¢oT, e L' ()
b)de = | d@)ds (5:3)
Qr Qr
$e L (T) = ¢wy €L ()
[s@a = [ @)oo 64



and n (o) is the unit
R3

det (JacT,* (o)) ((JacTJ1 (U))_l)tn (o)

where ¢ = (g/b\OTJl), wy (o) = ‘

outward normal to T'y, in o;

(peW'(Qf) & ¢=¢oT, e W (Qf)

0
%() a;i()
0 _ =1} 0 (5.5)
%7@) = (Vacr, @)™ 5
[\ 90y ) o (@)

Proof. Since det (JacT, (z)) = det (JacT; ' (z)) = 1 for all z and Z in R?, the assertion (5.3) is a
consequence of the change-of-variable formula for the unbounded domains (see [2, Theorem VIIL.5.1,

p. 352)).
The proof of (5.4) can be founded in [13, Prop. 2.47, p. 78].

Let us prove (5.5). Let ¢ € W' (QF) be given.
From the change-of-variable formula (5.3), we have

~ 2
? 6@

JE Ly g Ll B
o 1+[lel  Jor 1+113]

Let ¢ € D (') and supp 1) C O where O is a open and bounded set in 2.
Since T, is a diffeomorphism, we have than T, (O) is a open and bounded set in QF.
From the Remark 7 [8, vol. 5, chap IX A, p. 264], we have ¢ € H* (T, (O)) and using [6, Prop.

IX.6, p. 156], we obtain that ¢ € H' (0) and
o N[00 o 0T
L@er@ gt @ar=-3 [ 22 .@) G @@

The above equality holds also if we change O by Q& because supp ¢ C O C QF then the equality
from the second row of the system (5.5) holds.

Since JacT, is in (L°° (95))9, we have that 573; are in L2 (Q{f) for j =1,2,3, so (5 ewt (Qg)
O

Let us consider the following Hilbert space:

w={ae W (@)’ d=0mT US|
equipped with the scalar product
ov; Ow

Z / Vi Wi g (5.6)
l] 1 QF a:L'] aw']

where 3 = (01,05, 03) and @ = (@, @2, @3) are in W.



Also, let us consider the Hilbert space:

Q=1 (2F)
equipped with the habitual scalar product.
We set
(HQ(]O L))’ x W x W = R
ar (u,0,w)
23: / o O, 00\ (0B 0w 00\ o
im1 63131 2 63132 3 8§3 63/13\1 2 2132 3 8§3 (57)
3 aa ORI
8vi 8wi 8vi a'LUi ~
— |d
+;/Qg (a@ 0%, | 02 a@) g
and R PR
br: (HZ(10,LD)° x W xQ - R
~ P Ow, = Ows 81’173 , OWs , 0W3\ . . (5.8)
bF (U, v q) a /Qg‘ C/U\l + a:l?z 8333 2 82/13\1 Us 851 4 de

Proposition 4 For all us,us in HZ (]0, L), A= (Xl,XQ,Xg) in (L2 (FO))3, the problem:
Find (v, p) € W x Q such that

F (U’aﬂ)\aﬁ) = Z X@'ﬂ)\i da, V@ € /W\
i=1 Y To N
br (u,0,q) =0, YgeQ

(5.9)

has a unique solution.

Proof.
Existence: Let uy,us in HZ (0, L]) and X = (Xl,XQ,Xg) in (L? (FO))3 be given. We set A (o) =

(X o Tu’l) (0) wy (o) where

wy (o) = ‘ det (JacT, " (o)) ((JacTu_1 (U))fl)tn (o)

R3
and n (o) is the unit outward normal to ', in o.

From the Lemma 2, we obtain that A is well defined and A € (L? (Fo))3.

According to the Proposition 3, there exits an unique solution (v, p) of the mixed system (4.5) and
weset 0 =voT,, p=poT,. . R

From the Lemma 2, we have that ¥ € W and p € Q. Using the change-of-variable formula, we
obtain that (5.9) holds.

Uniqueness: Let (0%, p*) and (22, p®) be two solutions of the (5.9).

We set vl =0l o T71 pt = pto Tt 0?2 = 0% o Tt and p? = p? o T71. Using once again the
change-of-variable formula, we have that (v',p') and (v?,p?) are solutions for (4.5), but this problem
has a unique solution, then (v',p') = (v?,p?).

It follows that

o' =(0'eT,)oT, = (00T, ") o T, =70°
and in the same way, p' = p>.

So, the conclusion of the proposition holds. O



6 Existence of an optimal control for the fluid-cable interaction
problem

The coupled fluid-cable problem will be modeled by an optimal control variational system.

In this section, the existence of an optimal control for the fluid-cable interaction problem will be
proved.

Let f5 in H2(]0,L[), i = 2,3 and K compact in (L? (Fo))3 be given. Let D be the operator
defined by the Proposition 2.

We denote by jr, the trace on I'p of ¥ € W and by [Illo.r, the habitual norm in (L? (FO))3.

We consider the following optimal control problem P:

P BTN
inf 3 [[oiro .,

subject to

a) XekK

b) Uz, U3 € Hg (]O,LD

) as(u)=-| (DX) () ¥ (@) das + (F5,9), Ve B3(0,LD, i =2,3
0,L

d) (©,p)eW xQ

S

=
=
g

3
)+ b (u, @, ) = Z/ N do, Vi e W
i=1 Y Lo

bF (uaﬁaé\) :07 VZ]\EQ

It’s an optimal control problem with Neumann like boundary control (X) and Dirichlet like boundary
observation (vjr,). The control appears also in the coefficients of the fluid equations ( relation e) ).

The relation a) represents the control constraint and the second relation of the system e) represents
the state constraint.

This mathematical model permits to solve numerically the coupled fluid-cable problem via parti-
tioned procedures (i.e. in a decoupled way, more precisely the fluid and the cable equations are solved
separately).

The relations b) and c) represent the cable equations and the relations d) and e) represent the fluid
equations.

In the classical approaches, the fluid and structure equations are coupled by two boundary con-
ditions: equality of the fluid’s and structure’s velocities at the contact surface (which is a Dirichlet
like boundary condition) and equality of the forces at the contact surface (which is a Neumann like
boundary condition).

In our approach, we start with a guess for the contact forces (step a). The displacement of the
structure can be computed (steps b and ¢). We suppose that domain occupied by the fluid is completely
determined by the displacement of the structure. Knowing the actual domain of the fluid and the contact
forces, we can compute the velocity and the pressure of the fluid (steps d and e).

In this way, the Neumann like contact boundary condition is trivially accomplished: we use the
same value A for the contact forces on 'y in the equations c) (for the cable) and in the equations e)
(for the fluid).

The Dirichlet like contact boundary condition vjp, = 0 is treated by the Least Squares Method

P BTPN
inf 3 [[oir, [,

10



We denote by ||, or the norm induced by the scalar product (5.6). We have that W is a Hilbert

space for this scalar product.
If A is a matrix, we denote by A’ the transpose matrix and if y is a column vector of R®

Y1
Yy = Y2 )
Ys

we denote by y! the transpose vector y¢ = (y1,y2,y3).

Lemma 3 Let B be a bounded set in H3 (|0, L[).
Then the following inequalities hold:

Imp > 0,Yuz,ug € BYD €W, mp|df; or < ar (u,d,d)
AMp > 0,Yuy,us € B,Yo', 0> € W, ap (u,0",0%) < Mp |0"|, or |0*], or

Proof. The equality (5.7) can be rewritten in the form

ar (u, 5, @) =
3 ~ ~ ~ ~ ~ ~ \ t
ov; v Ov; - [ 0w; ow; Ow;\' . (6.1)
Lt LU A~ ) a~ 1 o~
z;/m <651’6§2’853> u (@) ($1)<8$1 07 8333) dz

where for all Z; in [0, L] we denote:

1 —uy (@) —uy (@) Y
L.(@)=1| 0 é ? = ((Ja61171(£>) )

o

Evidently, L is an invertible matrix and we have:

1wy (71)  ug (1)
L' (z)=1| 0 1 0
0 0 1

We denote by ||y|| = (yty)l/ * the euclidean norm of R®. Now, we evaluate the euclidean norm of
the matrix L1

L' (@) = max | L)} (&

22" @0l = o 122" @) o]

= max /(o1 +uj @) 1o+ @) )’ +93 + 83
ylI<

< o /(14 0 G)? + (0 (20))°) (0 + 0+ 98) + 08 + 33

T lyli<t
<2+ (uh 31))° + (4 (7))’

We have

71
/ uy (s)ds
0

L L
Sﬂwﬂﬂﬁgﬂ(éhmmwﬁ < VI |uilly o 1

|ui (71)] =

11



The set B is bounded in HZ (]0, L[), then

Jap > 0,Yuy,us € B,VZ, € [0,L], ||L," (Z)| < Vap

It follows that
Yus,us € B,V € [O,L] ,Vy € ]R3,

~ ~ ~ 1
1L (@) yl* = y' L, (&1) Lu (31) y > as llylI®
Using the last inequality, we obtain from (6.1) the following relation:

VUQ,Ug GB Yw € W

10l 05 ——zz/F

i=1 j=1

awz A
833]

S aF (u7 ’[U\a ﬁ]\)

In the same way, we have

VUQ,Ug S B,Vé/U\l S [O,L], ||Lu (Z/L“\l)” < agp
and then
Vusz,uz € B,VZ; € [0,L],Vy,z € R?,
2Ly (T1) Ly (1) y < ap2'y
Using the last inequality, we obtain from (6.1) the following relation:

Yuq,us € B, V'L/U\1 w2 S W,
3

3
R SN ow; ow?
ap (u,wl,w2) < aB;j; ar 6:13 axl dr < ap |’LU |1 Qf |’LU

’|
1L,QlF

We set mp = 1/ap, Mp = ap and then the proof of this lemma is finished. O

Lemma 4 Let uz and uz be given in HZ (0, L[). Then

36u > O,V’L/U\ € W;V(?E Q; 611 |’[U\|LQ(I; ||Q\I|O,QOF S bF (U,’L/U\, a\)

Proof. Using the change-of-variable formula (5.5), we obtain that

6w1 o 81151 —~ )~ 6@1 ~ 1~ 6@1 ~
T ) = (@) —uh (@) S () — () G )
00 ) = 2% )

8332 v o 82/1/3\\2 ¢

o) = @)

8333 o 82/13\3

From the Lemma 1 and the above equalities, we obtain that the operator mapping W onto @
- ow, Ows Ows , Oy , Oy
w = = A~ — Uy 7= — U=
8:61 8332 aél?g 2 8332 3 8333
is surjectif.

In a standard way, from the property of the surjectif operators [6, Theorem II.19, p. 29], we obtain
the conclusion of this Lemma. O

12



Lemma 5 Let ua, us, U2, Uz be given in HZ (]0,L]). We denote u = (0,u2,u3) and u = (0,2, U3).
Then there exists a constant 8 not depending upon u, u such that

Vﬂ)\ € W,VE]\E Q: bF (U’aﬂ)\a EI\) Z bF (ﬂ,’lj)\,a) - B ||U’ - ﬂ||27]07L[ |@|1,Qg ||é\]|0,Qg

Proof. We have

> P AU _ v 0w _ 0wy
bF (u7w7Q) - bF (u,w,q) = _/ (U'2 - U/2)I a—/\l dz — / (U3 - U3), qu dz
QF T2 Qf 0Ty

Using the inequality (6.2) and after the Cauchy-Schwartz inequality, we obtain
Oty

_ 0wy _
/Qg (ui — )’ 5,04 < VL ||ui = Willy 10,1 FrA

i ||qA||0790p fori =2,3
0]

and the proof of this Lemma is finished. O

Theorem 1 For all f5 in HZ(0,L]), i = 2,3 and K compact in (L? (Fo))3, the problem P has at
least one optimal solution [X*,u*,ﬁ*,ﬁ* , where \* s the density of the forces on the contact surface,

u* = (0,u3,u3) is the displacement of the cable, v* and p* are the velocity and the pressure of the fluid
in the arbitrary lagrangian eulerian coordinates. In order to obtain the velocity and the pressure in the
real domain we must use the transformation v* = v* o T,.* and p* = p* o T,.*.

Proof. I) The cost functional of the problem P is evidently positiv, then there exits a real number d
such that

el
inf 5 5o lg r, =d (6.3)

The observation v was computed from the control A using the relations a) - e) of the problem P.

Let {)\’“} be a minimizing sequence, i.e.
keN

1 2
lim = |} =d 6.4
52 [l o4

where 5% was computed from A* using the following relations:

a) Nek

V') uy,ug € Hg (J0,L])

d) as (uf,¢) = —/

10,L[
d) (@) eW xQ

(Dii-“) (z1) ¢ (v1) doy + (f7,0), V¢ € HE(|0,L]), i =2,3

Q)

3
) F (uf, 05, @) +bp (uF,@,5%) = [ Ma;de, voeWw
i=17Tlo

br (u*,0%,9) =0, VieQ
The set K is compact, then there exits a subsequence of {X’“ }k . strongly convergent in (L2 (FO))3.
€

Without risk of confusion, we use the same notation {X’“}k . for this subsequence. We denote 2* its
€
limit, so

AR — X* strongly in (L2 (I‘O))3
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IT) Let u* = (0,u3,u%) be the displacement of the cable computed using the variational equations
b) - ¢) for the density of the contact forces A*. Since {X’“} is strongly convergent in (L? (Fo))3
keN
to A*, from b') and ¢') we obtain that u* = (0,u%,u}) is strongly convergent to u* in (Hj (]O,L[))g.
Consequently, there exists a compact B in HZ (]0, L[) such that u%, u¥ belong to B for all k. Also, u},
u} belong to B.
III) From e') we have

ar (uk, 0% o Z/ Afﬁfd?r
Ty
and using the Lemma 3 and the Cauchy-Schwartz inequality, we obtain

~k
’UlFO

12 ~
mp [0} gp < |3 .

0,Tg
From the Trace Theorem, we have for all @ in 1%
”ﬂ)\\ro Ho,ro <c (Qg) |7D|17Q§

where ¢ (Qg ) is a constant only depending upon Qf" which is fixed.
It follows that 5
~k Fy ||k ~k
mp [0 |1,Qg <c() HA HO,Fo 0"}, oF

Since AF is strongly convergent, then HX’“ H is bounded which implies that [0%| ., is bounded,
250

too.
From the first equality of the system ¢’) and the Lemma 3, we have

?)\F Z )\ w; do — ap (uk,ﬁk,@)

3
< Z/ \ew; do + Mp |@’“|LQF @l or
=1 Lo 0

From the Cauchy Schwartz inequality and the trace theorem, it follows

3
NI Tk ~ Fy ||3* ~
> [ Mt [V, N, < @) [, 1ol
From the above inequalities, we obtain
br (uf, @,5") < c(0F) HMHO @1y, 05 + M [0*, gr 1], 0 (6.5)
From the Lemmas 4 and 5, we have

Our |@|1 Qr ||p ”0 QF B”“k _U'*HZ]OL @], Qr Hﬁkno QF
<bp (w,@,p*) — ﬁ”“ —u ||2]0L @y or 17" ||0 oF (6.6)
< bF (u w ﬁk)

Using the inequalities (6.5) and (6.6), we obtain for all ¥ in N and @ in w

(3 = B 1wk =l 1) 15l o 181
< () [, 20 ) ) 191

14



Since d,+ > 0 is fixed, |ﬁ’“|1 or and H/\’“H are bounded and
[ 0,I'o

i 2,J0,L] — 0

lim ||u —u
k—N

we obtain that ||p* ||0 o is bounded.
{25

The spaces W and Cj are Hilbert, then there exists a subsequence {ﬁ’“’ } leN weakly convergent in

W and {P"},cy weakly convergent in (). We denote by 9** and p** the limits of these subsequences.

IV) We have from the previous steps

X X* strongly in (L? (FO))3

u* - w*  strongly in (HZ (]0, L[))3
o = **  weakly in W

P = p™  weakly in @

We denote by (0*,p*) the solution of the problem (5.9) computed for the displacement u* and for

the forces A\* on the surface Io.
We shall prove that 0** = 0%, p** = p*, the whole sequence {0*}, o 18 weakly convergent to 7* in

W and the whole sequence {p } kEN is weakly convergent to p* in Cj In order to prove this, we shall
show that the following equalities hold:

Vi e W, limap (ub, o, @) = ap (u*, 0", @)
P [N __ N
Vw e W, }L}Hlilbp(ul, ") Ab r (u*,w,p")

VieQ, llg%gp (u, 5%, ) = bp (u*,5*,7)

According to (5.7), we have that @p (u*',9% @) is a sum of terms like these:

oot o,
0 o qi)zdx, j=1,2,3
or 0; 0;
aAk’ OW; ]
i) S (k) dm, =23
or 071 0T;
vk o, ro
iit) S () dE, j=2,3
Qg“ 6£Ej 63131
- M OB [ N, gt
v oF 85:33' 07, (ujl) (up') dZ, j,p=2,3
0

From the definition of the weak convergence, we have

= ook ow; . oo Ow; .
Yw € W, lim Ldz = L __dz
=N QF 83:] 8£L“J QF 8117]' 8a:j

The terms i), 7i7) and iv) have the same form:

ook ow; . .
/F s zakldxa J,p=2,3.
Q
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Since uf’ and ukl are strongly convergent to ui and uy in Hg (]0, L[) respectively, we obtain that

!
(uf’) and (u’;l)l are strongly convergent to (uj*)' and (u;)lin H{ (]0, L[) respectively. Easily, it follows

!
that the product (uf’) (ukr)" is strongly convergent to (u3)" (uz)" in H{ (10, L[).
Therefore, we have that the sequence {a }kleN is strongly convergent in the space H ([0, L]). We
denote by a its limit.
In the following, it will be useful the well known below result:

Lemma 6 Let X be a reflexive Banach space with dual X'. For all sequence {wl}leN weakly convergent
to w in X and all sequence of linear operators {A;},.y strongly convergent to A in L (X, X'), then the
sequence {Alwl}leN is weakly convergent to Aw in X'.

In order to apply this Lemma, let us consider the Hilbert space
X={peW'(2f); ¢=00n3,UD,}

equipped with the scalar product
3
oY 99 ..
o)=Y [ e peds

and the induced norm ||¢||x = 1/(9, ¢) x-
Also, let us consider the operators 4;, A € £ (X, X') definited by

— 8_’1,/}% ki g
(416, 0) o x = e 55,55, dz, Vo, e X
B oY 9o .
<A¢7¢>X’7X_ oF a—g,v\ja—:,]}pad.’li, V¢,¢€X
0
We have
o 0 ~
I(Ar — A) ¢llx = sup ((A —A)p, )= sup 7=~ 5~ (@ —a)dx
T i< Il <1 Jor 0T; 0T, )
1/2 2 1/2
¢ ? k 2 o~ k =~ ¢ ~
< - - < - b
- </9F <<955p> (" —aydz ) < mas (@ - o) @) /Qg oz,)
< M q) (@ X
_inelm”(a a) ()| llolly, Vo€
Therefore
1= Dl oy < mae [(a" = a) (21)
But

|(@* —a) (@1)] =

, 1/2
< /OL ‘(a’“z —a) (8)‘ ds <VL (/OL ((a’“’ ~a)’ (S)) ds) < VL |a* —all, 5o

then A; is strongly convergent to A in £ (X, X").
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Applying the Lemma 6, we obtain that

. ~kr o~ PN
lim <Alv-’ w'> = (A0, w;
farens i) x (4,077, z>X',X

and consequently

* oKk

V’L/U\GW, llj}IanF (Ukl,ﬁkl,'[u\) :ZL\F(’U, , U ,'L/U\)
Using the same technique, we obtain
Vﬂ)\ew, ll—l>IgogF (uklaﬁai)\kl) :/b\F (U*aﬁaﬁ**)

¥geQ, lim by (uM, 0™, q) = bp (u", 07, 9)

By passing to the limit in the system e’, we obtain

3

ap (u*, 0", ) + bp (u*,®,p™) =Y _ | AN; d7, V€W
; r
i=1 0

~

bF(U*,i)\**,(Y):O, VZJ\EQ\

From the Proposition 4, we know that the above system has a unique solution, so v** = ¥* and
=7

Classically (see [8, vol. 4, chap. VI, Prop. 7, p. 1114]), we obtain that the whole sequence {ﬁk}keN
is weakly convergent to v* in W and the whole sequence {ﬁ’“} EN is weakly convergent to p* in @

V) We have:

the application mapping W onto (L? (FO))3

w — 'L/U\|F0
is linear and strong continuous,
the application mapping (L2 (Fg))3 onto R
= llullo,r,
is convex and strong continuous,
the application mapping R onto R
1
t— =t
2

is convex and continuous.

__ From the elementary properties of the composed functions, we obtain that the application mapping
W onto R

~ 1, . 2
@ 22y,
is convex and strong continuous. It follows classically that it is weak sequentially lower semi-continuous,

SO
1
2

According to (6.3) and (6.4), the control A* is optimal and 1 Hﬁl*l“o H

~k 2
'U‘FO

P [ PN
< liminf - Hvﬁ«
0,To k—oo 2 0

0,To
2
is the optimal value of the
0,To
cost function. O
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Remark. The etaps of the above proof are standard. Related results, but not including the
fluid-structure interaction problems, may be founded in [9], [10] and [14].

Remark. Coupling the fluid-structure equations using the Neumann boundary control and Dirichlet
boundary observation on the contact surface was employed in [11].

Remark. An open problem is to find additional conditions for the control constraint Ne K in

order to obtain zero for the optimal value of the cost function, i.e. ﬁ‘*ro =0.

Conclusions

The mathematical model used in this paper permits to solve the coupled fluid-cable interaction problem
via partitioned procedures, i.e. we can use the well established theories and numerical procedures for
solving separately the fluid and the cable equations.

The control A could be considered as the “mortar” which couples the fluid equations with the cable
equations. The Mortar Method was introduced in [5].

Using the arbitrary lagrangian eulerian coordinates, we have transformed a free boundary problem
in a optimal control problem. Consequently, we have studied our problem in Sobolev spaces which are
more attractive than working with shape topologies.

Other positive consequence, from the numerical point of view this time, is the following: we can use
a fixed mesh for solving the fluid equations by the Finite Element Method.
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