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Abstract

We study numerically the dynamic impact/contact of an elastic
body on a moving foundation using the mid-point algorithm. Stability
results are presented when foundation is decreasing. Numerical sim-
ulations on two-dimensional problems are included and we show that
the energy is absorbed in the case of decreasing foundation compared
to the fixed one.
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1 Introduction

Several numerical methods have been developed for elastodynamic contact
problem, see the textbook [7], [9], [17] or the survey papers [5], [8]. The
contact constraint can be treated using: Lagrange multiplier, augmented
Lagrangian, penalty methods, etc. We add also the Nitsche based meth-
ods [1], [2]. Updated Lagrangian methods for elasticity with contact are
described in [18] and [11].
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Alsace, France

353



354 C. M. Murea

The contact problem can be modeled by variational inequalities. We
mention here the textbooks of Dan Tiba on this topic [16], [14] and some
applications to contact mechanics [12], [13].

In this paper, we study the mid-point algorithm for the dynamic im-
pact/contact of an elastic body on a moving foundation. In Section 3, sta-
bility results are presented. Numerical experiments are included in Section 4
and we show that the energy is absorbed in the case of decreasing foundation
compared to the fixed one.

2 Contact without friction in dynamic linear elas-
ticity

We denote by Ω0 ⊂ R2 the undeformed structure domain. We assume that
it has Lipschitz boundary ∂Ω0 = ΓD ∪ ΓN ∪ ΓC , where ΓD, ΓN and ΓC are
relatively open subsets, mutually disjoint. The structure is elastic and its
displacement is denoted by u = (u1, u2) : Ω0 × [0, T ] → R2, where T > 0.
After deformation, a point X = (X1, X2) ∈ Ω0 will occupy the position
x = ϕt (X) = X+u (X, t) in the structure domain at time instant t denoted
by Ωt = ϕt (Ω0).

Let ψt ∈ C1(R) be a function describing the foundation at time instant
t. Its graph will be denoted by

graph(ψt) =
{
X = (X1, X2) ∈ R2; X2 = ψt(X1)

}
and its epigraph by

epi(ψt) =
{
X = (X1, X2) ∈ R2; X2 ≥ ψt(X1)

}
.

We assume that the structure is governed by the linear elasticity equa-
tion. The stress tensor is σ (u) = λ (∇ · u) I + 2µε (u), where λ, µ > 0 are
the Lamé coefficients, ε (u) = 1

2

(
∇u + (∇u)T

)
and I is the unit matrix.

The problem is to find the structure displacement u : Ω0 × [0, T ]→ R2,
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such that:

ρ
∂2u

∂t2
−∇ · σ (u) = f , in Ω0×]0, T [ (1)

u = 0, on ΓD×]0, T [ (2)

σ (u) n = 0, on ΓN×]0, T [ (3)

ϕt(ΓC) ⊂ epi(ψt), t ∈]0, T [ (4)

σ (u) n = 0, on {X ∈ ΓC ; ϕt(X) /∈ graph(ψt)}, t ∈]0, T [(5)

σ (u) (X, t)n(X) = −α(X, t)n(X), α(X, t) ≥ 0,

on {X ∈ ΓC ; ϕt(X) ∈ graph(ψt)}, t ∈]0, T [ (6)

u(X, 0) = u0(X), X ∈ Ω0 (7)

∂u

∂t
(X, 0) = u1(X), X ∈ Ω0 (8)

where f : Ω0 × [0, T ] → R2 are the applied volume forces, n is the unit
outward vector normal to ∂Ω0, u0 is the initial displacement and u1 is the
initial velocity. Of course, the solution u have to be smooth enough, such
that the system (1)-(8) has sense.

We precise that the value of α(X, t) is not given and (6) could be written
without using α by

n · σ (u) n ≤ 0, t · σ (u) n = 0

where t is the unit tangential vector to ∂Ω0.

We follow the framework [4], Section 5.3, and (4) means that ΓC after
deformation stays on a given side of ψt. Some authors use in place of (4)
that the normal displacement is less than a gap function [9], [17] and (4) - (6)
are written using complementary unilateral contact boundary conditions.

Now, we introduce the space

W =
{

w ∈
(
H1 (Ω0)

)2
; w = 0 on ΓD

}
,

and the bi-linear form a : W ×W → R,

a (u,w) =

∫
Ω0

σ(u) : ∇w dX =

∫
Ω0

λ (∇ · u) (∇ ·w) + 2µε (u) : ε (w) dX.

The condition (4) can be approached by: ∀(X1, X2) ∈ ΓC , ∀t ∈]0, T [,

ψt(X1) + ψ′t(X1)u1(X1, X2, t) ≤ X2 + u2(X1, X2, t) (9)



356 C. M. Murea

in the case of linear elasticity, see [7]. For t ∈ [0, T ], the set

Kt = {w = (w1, w2) ∈W ; ∀(X1, X2) ∈ ΓC ,

ψ′t(X1)w1(X1, X2)− w2(X1, X2) ≤ X2 − ψt(X1)
}

(10)

is non empty, closed and convex.

The linear elastodynamics friction-less contact problem can be written
formally as a variational inequality: find u(t) ∈ Kt ⊂ W , for all t ∈ [0, T ],

u ∈ C1 ([0, T ];W ) u ∈ C2
(

[0, T ];
(
L2(Ω0)

)2)
such that

ρ

∫
Ω0

d2u(t)

dt2
· (w − u(t)) dX + a (u(t),w − u(t))

≥
∫

Ω0

f(t) · (w − u(t)) dX ∀w ∈ Kt, ∀t ∈]0, T [ (11)

u(0) = u0 (12)

du

dt
(0) = u1 (13)

with u0 ∈ K0, u1 ∈ W , f ∈ C
(

[0, T ];
(
L2(Ω0)

)2)
. The existence and the

regularity of solution for the above problem is open.

3 Mid-point algorithm

We denote by ∆t > 0 the time step, we set tn = n∆t, fn = f(tn) and
we denote by un, vn the approximations of u(tn), du

dt (tn), respectively. To
simplify, we set Kn = Ktn . The mid-point algorithm is: find un+1 ∈ Kn+1

and vn+1 ∈W such that

ρ

∫
Ω0

vn+1 − vn

∆t
· (w − un+1)dX +

1

2
a(un+1,w − un+1)

+
1

2
a(un,w − un+1) ≥

∫
Ω0

fn+1 + fn

2
· (w − un+1)dX,∀w ∈ Kn+1(1)

un+1 − un

∆t
=

vn+1 + vn

2
(2)

with initial conditions u0 = u0 and v0 = u1.

Proposition 1 The problem (1) - (2) has a unique solution.
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Proof. From (2), we get vn+1 = 2un+1−un

∆t − vn, injected in (1) gives: find
un+1 ∈ Kn+1 such that

ρ

∫
Ω0

2

(
un+1 − un − vn∆t

(∆t)2

)
· (w − un+1)dX +

1

2
a(un+1,w − un+1)

≥ −1

2
a(un,w − un+1) +

∫
Ω0

fn+1 + fn

2
· (w − un+1)dX,∀w ∈ Kn+1.(3)

With the notations A : W ×W → R, L : W → R

A(u,w) = ρ

∫
Ω0

2u

(∆t)2
·wdX +

1

2
a(u,w)

L(w) = ρ

∫
Ω0

2 (un + vn∆t)

(∆t)2
·w dX− 1

2
a(un,w)

+

∫
Ω0

fn+1 + fn

2
·w dX

the problem (3) is equivalent with: find un+1 ∈ Kn+1 such that

A(un+1,w − un+1) ≥ L(w − un+1), ∀w ∈ Kn+1. (4)

The bilinear function A is continuous, elliptic, L is continuous and Kn+1 is
non empty, closed, convex, then (4) has a unique solution, see [7]. Then,

we put vn+1 = 2un+1−un

∆t − vn. We point out that A is elliptic even when
ΓD = ∅. 2

We denote by ‖w‖0,Ω0 =
√∫

Ω0
w ·w dX, the norm of L2(Ω0)2.

Proposition 2 If un ∈ Kn+1 for all n ∈ N, then there exists a constant
C > 0 such that

ρ

2
‖vn+1‖20,Ω0

+
1

2
a(un+1,un+1) ≤ C, ∀n ∈ N.

Proof. The demonstration is similar to the case without contact. We put
in (1), w = un, we get

ρ

∫
Ω0

vn+1 − vn

∆t
· (un+1 − un)dX +

1

2
a(un+1 + un,un+1 − un)

≤
∫

Ω0

fn+1 + fn

2
·
(
un+1 − un

)
dX.
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Using (1), we get

ρ

∫
Ω0

vn+1 − vn

∆t
· (un+1 − un)dX = ρ

∫
Ω0

(vn+1 − vn) · v
n+1 + vn

2
dX

=
ρ

2
‖vn+1‖20,Ω0

− ρ

2
‖vn‖20,Ω0

.

From the symmetry of a, we obtain

1

2
a(un+1 + un,un+1 − un) =

1

2
a(un+1,un+1)− 1

2
a(un,un)

When f = 0, then

ρ

2
‖vn+1‖20,Ω0

− ρ

2
‖vn‖20,Ω0

+
1

2
a(un+1,un+1)− 1

2
a(un,un) ≤ 0

and consequently

ρ

2
‖vn+1‖20,Ω0

+
1

2
a(un+1,un+1) ≤ ρ

2
‖vn‖20,Ω0

+
1

2
a(un,un) ≤ . . .

≤ ρ

2
‖v0‖20,Ω0

+
1

2
a(u0,u0) = C.

The case f 6= 0 is treated as in [10], Section 4.4, mid-point algorithm
for elastodynamics without contact, applying the discrete Gronwall lemma.
2

We discuss now the case of the non-linear elastic body governed by the
St Venant-Kirchhoff model. The right Cauchy-Green deformation tensor
is C = FTF, the Green-Lagrange strain tensor is E = 1

2 (C− I), where
F = I + ∇u and for the St Venant-Kirchhoff model, the second Piola-
Kirchhoff stress tensors is Σ = λ tr(E)I + 2µE, with tr(E) = E11 + E22.

In the linear case, the sum of the two terms containing a in (1) is equal
to

a

(
un+1 + un

2
,w − un+1

)
.

We can obtain the non-linear version of the mid-point algorithm, by replac-
ing the above formula with∫

Ω0

Fn+1/2Σn+1/2 : ∇
(
w − un+1

)
dX

where Fn+1/2 = Fn+1+Fn

2 and Σn+1/2 = Σn+1+Σn

2 . We can adapt to our
case the demonstration from [10], Chapter 5, Section 4, obtained whitout
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contact. We can prove that

Fn+1/2Σn+1/2 : ∇(Un+1 −Un) = Fn+1/2Σn+1/2 : (Fn+1 − Fn)

= Σn+1/2 :
(
En+1 −En

)
=

1

2

(
Σn+1 + Σn

)
:
(
En+1 −En

)
.

Finnaly, it is obtained that

Fn+1/2Σn+1/2 : ∇(Un+1 −Un) =
1

2
Σn+1 : En+1 − 1

2
Σn : En.

The stability for the St Venant-Kirchhoff model with contact can be derived
from the case without contact, i.e. the below energy is bounded

ρ

2
‖vn‖20,Ω0

+
1

2

∫
Ω0

Σn : En.

Whitout contact and for dead loading, the mid-point algorithm for the St
Venant-Kirchhoff model is an exact energy conservation and second order
accuracy scheme, see [15].

4 Numerical results

We consider here, the linear elastic case. We use the finite element software
FreeFem++, [6].

4.1 Test 1. Multiple impacts of a disk on a fixed foundation

We use the 2D example from [3]. The undeformed elastic body Ω is a disk
of radius R = 20 and center (0, R). We set ΓD = ∅, ΓN = ∂Ω \ ΓC and

ΓC = {(x1(s), x2(s)); x1(s) = R cos(s), x2(s) = R+R sin(s),

s ∈
(

7π

6
,
11π

6

)}
.

The physical parameters are: Lamé coefficients λ = 30, µ = 30, mass
density ρ = 1, externally applied forces per unit volume f = (0,−0.1),
zero externally applied forces on ΓN , the lowest point of the disk is at the
initial position (0, 4) and the initial velocity of the disk is zero. We study
the impacts of the disk in the time interval t ∈ [0, T ] with the final time
T = 120.

The fixed foundation is the horizontal line at x2 = 0. The mesh has 989
vertices, 1864 triangles, 48 segments on ΓC , 64 segments on ΓN and P1 finite
element is used.
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Figure 1: Test 1. Vertical displacement (left) and contact stress (right) at
the lowest point.

In [3] the numerical results are obtained by Nitsche, penalty and singular
mass methods. Numerical results presented in Figures 1 are similar to the
results of [3] obtained by the singular mass method.
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Figure 2: Test 1. Evolution of discrete energy (left) and modified energy
(right).

At the first bounce, the body is in contact with the foundation in the
time interval [9, 24] and there are no oscillations for the vertical displacement
the lowest point of the disk. The oscillations of the contact stress are smaller
than for the Nitsche, penalty methods.

We denote by

ρ

2
‖vn‖20,Ω0

+
1

2
a(un,un),

ρ

2
‖vn‖20,Ω0

+
1

2
a(un,un)−

∫
Ω0

fn · undX

the discrete energy and the modified energy, respectively.
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Figure 3: Test 1. Von Misses stress distribution at the first bounce.
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In Figure 2, we observe that the method is a little bit dissipative. For the
symmetric stress tensor σ = (σij)1≤i,j≤2, the Von Misses stress is given by
the formula (σ2

11−σ11σ22+σ2
22+3σ2

12)1/2. The Von Misses stress distributions
are presented in Figure 3. We have used the same time instants as in [3].

4.2 Test 2. Multiple impacts of a disk on a moving founda-
tion

We use the disk as in the Test 1, but now the foundation is moving. At
each time instant t ≥ 0, the foundation is the graph of the function ψ(·, t) :
[−30, 30]→ R defined by

ψ(X1, t) = c(t) cos
( π

60
X1

)
− 2

where c : [0,∞)→ R is given by

c(t) =


2, 0 ≤ t < t0,

2 cos
(

π
2(t1−t0)

)
, t0 ≤ t < t1,

0, t1 ≤ t

and t0 = 9, t1 = 18. Initially, the lowest point of the disk is at position (0, 4)
and the initial velocity of the disk is zero. We can see the shape of ψ(·, t)
before the time instant t0 in Figure 4. The foundation is decreasing and it
is flat after t1.

-2
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 0
 0.5

 1
 1.5

 2

-30 -20 -10  0  10  20  30

X
2

X1

psi

Figure 4: Test 2. Position of ψ(·, t) for 0 ≤ t < t0. For t0 ≤ t < t1, ψ(·, t)
is decreasing and for t1 ≤ t, it is the horizontal segment −30 ≤ X1 ≤ 30,
X2 = −2.

In Figure 5, we observe that the vertical displacement is reduced com-
pared to the fixed foundation. Also, for t1 = 18 the reduction is more
important than for t1 = 22 or t1 = 26.
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Figure 5: Test 2. Vertical displacement (left) and contact stress (right) at
the lowest point.
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Figure 6: Test 2. Evolution of discrete energy (left) and modified energy
(right).

The discrete energy is reduced also, see Figure 6. We observe that the
energy is maximal when the body is in contact for the first time with the
moving foundation. The modified energy is almost conserved in the case of
fixed foundation, but it is absorbed during the decreasing interval t0 = 9 ≤
t < t1 = 18, in the case of moving foundation.
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Figure 7: Test 2. Von Misses stress distribution at the first bounce.
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