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Abstra
t. A three-dimensional 
uid-
able intera
tion is studied. The 
uid is governedby the Stokes equations and the 
able is governed by the beam equations without shearingstress. Only steady equations are studied in this paper. The 
uid equations are des
ribedusing arbitrary lagrangian eulerian 
oordinates.The 
onta
t surfa
e between 
uid and 
able is unknown a priori, therefore it is a freeboundary like problem.The 
uid-
able intera
tion is modeled by an optimal 
ontrol system with Neumann likeboundary 
ontrol and Diri
hlet like boundary observation. The 
ontrol appears also in the
oeÆ
ients of the 
uid equations.It's a nonlinear and non-
onvex optimal 
ontrol problem.The existen
e of a solution is proved.AMS Mathemati
s Subje
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oordinates1 Introdu
tionWe study the behavior of a three-dimensional 
able under the a
tion of an external 
ow.The real system to be modeled is the behavior of an ele
tri
 
able with �xed extremities under thewind a
tion. We are interested by the displa
ement of the 
able and by the velo
ity and the pressureof the 
uid.The 
onta
t surfa
e between 
uid and 
able is unknown a priori, therefore it is a free boundary likeproblem.We suppose that the 
uid is governed by the Stokes equations and the 
able is governed by thebeam equations without shearing stress. Only steady equations will be studied in this paper.The 
uid and 
able equations are 
oupled via two boundary 
onditions: equality of the 
uid's and
able's velo
ities at the 
onta
t surfa
e (whi
h is a Diri
hlet like boundary 
ondition) and equality ofthe for
es at the 
onta
t surfa
e (whi
h is a Neumann like boundary 
ondition).�Re
eived ...yUniversity of Bu
harest, Fa
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The 
oupled 
uid-
able problem is modeled by an optimal 
ontrol variational system. It's a Neu-mann like boundary 
ontrol with Diri
hlet like boundary observation. The 
ontrol appears also in the
oeÆ
ients of the 
uid equations.This mathemati
al model permits to solve numeri
ally the 
oupled 
uid-
able problem via parti-tioned pro
edures (i.e. in a de
oupled way, more pre
isely the 
uid and the 
able equations are solvedseparately).The aim of this paper is to prove the existen
e of an optimal 
ontrol for this 
uid-
able intera
tionproblem.2 NotationsLet us 
onsider a 
able of 
ross se
tion S. We assume that S � R2 has the following properties:non-empty, open, bounded, 
onne
ted, with Lips
hitz boundary and (0; 0) 2 S.
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Figure 1: The geometri
al 
on�guration of the 
uid-
able intera
tionThe displa
ement of the 
able will be des
ribed using the displa
ement of the median thread notedhere by: u = (u1; u2; u3) : [0; L℄! R3 :For instant, we assume that u1 = 0.The three-dimensional domain o

upied by the 
able is
Su = �(x1; x2; x3) 2 R3 ;x1 2 ℄0; L[ ; (x2 � u2 (x1) ; x3 � u3 (x1)) 2 S	 (2.1)and the domain o

upied by the 
uid is 
Fu = R3 n
Su : (2.2)2



The 
onta
t surfa
e between 
uid and 
able is�u = �(x1; x2; x3) 2 R3 ;x1 2 ℄0; L[ ; (x2 � u2 (x1) ; x3 � u3 (x1)) 2 �S	 (2.3)whi
h is the free boundary of our problem.The extremities of the 
able are noted:�1 = �(0; x2; x3) 2 R3 ; (x2; x3) 2 S	 ; (2.4)�2 = �(L; x2; x3) 2 R3 ; (x2; x3) 2 S	whi
h are �xed.3 Variational formulation for the 
able equationsNow, we present the variational formulation for the 
able equations. We have supposed that the 
ableis governed by the beam equations without shearing stress (see [4℄).Let D2 2 R �+ be given. We set( aS : H20 (℄0; L[)�H20 (℄0; L[)! RaS (�;  ) = D2 � R℄0;L[ d2�dx21 (x1) d2 dx21 (x1) dx1 (3.1)The form aS is evidently symmetri
, bilinear, 
ontinuous. In addition, applying the Poin
ar�e in-equality (see [8, vol. 3, 
hap. IV, p. 920℄), we obtain that aS is H20 (℄0; L[)-ellipti
.Let H�2 (℄0; L[) be the dual of the H20 (℄0; L[). In this se
tion, we denote by h�; �i the duality pairingbetween H�2 (℄0; L[) and H20 (℄0; L[).As a simple 
onsequen
e of the Lax-Milgram Theorem (see [8, vol. 4, 
hap. VII, p. 1217℄), we havethe following result:Proposition 1 Let fSi 2 H�2 (℄0; L[) and �i 2 L2 (℄0; L[) for i = 2; 3. Then, the problem:Find u2, u3 in H20 (℄0; L[) su
h thataS (ui;  ) = Z℄0;L[ �i (x1) (x1) dx1 + 
fSi ;  � ; 8 2 H20 (℄0; L[) ; i = 2; 3 (3.2)has a unique solution.In order to 
ouple the 3D Stokes equations of the 
uid with the beam equations des
ribed using themedian thread, whi
h is a 
urve in R3 , we shall need the following result:Proposition 2 There is a linear and 
ontinuous operator D mappingL2 (℄0; L[� �S) onto L2 (℄0; L[) su
h that:(Dg) (x1) = Z�S g (x1; �) d�; a:e: x1 2 ℄0; L[ : (3.3)
3



Proof. Let g be an element of L2 (℄0; L[� �S). Applying the Fubini's Theorem (see [12, p. 140℄ forexample), we have g (x1; �) 2 L1 (�S), a.e. x1 2 ℄0; L[ and the mapx1 2 ℄0; L[ 7! Z�S g (x1; �) d�is Lebesgue measurable.From the S
hwarz inequality (see [12, p. 62℄), it follows that�Z�S g (x1; �) d��2 � �Z�S 1d��Z�S g2 (x1; �) d�; a:e: x1 2 ℄0; L[ :Integrating the above inequality on ℄0; L[, we haveZ℄0;L[�Z�S g (x1; �) d��2 � L�Z�S 1d��Z℄0;L[�Z�S g2 (x1; �) d�� dx1:Using on
e again the Fubini's Theorem, we obtainZ℄0;L[�Z�S g2 (x1; �) d�� dx1 = Z℄0;L[��S g2 (x1; �) d�dx1 = kgk20;℄0;L[��Stherefore Dg 2 L2 (℄0; L[) and kDgk20;℄0;L[ � L�Z�S 1d�� kgk20;℄0;L[��S : (3.4)The operator D is linear from the linearity of the Lebesgue integral.The inequality (3.4) implies the 
ontinuity of the linear operator D. 24 Mixed formulation for the 
uid equations in moving exteriordomainLet u2 and u3 be the solutions of the equation (3.2) and 
Fu be the domain o

upied by the 
uid givenby the relations (2.2) and (2.1).Let us 
onsider the Sobolev spa
e with weights:W 1 �
Fu � =8><>:w 2 D0 �
Fu � ; w (x)�1 + kxk2�1=2 2 L2 �
Fu � ; �w�xi 2 L2 �
Fu � ; i = 1; 2; 39>=>;where kxk = �P3i=1 x2i �1=2 is the eulerian norm in R3 .We set jwj1;
Fu =  3Xi=1 Z
Fu ���� �w�xi (x)����2 dx!1=2whi
h is a semi-norm and kwk1;
Fu =  Z
Fu jw (x)j21 + kxk2 dx+ jwj21;
Fu!1=24



whi
h is a norm.We denote by W 10 �
Fu � the 
losure of D �
Fu � in W 1 �
Fu � for the norm k�k1;
Fu .From the Theorem 1 [8, vol. 6, 
hap. XI B, p. 650℄, we have that the semi-norm j�j1;
Fu is a normfor the spa
es W 1 �
Fu � and W 10 �
Fu �. Moreover, it's equivalent to k�k1;
Fu .In view of the Remark 2 [8, vol. 6, 
hap. XI B, p. 651℄, the spa
es W 1 �
Fu � and W 10 �
Fu � areidenti
al with the Beppo-Levi spa
es BL �
Fu � and D̂1 �
Fu � respe
tively. So, the spa
es W 1 �
Fu � andW 10 �
Fu � are the Hilbert spa
es for the s
alar produ
t:(�;  ) = 3Xi=1 Z
Fu ���xi � �xi dx(see also the Remark 7 [8, vol. 5, 
hap. IX A, p. 264℄).In view of the Sobolev Embedding Theorem (see [1℄), we haveH20 (℄0; L[) ,! C1 ([0; L℄)therefore the boundary �u is Lips
hitz, so we 
an de�ne the spa
e H1=2 (�u).From the Theorem 2 [8, vol. 6, 
hap. XI B, p. 652℄, there exists the tra
e appli
ation mappingW 1 �
Fu � onto H1=2 (�u) denoted by w �! wj�uwhi
h is 
ontinuous and surje
tive andW 10 �
Fu � = nw 2 W 1 �
Fu � ; wj�u[�1[�2 = 0oLet us 
onsider the following Hilbert spa
e:Wu = nw 2 �W 1 �
Fu ��3 ; w = 0 on �1 [�2oequipped with the s
alar produ
t (v; w) = 3Xi;j=1 Z
Fu �vi�xj �wi�xj dxwhere v = (v1; v2; v3) and w = (w1; w2; w3) are in Wu.Also, let us 
onsider the Hilbert spa
e: Qu = L2 �
Fu �equipped with the habitual s
alar produ
t.We use the notation div w = �w1�x1 + �w2�x2 + �w3�x3 for all w = (w1; w2; w3) in �W 1 �
Fu ��3.Lemma 1 For all u2 and u3 in H20 (℄0; L[), the operator div mapping Wu onto Qu is surje
tif.Proof. Let u2 and u3 be in H20 (℄0; L[).Let us denote: L20 �
Fu � = (q 2 L2 �
Fu � ; Z
Fu q dx = 0)5



It is known (see [8, vol. 5, 
hap IX A, p. 267, Remark 8℄ for example) that div �W 10 �
Fu ��3 =L20 �
Fu �. Evidently we have �W 10 �
Fu ��3 �Wu, soL20 �
Fu � � div (Wu) � L2 �
Fu � (4.1)Sin
e the operator div is linear, we obtain that div (Wu) is a ve
torial subspa
e.Knowing that the 
o-dimension of L20 �
Fu � in L2 �
Fu � is one, the in
lusions (4.1) imply: div (Wu) =L20 �
Fu � or div (Wu) = L2 �
Fu �.In order to �nish the proof of this Lemma, we shall prove that div (Wu) 6= L20 �
Fu �.To obtain a 
ontradi
tion, we suppose thatdiv (Wu) = L20 �
Fu � = div �W 10 �
Fu ��3 (4.2)Let w be in Wu su
h that P3i=1 R�u wini d� > 0, where n is the unit outward normal to �u.From (4.2) we obtain that there is  in �W 10 �
Fu ��3 su
h that div  = div w.From the Green's formula we have0 = Z
Fu div (w �  ) dx = 3Xi=1 Z�1[�2[�u (wi �  i)ni d� = 3Xi=1 Z�u wini d� > 0and we have obtained a 
ontradi
tion. Then the proof of this Lemma is �nished. 2Remark. As good as for a bounded domain, the Green's formula holds for an exterior domain, i.e.
omplement of a 
ompa
t (see [8, vol. 6, 
hap. XI B, p. 694℄).We set 8><>: aF : �H20 (℄0; L[)�3 �Wu �Wu ! RaF (u; v; w) = 3Xi;j=1 Z
Fu �vi�xj �wi�xj dx (4.3)and 8<: bF : �H20 (℄0; L[)�3 �Wu �Qu ! RbF (u;w; q) = � Z
Fu (div w) q dx (4.4)Proposition 3 For all u2; u3 in H20 (℄0; L[), � = (�1; �2; �3) in �L2 (�u)�3, the problem:Find (v; p) 2Wu �Qu su
h that8><>: aF (u; v; w) + bF (u;w; p) = 3Xi=1 Z�u �iwi d�; 8w 2 WubF (u; v; q) = 0; 8q 2 Qu (4.5)has a unique solution.Proof. For all u2; u3 in H20 (℄0; L[), the bilinear form aF (u; �; �) is 
ontinuous and Wu-ellipti
 for thenorm j�j1;
Fu .Using the Lemma 1 and a property of the surje
tif operators [6, Theorem II.19, p. 29℄, we obtainthat the inf-sup 
ondition holds for the bilinear form bF (u; �; �).Now, the 
on
lusion of our proposition is a simple 
onsequen
e of the results of Babuska [3℄ andBrezzi [7℄. 2Remark. The system (4.5) represents the mixed formulation for the Stokes equations in an exteriordomain: v and p are the velo
ity and the pressure of the 
uid, � are the for
es on the surfa
e �0.6



5 Mixed formulation for the 
uid equations in a �xed exteriordomainIn order to obtain the mixed formulation for the 
uid equations in a �xed exterior domain, the arbitrarylagrangian eulerian 
oordinates have been used. The formulation in a �xed domain permits us to obtainthe existen
e of the solution for the 
able-
uid 
oupled problem.We set 
S0 = �(x1; x2; x3) 2 R3 ; x1 2 ℄0; L[ ; (x2; x3) 2 S	 ;
F0 = R3 n 
S0 ;�0 = �(x1; x2; x3) 2 R3 ; x1 2 ℄0; L[ ; (x2; x3) 2 �S	 :Let u2; u3 in H20 (℄0; L[) be given. We have H20 (℄0; L[) ,! C1 ([0; L℄) and we extend u2; u3 by zeroin the exterior of the interval [0; L℄. Without risk of 
onfusion, we use the same notations u2; u3 forthe extended fun
tions, so u2 (x1) = u3 (x1) = 0; 8x1 =2 [0; L℄Therefore we have ui 2 C1 (R) and we denote by u0i the �rst derivate of ui for i = 2; 3.Let us 
onsider the following one-to-one 
ontinuous di�erentiable transformation:Tu : R3 ! R3Tu (bx1; bx2; bx3) = (bx1; bx2 + u2 (bx1) ; bx3 + u3 (bx1)) (5.1)whi
h admits the 
ontinuous di�erentiable inverse below:T�1u : R3 ! R3T�1u (x1; x2; x3) = (x1; x2 � u2 (x1) ; x3 � u3 (x1)) (5.2)We have Tu �
F0 � = 
FuTu (�0) = �uTu (bx) = bx; 8bx 2 �1 [ �2We denote by Ja
 Tu (bx) = 0� 1 0 0u02 (bx1) 1 0u03 (bx1) 0 1 1AJa
 T�1u (x) = 0� 1 0 0�u02 (x1) 1 0�u03 (x1) 0 1 1Athe Ja
obi matri
es of the transformations Tu and T�1u respe
tively.We set Tu (bx) = x, where x = (x1; x2; x3) 2 
Fu and bx = (bx1; bx2; bx3) 2 
F0 and Tu (b�) = � where� 2 �u and b� 2 �0.If A is a square matrix, we denote by det (A) ; A�1; At its determinant, the inverse and the transposematrix, respe
tively.Lemma 2 We have: 8<: � 2 L1 �
Fu � , b� = � Æ Tu 2 L1 �
F0 �Z
Fu � (x) dx = Z
F0 b� (bx) dbx (5.3)8<: b� 2 L1 (�0) ) �!u 2 L1 (�u)Z�0 b� (b�) db� = Z�u � (�)!u (�) d� (5.4)7



where � = �b� Æ T�1u �, !u (�) = 



det �Ja
 T�1u (�)� ��Ja
 T�1u (�)��1�t n (�)



R3 and n (�) is the unitoutward normal to �u in �;8>>>>>>>><>>>>>>>>:
� 2 W 1 �
Fu � , b� = � Æ Tu 2 W 1 �
F0 �0BBBBB� ���x1 (x)���x2 (x)���x3 (x)

1CCCCCA = �(Ja
 Tu (bx))�1�t0BBBBBB� �b��bx1 (bx)�b��bx2 (bx)�b��bx3 (bx)
1CCCCCCA (5.5)

Proof. Sin
e det (Ja
 Tu (bx)) = det �Ja
 T�1u (x)� = 1 for all x and bx in R3 , the assertion (5.3) is a
onsequen
e of the 
hange-of-variable formula for the unbounded domains (see [2, Theorem VIII.5.1,p. 352℄).The proof of (5.4) 
an be founded in [13, Prop. 2.47, p. 78℄.Let us prove (5.5). Let � 2W 1 �
Fu � be given.From the 
hange-of-variable formula (5.3), we haveZ
Fu j� (x)j21 + kxk2 dx = Z
F0 ���b� (bx)���21 + kbxk2 dbxLet  2 D �
F0 � and supp  � O where O is a open and bounded set in 
F0 .Sin
e Tu is a di�eomorphism, we have than Tu (O) is a open and bounded set in 
Fu .From the Remark 7 [8, vol. 5, 
hap IX A, p. 264℄, we have � 2 H1 (Tu (O)) and using [6, Prop.IX.6, p. 156℄, we obtain that b� 2 H1 (O) andZO (� Æ Tu) (bx) � �bxj (bx) dbx = � 3Xi=1 ZO ���xi (Tu (bx)) �Tu;i�bxj (bx) (bx) dbxThe above equality holds also if we 
hange O by 
F0 be
ause supp  � O � 
F0 then the equalityfrom the se
ond row of the system (5.5) holds.Sin
e Ja
 Tu is in �L1 �
F0 ��9, we have that �b��bxj are in L2 �
F0 � for j = 1; 2; 3, so b� 2 W 1 �
F0 �.2 Let us 
onsider the following Hilbert spa
e:
W = nbw 2 �W 1 �
F0 ��3 ; bw = 0 on �1 [ �2oequipped with the s
alar produ
t (bv; bw) = 3Xi;j=1 Z
F0 �bvi�bxj � bwi�bxj dbx (5.6)where bv = (bv1; bv2; bv3) and bw = ( bw1; bw2; bw3) are in 
W .8



Also, let us 
onsider the Hilbert spa
e: bQ = L2 �
F0 �equipped with the habitual s
alar produ
t.We set baF : �H20 (℄0; L[)�3 �
W �
W ! RbaF (u; bv; bw)= 3Xi=1 Z
F0 � �bvi�bx1 � u02 �bvi�bx2 � u03 �bvi�bx3��� bwi�bx1 � u02 � bwi�bx2 � u03� bwi�bx3� dbx+ 3Xi=1 Z
F0 � �bvi�bx2 � bwi�bx2 + �bvi�bx3 � bwi�bx3� dbx (5.7)and 8><>: bbF : �H20 (℄0; L[)�3 �
W � bQ! RbbF (u; bw; bq) = � Z
F0 �� bw1�bx1 + � bw2�bx2 + � bw3�bx3 � u02 � bw2�bx1 � u03 � bw3�bx1 � bq dbx (5.8)Proposition 4 For all u2; u3 in H20 (℄0; L[), b� = �b�1; b�2; b�3� in �L2 (�0)�3, the problem:Find (bv; bp) 2 
W � bQ su
h that8><>: baF (u; bv; bw) +bbF (u; bw; bp) = 3Xi=1 Z�0 b�i bwi db�; 8 bw 2 
WbbF (u; bv; bq) = 0; 8bq 2 bQ (5.9)has a unique solution.Proof.Existen
e: Let u2; u3 in H20 (℄0; L[) and b� = �b�1; b�2; b�3� in �L2 (�0)�3 be given. We set � (�) =�b� Æ T�1u � (�)!u (�) where!u (�) = 



det �Ja
 T�1u (�)� ��Ja
 T�1u (�)��1�t n (�)



R3and n (�) is the unit outward normal to �u in �.From the Lemma 2, we obtain that � is well de�ned and � 2 �L2 (�0)�3.A

ording to the Proposition 3, there exits an unique solution (v; p) of the mixed system (4.5) andwe set bv = v Æ Tu; bp = p Æ Tu.From the Lemma 2, we have that bv 2 
W and bp 2 bQ. Using the 
hange-of-variable formula, weobtain that (5.9) holds.Uniqueness: Let �bv1; bp1� and �bv2; bp2� be two solutions of the (5.9).We set v1 = bv1 Æ T�1u , p1 = bp1 Æ T�1u , v2 = bv2 Æ T�1u and p2 = bp2 Æ T�1u . Using on
e again the
hange-of-variable formula, we have that �v1; p1� and �v2; p2� are solutions for (4.5), but this problemhas a unique solution, then �v1; p1� = �v2; p2�.It follows that bv1 = �bv1 Æ T�1u � Æ Tu = �bv2 Æ T�1u � Æ Tu = bv2and in the same way, bp1 = bp2.So, the 
on
lusion of the proposition holds. 29



6 Existen
e of an optimal 
ontrol for the 
uid-
able intera
tionproblemThe 
oupled 
uid-
able problem will be modeled by an optimal 
ontrol variational system.In this se
tion, the existen
e of an optimal 
ontrol for the 
uid-
able intera
tion problem will beproved.Let fSi in H�2 (℄0; L[), i = 2; 3 and bK 
ompa
t in �L2 (�0)�3 be given. Let D be the operatorde�ned by the Proposition 2.We denote by bvj�0 the tra
e on �0 of bv 2 
W and by k�k0;�0 the habitual norm in �L2 (�0)�3.We 
onsider the following optimal 
ontrol problem P :inf 12 

bvj�0

20;�0subje
t toa) b� 2 bKb) u2; u3 2 H20 (℄0; L[)
) aS (ui;  ) = � Z℄0;L[ �Db�i� (x1) (x1) dx1 + 
fSi ;  � ; 8 2 H20 (℄0; L[) ; i = 2; 3d) (bv; bp) 2 
W � bQe) 8><>: baF (u; bv; bw) +bbF (u; bw; bp) = 3Xi=1 Z�0 b�i bwi db�; 8 bw 2 
WbbF (u; bv; bq) = 0; 8bq 2 bQIt's an optimal 
ontrol problem with Neumann like boundary 
ontrol (b�) and Diri
hlet like boundaryobservation (bvj�0). The 
ontrol appears also in the 
oeÆ
ients of the 
uid equations ( relation e) ).The relation a) represents the 
ontrol 
onstraint and the se
ond relation of the system e) representsthe state 
onstraint.This mathemati
al model permits to solve numeri
ally the 
oupled 
uid-
able problem via parti-tioned pro
edures (i.e. in a de
oupled way, more pre
isely the 
uid and the 
able equations are solvedseparately).The relations b) and 
) represent the 
able equations and the relations d) and e) represent the 
uidequations.In the 
lassi
al approa
hes, the 
uid and stru
ture equations are 
oupled by two boundary 
on-ditions: equality of the 
uid's and stru
ture's velo
ities at the 
onta
t surfa
e (whi
h is a Diri
hletlike boundary 
ondition) and equality of the for
es at the 
onta
t surfa
e (whi
h is a Neumann likeboundary 
ondition).In our approa
h, we start with a guess for the 
onta
t for
es (step a). The displa
ement of thestru
ture 
an be 
omputed (steps b and 
). We suppose that domain o

upied by the 
uid is 
ompletelydetermined by the displa
ement of the stru
ture. Knowing the a
tual domain of the 
uid and the 
onta
tfor
es, we 
an 
ompute the velo
ity and the pressure of the 
uid (steps d and e).In this way, the Neumann like 
onta
t boundary 
ondition is trivially a

omplished: we use thesame value b� for the 
onta
t for
es on �0 in the equations 
) (for the 
able) and in the equations e)(for the 
uid).The Diri
hlet like 
onta
t boundary 
ondition bvj�0 = 0 is treated by the Least Squares Methodinf 12 

bvj�0

20;�010



We denote by j�j1;
F0 the norm indu
ed by the s
alar produ
t (5.6). We have that 
W is a Hilbertspa
e for this s
alar produ
t.If A is a matrix, we denote by At the transpose matrix and if y is a 
olumn ve
tor of R3y = 0� y1y2y3 1A ;we denote by yt the transpose ve
tor yt = (y1; y2; y3).Lemma 3 Let B be a bounded set in H20 (℄0; L[).Then the following inequalities hold:9mB > 0;8u2; u3 2 B;8 bw 2 
W; mB j bwj21;
F0 � baF (u; bw; bw)9MB > 0;8u2; u3 2 B;8 bw1; bw2 2 
W; baF �u; bw1; bw2� �MB �� bw1��1;
F0 �� bw2��1;
F0Proof. The equality (5.7) 
an be rewritten in the formbaF (u; bv; bw) =3Xi=1 Z
F0 � �bvi�bx1 ; �bvi�bx2 ; �bvi�bx3�Ltu (bx1)Lu (bx1)�� bwi�bx1 ; � bwi�bx2 ; � bwi�bx3�t dbx (6.1)where for all bx1 in [0; L℄ we denote:Lu (bx1) = 0� 1 �u02 (bx1) �u03 (bx1)0 1 00 0 1 1A = ��Ja
 T�1u (bx)��1�tEvidently, L is an invertible matrix and we have:L�1u (bx1) = 0� 1 u02 (bx1) u03 (bx1)0 1 00 0 1 1AWe denote by kyk = (yty)1=2 the eu
lidean norm of R3 . Now, we evaluate the eu
lidean norm ofthe matrix L�1. 

L�1u (bx1)

 = maxkyk�1 

L�1u (bx1) y

= maxkyk�1q(y1 + u02 (bx1) y2 + u03 (bx1) y3)2 + y22 + y23� maxkyk�1r�1 + (u02 (bx1))2 + (u03 (bx1))2� (y21 + y22 + y23) + y22 + y23�q2 + (u02 (bx1))2 + (u03 (bx1))2We have ju0i (bx1)j = �����Z bx10 u00i (s) ds����� � Z bx10 ju00i (s)j ds� Z L0 ju00i (s)j ds � pL Z L0 (u00i (s))2 ds!1=2 � pL kuik2;℄0;L[ (6.2)11



The set B is bounded in H20 (℄0; L[), then9�B > 0;8u2; u3 2 B;8bx1 2 [0; L℄ ; 

L�1u (bx1)

 � p�BIt follows that 8u2; u3 2 B;8bx1 2 [0; L℄ ;8y 2 R3 ;kLu (bx1) yk2 = ytLtu (bx1)Lu (bx1) y � 1�B kyk2Using the last inequality, we obtain from (6.1) the following relation:8u2; u3 2 B;8 bw 2 
W;1�B j bwj1;
F0 = 1�B 3Xi=1 3Xj=1 Z
F0 ����� bwi�bxj (bx)����2 dbx � baF (u; bw; bw)In the same way, we have8u2; u3 2 B;8bx1 2 [0; L℄ ; kLu (bx1)k � p�Band then 8u2; u3 2 B;8bx1 2 [0; L℄ ;8y; z 2 R3 ;ztLtu (bx1)Lu (bx1) y � �BztyUsing the last inequality, we obtain from (6.1) the following relation:8u2; u3 2 B;8 bw1; bw2 2 
W;baF �u; bw1; bw2� � �B 3Xi=1 3Xj=1 Z
F0 � bw1i�bxj � bw2i�bxj dbx � �B �� bw1��1;
F0 �� bw2��1;
F0We set mB = 1=�B, MB = �B and then the proof of this lemma is �nished. 2Lemma 4 Let u2 and u3 be given in H20 (℄0; L[). Then9Æu > 0;8bw 2 
W;8bq 2 bQ; Æu j bwj1;
F0 kbqk0;
F0 � bbF (u; bw; bq)Proof. Using the 
hange-of-variable formula (5.5), we obtain that�w1�x1 (x) = � bw1�bx1 (bx)� u02 (bx1) � bw1�bx2 (bx)� u03 (bx1) � bw1�bx3 (bx)�w2�x2 (x) = � bw2�bx2 (bx)�w3�x3 (x) = � bw3�bx3 (bx)From the Lemma 1 and the above equalities, we obtain that the operator mapping 
W onto bQbw 7�! � bw1�bx1 + � bw2�bx2 + � bw3�bx3 � u02 � bw1�bx2 � u03 � bw1�bx3is surje
tif.In a standard way, from the property of the surje
tif operators [6, Theorem II.19, p. 29℄, we obtainthe 
on
lusion of this Lemma. 2 12



Lemma 5 Let u2, u3, u2, u3 be given in H20 (℄0; L[). We denote u = (0; u2; u3) and u = (0; u2; u3).Then there exists a 
onstant � not depending upon u, u su
h that8bw 2 
W;8bq 2 bQ; bbF (u; bw; bq) � bbF (u; bw; bq)� � ku� uk2;℄0;L[ j bwj1;
F0 kbqk0;
F0Proof. We havebbF (u; bw; bq)�bbF (u; bw; bq) = � Z
F0 (u2 � u2)0 � bw1�bx2 bq dbx � Z
F0 (u3 � u3)0 � bw1�bx2 bq dbxUsing the inequality (6.2) and after the Cau
hy-S
hwartz inequality, we obtainZ
F0 (ui � ui)0 � bw1�bxi bq dbx � pL kui � uik2;℄0;L[ 



� bw1�bxi 



0;
F0 kbqk0;
F0 for i = 2; 3and the proof of this Lemma is �nished. 2Theorem 1 For all fSi in H20 (℄0; L[), i = 2; 3 and bK 
ompa
t in �L2 (�0)�3, the problem P has atleast one optimal solution hb��; u�; bv�; bp�i, where b�� is the density of the for
es on the 
onta
t surfa
e,u� = (0; u�2; u�3) is the displa
ement of the 
able, bv� and bp� are the velo
ity and the pressure of the 
uidin the arbitrary lagrangian eulerian 
oordinates. In order to obtain the velo
ity and the pressure in thereal domain we must use the transformation v� = bv� Æ T�1u� and p� = bp� Æ T�1u� .Proof. I) The 
ost fun
tional of the problem P is evidently positiv, then there exits a real number dsu
h that inf 12 

bvj�0

20;�0 = d (6.3)The observation bv was 
omputed from the 
ontrol b� using the relations a) - e) of the problem P .Let nb�kok2N be a minimizing sequen
e, i.e.limk!1 12 


bvkj�0


20;�0 = d (6.4)where bvk was 
omputed from b�k using the following relations:a0) b�k 2 bKb0) uk2 ; uk3 2 H20 (℄0; L[)
0) aS �uki ;  � = � Z℄0;L[ �Db�ki � (x1) (x1) dx1 + 
fSi ;  � ; 8 2 H20 (℄0; L[) ; i = 2; 3d0) �bvk; bpk� 2 
W � bQe0) 8><>: baF �uk; bvk; bw�+bbF �uk; bw; bpk� = 3Xi=1 Z�0 b�ki bwi db�; 8 bw 2 
WbbF �uk; bvk; bq� = 0; 8bq 2 bQThe set bK is 
ompa
t, then there exits a subsequen
e of nb�kok2N strongly 
onvergent in �L2 (�0)�3.Without risk of 
onfusion, we use the same notation nb�kok2N for this subsequen
e. We denote b�� itslimit, so b�k ! b�� strongly in �L2 (�0)�313



II) Let u� = (0; u�2; u�3) be the displa
ement of the 
able 
omputed using the variational equationsb) - 
) for the density of the 
onta
t for
es b��. Sin
e nb�kok2N is strongly 
onvergent in �L2 (�0)�3to b��, from b0) and 
0) we obtain that uk = �0; uk2 ; uk3� is strongly 
onvergent to u� in �H20 (℄0; L[)�3.Consequently, there exists a 
ompa
t B in H20 (℄0; L[) su
h that uk2 , uk3 belong to B for all k. Also, u�2,u�3 belong to B.III) From e0) we have baF �uk; bvk; bvk� = 3Xi=1 Z�0 b�ki bvki db�and using the Lemma 3 and the Cau
hy-S
hwartz inequality, we obtainmB ��bvk��21;
F0 � 


b�k


0;�0 


bvkj�0


0;�0From the Tra
e Theorem, we have for all bw in 
W

 bwj�0

0;�0 � 
 �
F0 � j bwj1;
F0where 
 �
F0 � is a 
onstant only depending upon 
F0 whi
h is �xed.It follows that mB ��bvk��21;
F0 � 
 �
F0 � 


b�k


0;�0 ��bvk��1;
F0Sin
e b�k is strongly 
onvergent, then 


b�k


0;�0 is bounded whi
h implies that ��bvk��1;
F0 is bounded,too.From the �rst equality of the system e0) and the Lemma 3, we havebbF �uk; bw; bpk� = 3Xi=1 Z�0 b�ki bwi db� � baF �uk; bvk; bw�� 3Xi=1 Z�0 b�ki bwi db� +MB ��bvk��1;
F0 j bwj1;
F0From the Cau
hy S
hwartz inequality and the tra
e theorem, it follows3Xi=1 Z�0 b�ki bwi db� � 


b�k


0;�0 

 bwj�0

0;�0 � 
 �
F0 � 


b�k


0;�0 j bwj1;
F0From the above inequalities, we obtainbbF �uk; bw; bpk� � 
 �
F0 � 


b�k


0;�0 j bwj1;
F0 +MB ��bvk��1;
F0 j bwj1;
F0 (6.5)From the Lemmas 4 and 5, we haveÆu� j bwj1;
F0 

bpk

0;
F0 � � 

uk � u�

2;℄0;L[ j bwj1;
F0 

bpk

0;
F0� bbF �u�; bw; bpk�� � 

uk � u�

2;℄0;L[ j bwj1;
F0 

bpk

0;
F0� bbF �uk; bw; bpk� (6.6)Using the inequalities (6.5) and (6.6), we obtain for all k in N and bw in 
W�Æu� � � 

uk � u�

2;℄0;L[�

bpk

0;
F0 j bwj1;
F0� �
 �
F0 � 


b�k


0;�0 +MB ��bvk��1;
F0 � j bwj1;
F014



Sin
e Æu� > 0 is �xed, ��bvk��1;
F0 and 


b�k


0;�0 are bounded andlimk!N

uk � u�

2;℄0;L[ = 0we obtain that 

bpk

0;
F0 is bounded.The spa
es 
W and bQ are Hilbert, then there exists a subsequen
e �bvkl	l2N weakly 
onvergent in
W and �bpkl	l2N weakly 
onvergent in bQ. We denote by bv�� and bp�� the limits of these subsequen
es.IV) We have from the previous stepsb�k ! b�� strongly in �L2 (�0)�3uk ! u� strongly in �H20 (℄0; L[)�3bvkl ! bv�� weakly in 
Wbpkl ! bp�� weakly in bQWe denote by (bv�; bp�) the solution of the problem (5.9) 
omputed for the displa
ement u� and forthe for
es b�� on the surfa
e �0.We shall prove that bv�� = bv�, bp�� = bp�, the whole sequen
e �bvk	k2N is weakly 
onvergent to bv� in
W and the whole sequen
e �bpk	k2N is weakly 
onvergent to bp� in bQ. In order to prove this, we shallshow that the following equalities hold:8bw 2 
W; liml!NbaF �ukl ; bvkl ; bw� = baF (u�; bv��; bw)8 bw 2 
W; liml!NbbF �ukl ; bw; bpkl� = bbF (u�; bw; bp��)8bq 2 bQ; liml!NbbF �ukl ; bvkl ; bq� = bbF (u�; bv��; bq)A

ording to (5.7), we have that baF �ukl ; bvkl ; bw� is a sum of terms like these:i) Z
F0 �bvkli�bxj � bwi�bxj dbx; j = 1; 2; 3ii) Z
F0 �bvkli�bx1 � bwi�bxj �uklj �0 dbx; j = 2; 3iii) Z
F0 �bvkli�bxj � bwi�bx1 �uklj �0 dbx; j = 2; 3iv) Z
F0 �bvkli�bxj � bwi�bxp �uklj �0 �uklp �0 dbx; j; p = 2; 3From the de�nition of the weak 
onvergen
e, we have8 bw 2 
W; liml!NZ
F0 �bvkli�bxj � bwi�bxj dbx = Z
F0 �bv��i�bxj � bwi�bxj dbxThe terms ii), iii) and iv) have the same form:Z
F0 �bvkli�bxj � bwi�bxp akldbx; j; p = 2; 3:15



Sin
e uklj and uklp are strongly 
onvergent to u�j and u�p in H20 (℄0; L[) respe
tively, we obtain that�uklj �0 and �uklp �0 are strongly 
onvergent to �u�j�0 and �u�p�0in H10 (℄0; L[) respe
tively. Easily, it followsthat the produ
t �uklj �0 �uklp �0 is strongly 
onvergent to �u�j�0 �u�p�0 in H10 (℄0; L[).Therefore, we have that the sequen
e �akl	kl2N is strongly 
onvergent in the spa
e H10 ([0; L℄). Wedenote by a its limit.In the following, it will be useful the well known below result:Lemma 6 Let X be a re
exive Bana
h spa
e with dual X 0. For all sequen
e �wl	l2N weakly 
onvergentto w in X and all sequen
e of linear operators fAlgl2N strongly 
onvergent to A in L (X;X 0), then thesequen
e �Alwl	l2N is weakly 
onvergent to Aw in X 0.In order to apply this Lemma, let us 
onsider the Hilbert spa
eX = �� 2W 1 �
F0 � ; � = 0 on �1 [ �2	equipped with the s
alar produ
t ( ; �)X = 3Xj=1 Z
F0 � �bxj ���bxj dbxand the indu
ed norm k�kX =p(�; �)X .Also, let us 
onsider the operators Al; A 2 L (X;X 0) de�nited byhAl�;  iX0;X = Z
F0 � �bxj ���bxp akldbx; 8�;  2 XhA�;  iX0;X = Z
F0 � �bxj ���bxp a dbx; 8�;  2 X:We have k(Al �A)�kX = supk kX�1 h(Al �A) �;  i = supk kX�1Z
F0 � �bxj ���bxp �akl � a� dbx�  Z
F0 � ���bxp�2 �akl � a�2 dbx!1=2 � maxbx12[0;L℄ ���akl � a� (bx1)�� Z
F0 � ���bxp�2 dbx!1=2� maxbx12[0;L℄ ���akl � a� (bx1)�� k�kX ; 8� 2 XTherefore k(Al �A)kL(X;X0) � maxbx12[0;L℄ ���akl � a� (bx1)��But ���akl � a� (bx1)�� = �����Z bx10 �akl � a�0 (s) ds����� � Z bx10 ����akl � a�0 (s)��� ds� Z L0 ����akl � a�0 (s)��� ds � pL Z L0 ��akl � a�0 (s)�2 ds!1=2 � pL

akl � a

1;℄0;L[then Al is strongly 
onvergent to A in L (X;X 0). 16



Applying the Lemma 6, we obtain thatliml!1DAlbvkli ; bwiEX0;X = hA; bv��i ; bwiiX0;Xand 
onsequently 8 bw 2 
W; liml!1baF �ukl ; bvkl ; bw� = baF (u�; bv��; bw)Using the same te
hnique, we obtain8 bw 2 
W; liml!1bbF �ukl ; bw; bpkl� = bbF (u�; bw; bp��)8bq 2 bQ; liml!1bbF �ukl ; bvkl ; bq� = bbF (u�; bv��; bq)By passing to the limit in the system e0, we obtain8><>: baF (u�; bv��; bw) +bbF (u�; bw; bp��) = 3Xi=1 Z�0 b��i bwi db�; 8 bw 2 
WbbF (u�; bv��; bq) = 0; 8bq 2 bQFrom the Proposition 4, we know that the above system has a unique solution, so bv�� = bv� andbp�� = bp�.Classi
ally (see [8, vol. 4, 
hap. VI, Prop. 7, p. 1114℄), we obtain that the whole sequen
e �bvk	k2Nis weakly 
onvergent to bv� in 
W and the whole sequen
e �bpk	k2N is weakly 
onvergent to bp� in bQ.V) We have:the appli
ation mapping 
W onto �L2 (�0)�3 bw ! bwj�0is linear and strong 
ontinuous,the appli
ation mapping �L2 (�0)�3 onto R �! k�k0;�0is 
onvex and strong 
ontinuous,the appli
ation mapping R onto R t! 12t2is 
onvex and 
ontinuous.From the elementary properties of the 
omposed fun
tions, we obtain that the appli
ation mapping
W onto R bw ! 12 

 bwj�0

20;�0is 
onvex and strong 
ontinuous. It follows 
lassi
ally that it is weak sequentially lower semi-
ontinuous,so 12 


bv�j�0


20;�0 � lim infk!1 12 


bvkj�0


20;�0A

ording to (6.3) and (6.4), the 
ontrol b�� is optimal and 12 


bv�j�0


20;�0 is the optimal value of the
ost fun
tion. 2 17



Remark. The etaps of the above proof are standard. Related results, but not in
luding the
uid-stru
ture intera
tion problems, may be founded in [9℄, [10℄ and [14℄.Remark. Coupling the 
uid-stru
ture equations using the Neumann boundary 
ontrol and Diri
hletboundary observation on the 
onta
t surfa
e was employed in [11℄.Remark. An open problem is to �nd additional 
onditions for the 
ontrol 
onstraint b� 2 bK inorder to obtain zero for the optimal value of the 
ost fun
tion, i.e. bv�j�0 = 0.Con
lusionsThe mathemati
al model used in this paper permits to solve the 
oupled 
uid-
able intera
tion problemvia partitioned pro
edures, i.e. we 
an use the well established theories and numeri
al pro
edures forsolving separately the 
uid and the 
able equations.The 
ontrol b� 
ould be 
onsidered as the \mortar" whi
h 
ouples the 
uid equations with the 
ableequations. The Mortar Method was introdu
ed in [5℄.Using the arbitrary lagrangian eulerian 
oordinates, we have transformed a free boundary problemin a optimal 
ontrol problem. Consequently, we have studied our problem in Sobolev spa
es whi
h aremore attra
tive than working with shape topologies.Other positive 
onsequen
e, from the numeri
al point of view this time, is the following: we 
an usea �xed mesh for solving the 
uid equations by the Finite Element Method.A
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