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Abstract

This paper deals with a inconditional semi-implicit alglm for solving fluid-structure interac-
tion problem numerically holding in cerebral aneurysm. at¢letime step, an optimization problem
is solved by partitioned procedure, in order to get the cuity of stress as well as the continuity of
velocity at the interface. Numerical results are presented

1 Introduction

The cerebral aneurysm appears when the intercranialareadl dilates in anomaly way under divers

factors. It create therefore a pocket where the blood actaimu The consequence of the cerebral
aneurysm is often their rupture and intercranial hemomehaigh an associated high mortality rate (see
[1]). There are some paper dealing with fluid-structureratgon between the blood and the wall

aneurysm, see for example [2] and [3]. In [3], the authorscdke the flow dynamics and arterial wall

interaction of a terminal aneurysm of simplified basilaegrtand they compute its wall shear stress,
pressure, effective stress and wall deformation. In [2] fthid-structure interaction of a patient specific
cerebral aneurysm located in the left middle cerebral biftion for high blood pressure is studied.

The geometry of cerebral aneurysm considered here is sitnilane used in the article [4]. In the
present work, we present a fast semi-implicit algorithmduolving numerically the interaction between
the blood and the arterial wall in cerebral aneurysm. Tha eemi-implicit means that the velocity,
the pressure of the fluid and the displacement of the stmietter computed in implicit way, while the
interface between the fluid and the structure is treated phicxway. In [5], we have showed that
this algorithm is inconditional stable, using the energynestes. The implementation of the algorithm
is the following: at each time step we have to solve a leasargqproblem based on the Broyden,
Fletcher, Goldford, Shano (BFGS) algorithm by partitioqmedcedure in order to get the continuity of
the stress as well as the continuity of velocity at the iaieef The major importance to work with this
algorithm is that it use a fixed mesh during the optimizatioobfem, that reduce considerably the time
of computation.

2 Setting problem

The fluid and the structure models are setting in two dimeradispaces. We are interested by fluid-
structure interaction problems holding in cerebral angury

Let us denote by2* the undeformed structure domain bounded by: the rigid esfi; andl's,
the upper sectioi's, the lower sectiorty. We also denote b} the initial fluid domain bounded by:
the rigid sectior®1, the inflow sectior®,, the outflow sectiort; and the top boundar}.,, (see Figure
1). The boundary:, is common of both domains and it represents the fluid-stradtierface. Under



the action of the fluid stress, the structure will be deforn¥stkhe time instant, the fluid occupies the
domainQ)!” bounded by the moving interfacg; and the rigid boundary; U Yo U X3.

We assume that the fluid is viscous, Newtonian and incomipfesand it is governed by the Navier-
Stokes equations. We also assume that the structure isngalby the linear elasticity equations. To
couple the fluid and the structure, we impose the contindityetocity and the equality of stress at the
interface. At each time < [0, T, we are interested to know: the fluid velocityt) = (vy(t), vo(t))T :
QF — R2 the fluid pressurg(t) : Qf — R and the structure displacemerttt) = (uy(t), ua(¢))” :
05 — RZ

We use the ALE (Arbitrary Lagrangian Eulerian) coordinatesnclude the mesh velocity in the
fluid equations, see for example [6]. L& be the reference fixed domain and J&t ¢ € [0,T] be a
family of transformations such that:

A(R) =%, VR € a0l \ 5y, AQF) =0f,

wherex = (%1,%2)7 € QF are the ALE coordinates and = (x;,x3)7 = A;(X) the Eulerian
coordinates. We denote the domain velocity of the fluid by:

Be.1) = 245, 1)

and the ALE time derivative of the fluid velocity by:

ov ov .
—| (x,1) = —(X,1).
5 | () = S (&)
We assume that the fluid-structure interaction is governettid following equations:
Navier-Stokes

0
i (a_;’ A+((v—f«9)-V)V> 2"V e(v)+Vp = 7,0 x(0,7] @
Vv = 0,0 x[0,7] 2
ofnf = hy, T9 x (0,7 3)
UFnF = houta 23 X (07T] (4)
v = 0,2 x(0,7] (5)
v(X,0) = v'(X), of (6)
linear elasticity
2
ps%—v-aé’ = £ inQ°% x(0,7] ()
u = 0, onI'yUTy x (0,7] (8)
o°n® = 0, onT3x(0,7] 9)
u(X,0) = u’X), inQ° (10)
g—‘;(X,o) = u’(X), inQ° (11)

interface conditions

V(X +u(X,t),t) = g—‘:(x,t), ong x (0, 7] (12)

(UFnF)(X+u(X,t),t)w = —(Usns)(X,t)> on¥g x (0,T]. (13)

The following notations are using in above equations :



1
e(v) = 3 (VV + (VV)T), ol = —plly + 2,uFe(v), o = )\S(V ~u)ly + 2,use(u),

pf > 0is the mass density of the fluid? > 0 is the mass density of the structurg}; is the viscosity
of the fluid, 2%, and \¥ are the Lamé coefficientsf” = (ff", ff") are the applied volume forces of
the fluid andf® = (fls, ff) the applied forces volume on the structuhg, andh,,; are the prescribed
boundary stress oB, and onX;. w = ||cof(VT,)n”||z2, whereT, is the application fronT in T,
defined by:T,(X) = X + u(X,t), cof(VT,) is co-factor matrix ofV'T,, andn® = (n7, n%) is the
unit outward normal td’y.

3 Time discretization and algorithm

3.1 Time discretization

: T .
Let N € N* be the number of time steps and we denoteNsy= N the step time. We sét, = nAt

forn = 0,---, N the subdivision of[0,7]. We suppose that? : [0,7] — (L*(Q]))?, hy, :
[0,T] — L%(%2), hoy : [0,7] — L2(23) andf® : [0,7] — (L%(Q°))? are continuous maps.
We setf” = f¥'(nAt), h?, = h;,(nAt), h?,, = hy,(nAt) andg” = £(nAt) and we definar” the
approximation ofu(nAt).

We consider an implicit Euler scheme for the time derivatinel a linearization of the convection
term for the the fluid equations and we employ-aentered scheme of second-order in time for the
structure equations. Let us ®f = QF and we defined™ the velocity of the fluid domain to be

solution of:
Ag9" = 0, Qr
9" = 0, 00r 1, (14)
9" = v Ly,

wherev™ is the fluid velocity at timex on Q.
Under the assumption the?" is Lipschitz, we haved” ¢ (H'(QF))2.
Foralln =0,--- , N — 1, we denote byT,, the following map:

T, (X0,%) : . — R2

(ﬁl, )/52) — (§1 + Atﬁ?, X9 + At’ﬁg).

We setQ? | = T, () andT,, 11 = T,(I',,). The Jacobian df,, is obtained by:

14+ At(Vg - 9") + (At)2<8191 0% _ 99 6191).

0%, 0%y Ox, 0%y
Finally we define the maff as:
T=Tp 10Tp20Tp3---0Tp

and we can observe thBf, = T(T'y).

3.2 Algorithm

In order to integraté1)-(13) with respect to space, we define the following spaces of testibns:

—

wl = (& e @ Q)% w =0onx1}
Q= LAQp)

W = {w¥e (HY(Q%)?% w®=00nT; UTy}.



We assume that we kno@Z', v € (L2(QF))2, un~1 u" € (L2(QS))2.
Step1: Find9" € (H'(Q2F))? solution of(14)
Step2: Findv"tt € WF, g+l € QF, u*! € W with

{;n—i—l OT —

such that:

Ssn+l _ n
pF/ (V v ) . WF + pF/ (((Vn - 19”) . V§){’\n+1) . wF

n

1 PPN A ~ .
+- SR w4 2,uF/ ex (VL) g (W)
2 QE Qr

n

[ e W) - / 3(vs -9
QF QF

1 n n—1
S u"t —2u" +u S
+ ( > "W
p /QS At?

+ag(fu™t 4+ (1 — 20)u™ + fu™ !, w®)

_ /QF’f'-\n—i-l "/,‘\/.F_’_/QS gn—i-l _WS_’_/E hlﬂn-i-l WF+/E hgqj;l -WF, (15)
n 1 3
for anyw? € W,, g€ QF, wS € WS with w = wF o T on %,
where N
frr = o Tetg"t! = 0g™ ! 4 (1 — 20)g™ + 6g™ !
and

097 0vy 09y 097
OX, 0%y Ox1 0%y )

Using the finite element method, we can directly solve thedtitimic linear systen{15), in this case
the continuity of the velocity at the interface must be $&lisas an essential boundary condition. So the
fluid test functions must coincide to the structure test fioms at the interface, that implies some con-
straints for triangulation of the fluid and structure donsaas well as in the choice of the finite elements.
Other methods have been developed to solve this kind of gmoblor example, in [7] the problem is
solved by Augmented Lagrangian method where the contiditiye velocity was treated by a Lagrange
multiplier and the numerical results presented show thactmtinuity of the velocity is not very well
respected since the error between the velocity4s.

The method that we use here to solve the coupled problem éxllmas partitioned procedure, which is
very often used to solve the fluid-structure interactionbfgm. As in [8], where an implicit algorithm
is presented, we use the same least square method based &nB#Bod in order to identify the stress
at the interface.

§(X) = pFAt(

The structure problem (the weak formulation correspondi(i)-(11)) is solved numerically by
modal decomposition andéascheme. We sai(t) = Z qi(t)¢:, Whereg; is the eigenfunction associ-
i>1
ated to the eigenvaluk;. Find g™ such that

qin-i-l _ Qan + qin_l
(At)?

+ X0+ (1 —20)g" + 0g7 1) = 0o + (1 - 20)al + a1,

(2

wherea ™ = a;(tp11) = /S
Q

£5(tn 1) i + / (c°1n%)¢;.

To



Algorithm for solving the fluid-structure coupled problem at time instant ¢,

Step 1Compute the mesh velocit§” from (14).

Step 2Assembling the finite element matrix of fluid problem (weaknfacorresponding t¢1)-(6))
using the mesi™ obtained at the previous time step. Get a LU factorizatiothefmatrix.

Step 3Solve the fluid-structure coupled problem using the fluiddromesi ™ by BFGS algorithm
(see [8)]).

o™ € arg min J(a),
a€R™

where.J(a) = o — B3 with § = /Q £5(0) - /F (0" n") - (X, 1),

Step 4Build mesh7"*!, as the image of " by the mapz — 7 + At9"(z) and save the mesh
T"*1, the velocityv™ ! (x) = v+ (), etc.

Remark 1 Contrary to the implicit strategy, the semi-implicit oneeus fixed fluid mesh during the
iterative method for solving the optimization problem at Biep 3, which reduce considerable the
computational time.

4 Numerical results

Physical parameters

We consider the following data for the computation: the targf the inflow and the outflow sections
is 3 mm, the length of the rigid sectidiy, is 5 mm and for the interfacg,, we take an arc with diameter
equal to 6 mm. The viscosity of the fluid was fixed to/be= 0.003 —L, its densityp” = 1 - and
the volume force in fluid i§¥" = (0, 0)7. The prescribed boundary stress at the outflol,is (=, t) =
(0, 0) and at the inflow is

by (2, 1) = { (10°(1 = cos(2n/0.025)), 0), & € ¥, 0 < £ < 0.025
(0, 0), 2 € ¥,0025 <t <T.

The elastic wall is the ar&, with diameter6 mm. The Young modulu® = 3 - 10° -2, the

cm

Poisson ratiav = 0.3, the mass density® = 1.1-Z; and the volume force i§° = (0, O)%. The

cm

Lameé’s coefficients are computed by the formulas:

VS E
(1 —2v9)

E

S _ —
A= 2(1 +v5)

(1+VS)7 #S:

Numerical parameters

The numerical tests have been performed using FreeFeme {93eWe have used for the structure
a reference mesh @0 triangles and;2 vertices and for the fluid a reference meshl6t5 triangles
and 881 vertices. The compatibility of meshes are not necessarjiecat the interface (see Figure
2). For the approximation of the fluid velocity and presswe,have used the triangular finite element
P1 + bubble andP; respectively. The finite elemeRt was employed in order to solve the eigenproblem
of the structure. Only the firsh = 3 modes have been considered. The first eigenvalues aye=
1845190, App = 7440200 and A3, = 24656000. The real parameter in thiecentered scheme was
chosen to bé = 0.3.

Stopping criteria

At each time step, the optimization problem have been sdbyethe BFGS algorithm. The final
values of the cost function are less tham0~'°. In other words, the continuity of the velocity at the
interface holds at every time step, while the error betwéerfltiid and structure stress at the interface
is less thar6.10~19. In [7], the fluid-structure coupled problem is solved by feymented Lagrangian
Method and at every time step the continuity of the stredsesirnterface holds, while the error in tié



norm between the fluid and structure velocity at the interfadess tha.45. Consequently, the bound-
ary conditions at the interface are verified more precisdigmwe solve by the BFGS algorithm. We
have used the FreeFem++ to implement the BFGS algorithmhwtsie the stopping criteridV.J|| < e

or the number of iterations reaches a maximal valtiger. We have performed the computation with
e = 10~* andnbiter = 10. We set to5 maximal number of the iterations for the time search. We
computeV J(«) by finite difference scheme:

8_J( )= J(a+ Aager) — J()
Oay, @)= Aaqy,

whereey, is thek-th vector of the canonical base &f*. Thus,m + 1 = 4 calls of the cost function are
needed to compute the gradient.

Remark 2 The fluid mesh and the structure mesh are necessary congatitile interface, see Figure
(2). The fluid velocity (see Figure (4) as well as the fluid pues (see Figure (3) are plotted, in order to
describe the fluid behaviour in the cerebral aneurysm.

5 Conclusion

In this paper, we have applied an inconditional semi-inipplégorithm, that we developed, to solve
the interaction between the blood and the arterial wall ireloeal aneurysm. At each time step, an
optimization problem is solved by partitioned procedursdshin BFGS algorithm in order to get the
continuity of velocity as well as the continuity of the sted the interface.
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6 Figures

Figure 1: The fluid-structure domain.
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Figure 2: Fluid and structure meshes at time instast 0.015 (top), ¢t = 0.030 (middle),¢ = 0.070
(bottom)
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Figure 3: Fluid pressur[é%‘z—?] at time instant = 0.015 (top), ¢ = 0.030 (middle),t = 0.070 (bottom)



t = 00130

—_—
8% 833823

t = 0.0300

23
L T
8% 833823
t = 0.0700

Figure 4: Fluid velocityjcm/s| at time instant = 0.015 (top), ¢t = 0.030 (middle),¢ = 0.070 (bottom)



