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Updated Lagrangian for Compressible Hyperelastic Material
with Frictionless Contact
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Département de Mathématiques, IRIMAS, Université de Haute Alsace, 18, Rue des Frères Lumière, CEDEX,
68093 Mulhouse, France; cornel.murea@uha.fr

Abstract: The Updated Lagrangian method for nonlinear elasticity with contact is presented. First,
we describe the Total Lagrangian for a compressible Neo-Hookean material. Next, we introduce the
Updated Lagrangian formulation for Neo-Hookean and Ogden compressible materials with contact.
An advantage of this approach is that at each iteration only a linear system is solved. The linear
problem to be solved is written in the updated domain. Numerical results are presented: compression
of a Hertz half ball and of a hyperelastic ring against a flat rigid foundation, and contact of an elastic
cube and a ball.

Keywords: nonlinear elasticity; frictionless contact; Updated Lagrangian formulation; Neo-Hookean
and Ogden compressible materials

1. Introduction

Mathematical modeling and numerical methods for contact mechanics can be found in
many textbooks, for instance [1–4]. There are different possibilities to treat the contact con-
straint: Lagrange multiplier and augmented Lagrangian methods [5], mortar method [6],
penalty methods [7,8], semismooth Newton methods [9], active set method [10–12], multi-
grid method [13], Nitsche’s method [14], smoothed finite element method [15] and cut
finite element method [16].

The incremental method (see [17], Sections 6.10–6.12) varies the forces and the im-
posed displacement by small increments from zero to desired values to successively solve
linearized problems written in the undeformed domain. The Updated Lagrangian method
is similar, but the linear problem to be solved is written in the updated domain (see [18]
Sections 2.6–2.8 or [19] Section 14.8). This method was developed initially for nonlinear
elasticity, but recently it was successfully employed for dynamic fluid-structure interac-
tion [20]. An advantage of this approach is that at each time step, only a linear system is
solved. A stability result is obtained in [21].

Nonlinear elasticity equations with frictionless contact can be formulated in term of a
constrained nonlinear optimization problem: the nonlinear cost function is the deformation
elastic energy, and the constraints are the non-penetration condition of the elastic structure
into the obstacle and the imposed displacement on some boundary. The Lagrange multiplier
and augmented Lagrangian methods, as well as the mortar, penalty and active set methods
come from the constrained nonlinear programming algorithms, where the cost function is
written in the undeformed domain.

By introducing a positive function defined on the contact zone, in Nitsche’s method
the problem is formulated as a system of equations which can be solved by generalized
Newton’s method. The semismooth Newton method can be considered related: the problem
is reformulated using non-differentiable approximating equations.

The purpose of this paper is to present the Updated Lagrangian method for nonlinear
elasticity with contact. The novelty is to use this method for contact problem. We can also
highlight that the linearized problem written in the undeformed domain for Neo-Hookean
and Ogden compressible materials are derived.
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In the second section we describe the Total Lagrangian for compressible Neo-Hookean
material. In Sections 3 and 4, we introduce the Updated Lagrangian formulation for Neo-
Hookean and Ogden compressible materials with contact. The last section is devoted to the
numerical results.

2. Contact without Friction in Non-Linear Elasticity Using Total Lagrangian Framework

We consider Ω0 ⊂ R2 an undeformed structure domain, and we assume that it
is an open, bounded and connected subset. Its boundary is Lipschitz and admits the
decomposition ∂Ω0 = ΓD ∪ ΓN ∪ ΓC, where ΓD, ΓN and ΓC are relatively open subsets,
mutually disjointed. On ΓD we impose a given displacement UD, in Ω0 volume forces f are
applied, and it is subjected to surface loads h on ΓN . A portion of ΓC will be in contact with
a rigid foundation after deformation.

A particle of the structure whose initial position was the point X = (X1, X2) will
occupy the position x = ϕ(X) = X + U(X) in the deformed domain ϕ(Ω0), where
U = (U1, U2) : Ω0 → R2 denotes the displacement.

If A is a square matrix, we denote by det A, tr(A), A−1, AT the determinant, the trace,
the inverse and the transpose matrix of A, respectively. We write A−T =

(
A−1)T , and

cof A = (det A)
(
A−1)T is the cofactor matrix of A.

We denote by F(X) = I +∇XU(X) the gradient of the deformation, where I is the
unity matrix, and we write C = FTF, J(X) = det F(X). The first and the second Piola–
Kirchhoff stress tensors are denoted by Π and Σ, respectively, and the following equality
holds: Π = FΣ. For the hyperelastic material, there exists a strain energy functionW such
that ∂W

∂F = Π and 2 ∂W
∂C = Σ (see [22], Chapter 6). The Cauchy stress tensor σ is computed

by σ(x) =
(

1
J FΣFT

)
(X), where x = X + U(X).

The rigid foundation is modeled as the graph of a function ψ ∈ C1(R), and we denote
its graph by

graph(ψ) =
{
(X1, X2) ∈ R2, X2 = ψ(X1)

}
and its epigraph by

epi(ψ) =
{
(X1, X2) ∈ R2, X2 ≥ ψ(X1)

}
.

We assume that the undeformed structure domain Ω0 is into epi(ψ).
The problem to solve is

U ∈ arg inf I(W) =
∫

Ω0

W dX−
∫

Ω0

f ·W dX−
∫

ΓN

h ·W dS (1)

subject to
ϕ(ΓC) ⊂ epi(ψ) (2)

U = UD, on ΓD. (3)

3. Updated Lagrangian for Compressible Neo-Hookean Material with Contact

We suppose that the material is homogeneous, isotropic and can be described by the
compressible Neo-Hookean model ([18], p. 239); the strain energy function is

W =
µ

2
(tr(C)− 2)− µ ln J +

λ

2
(ln J)2

and the second Piola–Kirchhoff stress is

Σ = λ(ln J)F−1F−T + µ
(

I− F−1F−T
)

,

where λ, µ are the Lamé constants of the linearized theory (see [23], Chapter 5).
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We denote by Ωn the image of Ω0 via the map X→ X+Un(X), and we set Ω̂ = Ωn the
computational domain at the increment n. The map from Ω0 to Ωn+1 defined by X→ x =
X + Un+1(X); the composition of the map from Ω0 to Ω̂ is defined by X→ x̂ = X + Un(X),
and the map from Ω̂ to Ωn+1 defined by

x̂→ x = x̂ + Un+1(X)−Un(X) = x̂ + û(x̂).

With the notations F̂ = I +∇x̂û and Ĵ = det F̂, Jn = det Fn, we obtain

Fn+1(X) = F̂(x̂)Fn(X), Jn+1(X) = Ĵ(x̂)Jn(X). (4)

For the Neo-Hoohean material, we have σ(x) = 1
J λ(ln J)I + 1

J µ
(
FFT − I

)
, and we set

σn+1 = λ
Jn+1 (ln Jn+1)I + µ

Jn+1

(
Fn+1(Fn+1)T − I

)
. Let us introduce the tensor

Σ̂(x̂) = Ĵ(x̂)F̂−1(x̂)σn+1(x)F̂−T(x̂). (5)

For W : Ω0 → R2, we define ŵ : Ω̂ → R2 and w : Ωn+1 → R2 by ŵ(x̂) = w(x) =
W(X). Since (∇w(x))F̂(x̂) = ∇x̂ŵ(x̂) and (∇w(x))F(X) = ∇XW(X) (see [17], Section 2.6),
and taking into account (5), we get∫

Ωn+1

σn+1 : ∇w dx =
∫

Ω̂
F̂Σ̂ : ∇x̂ŵ dx̂ =

∫
Ω0

FΣ : ∇XW dX.

Using (4), it follows that

Σ̂ = ĴF̂−1 λ

Jn+1 (ln Jn+1)F̂−T + ĴF̂−1 µ

Jn+1

(
Fn+1

(
Fn+1

)T
− I
)

F̂−T

= Ĵ
λ

Ĵ Jn
(ln Jn + ln Ĵ)F̂−1F̂−T + ĴF̂−1 µ

Ĵ Jn

(
F̂Fn

(
F̂Fn

)T
− I
)

F̂−T (6)

=
λ

Jn (ln Jn + ln Ĵ)F̂−1F̂−T +
µ

Jn

(
Fn(Fn)T − F̂−1F̂−T

)
then

F̂Σ̂ =
λ

Jn (ln Jn + ln Ĵ)F̂−T +
µ

Jn

(
F̂Fn(Fn)T − F̂−T

)
.

If A is a square matrix, by linearization, we have:

det(I + A) ≈ 1 + tr(A), (I + A)−1 ≈ I−A, ln(1 + x) ≈ x,

(see [23], Chapter 3.2). We can linearize the map û→ F̂Σ̂ by

L̂nh(û) =
λ

Jn ln Jn
(

I− (∇x̂û)T
)
+

λ

Jn tr(∇x̂û)I

+
µ

Jn

(
(I +∇x̂û)Fn(Fn)T − I + (∇x̂û)T

)
. (7)

We have ∫
Ω̂

L̂nh(û) : ∇x̂ŵ dx̂ = ânh(û, ŵ) + ̂̀nh(ŵ)

where

ânh(û, ŵ) =
∫

Ω̂

λ

Jn tr(∇x̂û) tr(∇x̂ŵ) dx̂ +
∫

Ω̂

µ

Jn (∇x̂û)Fn(Fn)T : ∇x̂ŵ dx̂

+
∫

Ω̂

(
µ− λ ln Jn

Jn

)
(∇x̂û)T : ∇x̂ŵ dx̂
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and ̂̀nh(ŵ) =
∫

Ω̂

(
λ ln Jn − µ

Jn

)
tr(∇x̂ŵ) dx̂ +

∫
Ω̂

µ

Jn Fn(Fn)T : ∇x̂ŵ dx̂.

For simplicity, we assume that the displacement UD on ΓD, the volume forces f in Ω0
and the surface loads h on ΓN are constant. Let N ∈ N∗ be the number of increments. We
will solve successively N linearized problems written in the updated configuration Ωn, for
0 ≤ n ≤ N − 1.

The boundaries Γn
D, Γn

N , Γn
C of Ωn are obtained, respectively, from ΓD, ΓN , ΓC via the

map X→ X + Un(X). Let us introduce the linear application of the increments of the forces

̂̀f orc(ŵ) =
∫

Ω̂

1
N

1
Jn f · ŵ dx̂ +

∫
Γn

N

1
N

h · ŵ dŝ.

In the case of small displacements û, the constraint of non-penetration of the elastic
structure into the rigid obstacle can be approached by

ψ′(x̂1)û1(x̂)− û2(x̂) ≤ x̂2 − ψ(x̂1), ∀x̂ ∈ Γn
C (8)

see [1]. We introduce the convex set

K̂ =

{
ŵ : Ω̂→ R2; ŵ =

1
N

UD on Γn
D,

ψ′(x̂1)ŵ1(x̂)− ŵ2(x̂) ≤ x̂2 − ψ(x̂1) on Γn
C
}

. (9)

The linearized problem written in the updated configuration to be solved is the
variational inequality: find û ∈ K̂ such that

ânh(û, ŵ− û) + ̂̀nh(ŵ− û) ≥ ̂̀f orc(ŵ− û), ∀ŵ ∈ K̂. (10)

Proposition 1. The bi-linear application (û, ŵ)→ ânh(û, ŵ) is symmetric.

Proof. If A, B, C are square matrices, we have AB : C = B : ATC = A : CBT and
A : B = B : A. We obtain

(∇x̂û)Fn(Fn)T : ∇x̂ŵ = (∇x̂û)Fn : (∇x̂ŵ)Fn

then the second term of ânh is symmetric. Using also A : B = AT : BT , we get

(∇x̂û)T : ∇x̂ŵ = ∇x̂û : (∇x̂ŵ)T = (∇x̂ŵ)T : ∇x̂û

then the third term of ânh is symmetric.

Let as introduce the quadratic optimization problem with affine constraints

û ∈ arg inf
ŵ∈K̂

Înh(ŵ) =
1
2

ânh(ŵ, ŵ) + ̂̀nh(ŵ)− ̂̀f orc(ŵ) (11)

A solution of (11) is also a solution of (10). If ânh is coercive, the variational inequal-
ity (10) has a unique solution which is also the unique solution of optimization problem (11)
(see [5]).

Problem (11) will be solved numerically by the Interior Point algorithm implemented
in the software FreeFem++ (see [24]). The novelty of this approach is that Problem (11) is
written in the updated configuration.
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4. Updated Lagrangian for Compressible Ogden Material with Contact

We suppose that the compressible material is of type Ogden [25] with the strain
energy function

W = c1(I1 − 2) + c2(I2 − 1) + a(I3 − 1)− (c1 + c2 + a) ln I3

with I1 = tr(C), I2 = 1
2
(
(tr(C))2 − tr

(
C2)), I3 = det(C) and c1, c2, a > 0. The first two

terms correspond to the Mooney–Rivlin material, and the volumetric part of strain-energy
functions used here a(I3 − 1)− (c1 + c2 + a) ln I3 was proposed in [26] in order to obtain
polyconvexity and the coerciveness of the strain energy function.

We have
∂I1

∂C
= I,

∂I2

∂C
= tr(C)I− CT ,

∂I3

∂C
= det(C)C−T .

From the Cayley–Hamilton theorem in 2D, we have

C2 − tr(C)C + J2I = 0⇒ tr(C)I− C = J2C−1

and using that C is symmetric, we get

Σ = 2c1I +
(
(2c2 + 2a)J2 − 2(c1 + c2 + a)

)
C−1.

As in the preceding section, using (5) and (4), we obtain

F̂Σ̂ =
2c1

Jn F̂Fn(Fn)T +
1
Jn

(
(2c2 + 2a)(Jn)2( Ĵ)2 − 2(c1 + c2 + a)

)
F̂−T

and employing Ĵ ≈ 1 + tr(∇x̂û), F̂−T ≈ I− (∇x̂û)T we linearize the map û→ F̂Σ̂ by

L̂og(û) =
2c1

Jn (I +∇x̂û)Fn(Fn)T +
(2c2 + 2a)(Jn)2 − 2(c1 + c2 + a)

Jn I

+ (4c2 + 4a)Jn tr(∇x̂û)I (12)

− (2c2 + 2a)(Jn)2 − 2(c1 + c2 + a)
Jn (∇x̂û)T .

We have ∫
Ω̂

L̂og(û) : ∇x̂ŵ dx̂ = âog(û, ŵ) + ̂̀og(ŵ)

where

âog(û, ŵ) =
∫

Ω̂
(4c2 + 4a)Jn tr(∇x̂û) tr(∇x̂ŵ) dx̂ +

∫
Ω̂

2c1

Jn (∇x̂û)Fn(Fn)T : ∇x̂ŵ dx̂

−
∫

Ω̂

(2c2 + 2a)(Jn)2 − 2(c1 + c2 + a)
Jn (∇x̂û)T : ∇x̂ŵ dx̂

and

̂̀og(ŵ) =
∫

Ω̂

(2c2 + 2a)(Jn)2 − 2(c1 + c2 + a)
Jn tr(∇x̂ŵ) dx̂ +

∫
Ω̂

2c1

Jn Fn(Fn)T : ∇x̂ŵ dx̂.

We have a similar result as in Section 3.

Proposition 2. The bi-linear application (û, ŵ)→ âog(û, ŵ) is symmetric.

As previously, the linearized problem written in the updated configuration to be
solved is the variational inequality: find û ∈ K̂ such that

âog(û, ŵ− û) + ̂̀og(ŵ− û) ≥ ̂̀f orc(ŵ− û), ∀ŵ ∈ K̂. (13)
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The associated optimization problem is

û ∈ arg inf
ŵ∈K̂

Îog(ŵ) =
1
2

âog(ŵ, ŵ) + ̂̀og(ŵ)− ̂̀f orc(ŵ). (14)

5. Numerical Results

Let T̂h be a triangulation of Ω̂ of size h, with nv vertices. We set φi : T̂h → R
the shape function associated with vertex Ai, which is a piecewise linear function and
is globally continuous. For the two-dimension displacements, we introduce the basis
φi = (φi

1, φi
2) : T̂h → R2 for i = 1, . . . , 2 nv defined by

φi = (φi, 0), for i = 1, . . . , nv and φnv+i = (0, φi), for i = 1, . . . , nv.

We define the matrix A ∈ R2 nv×2 nv and the vector b ∈ R2 nv by

A = (aij), aij = ânh(φ
j, φi), i, j = 1, . . . , 2 nv

and
(b)i = ̂̀f orc(φ

i)− ̂̀nh(φ
i), i = 1, . . . , 2 nv.

The constraint ŵ ∈ K̂ will be treated weakly. Thus, we introduce matrix C ∈ RngC×2 nv,
where ngC is the number of vertex Ai ∈ Γn

C and the vector d ∈ RngC by

C = (cij), cij =
∫

Γn
C

(ψ′(x̂1)φ
j
1(x̂)− φ

j
2(x̂))φi(x̂1, x̂2) ds

for j = 1, . . . , 2 nv and Ai ∈ Γn
C and

(d)i =
∫

Γn
C

(x̂2 − ψ(x̂1))φi(x̂1, x̂2) ds

for Ai ∈ Γn
C. The discrete version of (11) is

inf
ξ∈R2 nv

1
2
〈Aξ, ξ〉 − 〈b, ξ〉 (15)

Cξ ≤ d (16)

ξi given for Ai vertex of Γn
D. (17)

For the numerical tests, we employed the software FreeFem++ (see [24]). The optimiza-
tion problem (15)–(17) is solved by the library IPOPT “Interior Point OPTimizer”, which
has an interface in FreeFem++.

5.1. Compression of a Hertz Half Ball against a Foundation

This example is adapted from [11]. The undeformed structure domain Ω0 is a half ball
of radius R = 8 m with center (0, R),

and the rigid foundation is given by ψ(X1) = 0. The boundary ΓD is the little
segment [AB] = {t ∈ (−0.095, 0.095); x(t) = t, y(t) = R}, ΓC is the half of a circle
{t ∈ (π, 2π); x(t) = R cos(t), y(t) = R + R sin(t)}, and ΓN is the rest of ∂Ω0.

On ΓD we impose zero horizontal displacement, in Ω0 volume forces f = (0, 0) Pa/m3

are applied, and surface loads h = (h1, h2) = (0,−2) Pa/m2 are applied on ΓN . We
set Young’s modulus E = 150 Pa and Poisson’s ratio ν = 0.3. The structure verifies
the linear elasticity equation; the stress tensor of the structure written in the Lagrangian
framework is σ(u) = λ(∇X · u)I + 2µ εX(u), where λ, µ > 0 are the Lamé coefficients,
εX(u) = 1

2
(
∇Xu + (∇Xu)T). In this case, the bi-linear form a and the linear form ` are

given by
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a(u, w) =
∫

Ω0

(λ(∇X · u)(∇X ·w) + 2µεX(u) : εX(w)) dX

and
`(w) =

∫
Ω0

f ·w dX +
∫

ΓN

h ·w ds

and the increment number is just N = 1.
The quadratic optimization problem with affine constraints is

u ∈ arg inf
w∈K

I(w) =
1
2

a(w, w)− `(w)

where

K =
{

w : Ω0 → R2; w = UD on ΓD,

ψ′(X1)w1(X)− w2(X) ≤ X2 − ψ(X1) on ΓC
}

.

The analytical normal stress in the contact zone given by the Hertz theory is

(σn) · n = −4R|h2|
πb2

√
b2 − x2

1, if |x1| < b, where b = 2

√
2R2|h2|(1− ν2)

Eπ
.

The contact zone is |x1| < b and x2 = 0.
The number of nodes on ΓC is 252; the mesh of Ω0 has 11,759 vertices and 23,096 trian-

gles. For h2 = −2 and x1 = 0, the analytical value for b is 1.40621 and for the normal stress
is −14.4871, while the computed normal stress is −14.545. In Figure 1, we can see: the
initial mesh, the von Mises stress and a zoom of the contact zone. The numerical solution
is consistent with the analytical solution. The IPOPT algorithm solves the optimization
problem after 10 iterations.

5.2. Compression of a Hyperelastic Ring against a Flat Rigid Foundation

This example is adapted from [11]. The undeformed structure domain Ω0 is a ring
of exterior radius Re = 10 m, interior radius Ri = 9 m and center (0, Re), and the rigid

foundation is given by ψ(X1) = 0. The boundary ΓD is the arc of a circle
_

AB = {t ∈
(π

2 −
π
48 , π

2 + π
48 ); x(t) = Re cos(t), y(t) = Re + Re sin(t)}, ΓC is the inferior half of a circle

{t ∈ (π, 2π); x(t) = Re cos(t), y(t) = Re + Re sin(t)}, and ΓN is the rest of ∂Ω0.
On ΓD, we impose displacement UD = (0,−14) m, in Ω0, volume forces

f = (0, 0) Pa/m3 are applied, and surface loads h = (0, 0) Pa/m2 are applied on ΓN .
For the Neo-Hookean material, we use Young’s modulus E = 1.0 MPa and Poisson’s

ratio ν = 0.45, which gives the Lamé constants λ = 3.10345 MPa and µ = 344,828 Pa. For the
Ogden-like material, we use, as in [11], c1 = 0.5 MPa, c2 = 0.5× 10−2 MPa, a = 0.35 MPa.

The number of nodes on ΓC is 240; the mesh of Ω0 has 4342 vertices and 7734 triangles.
We employ finite element P1, and we set N = 14 as the number of increments. The average
number of iterations of the IPOPT algorithm in order to solve, at each increment, the
optimization problem is 12.

We can see in Figure 2 the final mesh and the von Mises stress for Neo-Hookean-like
material, and in Figure 3 the initial, intermediate and final meshes for the Ogden material.
We denote by Unh the solution in the case of the Neo-Hookean material and by Uog for
the Ogden-like material. We have

∥∥Unh −Uog
∥∥

L2(Ω0)
= 1.88063. Our solution for the

Ogden-like material is similar to the one obtained in [11].
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(a) (b)

(c)

Figure 1. Hertz half ball: the undeformed mesh (a), the von Mises stress after compression (b) and a
zoom of the contact zone (c).

(a) (b)

Figure 2. Ring, Neo-Hookean model: mesh deformation (a) and von Mises stress (b) after 14 increments.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Ring, Ogden model: mesh deformation after: 0 (a), 5 (b), 10 (c) and 14 (d) increments.

5.3. Contact of an Elastic Cube and a Ball

This example is adapted from [13]. The undeformed structure domain Ω0 is the cube
(0, 1)3, and the obstacle is a ball with center (0.5, 0.5,−0.3) and radius 0.3, see Figure 4.

The boundary ΓD is the upper side, ΓC is the bottom side, and ΓN is the rest of ∂Ω0. On
ΓD, we impose the displacement UD = (0, 0,−0.22) and we set f = (0, 0, 0) and h = (0, 0, 0).
Contrary to [13], where the strain energy function is

W = c tr(E) +
λ

2
(tr(E))2 + (µ− c)tr(E2)− c ln J

with E = 1
2 (C− I) and the parameters λ = 5000, µ = 5000, c = 1000, we consider the

Neo-Hookean material as discussed in Section 3, with Lamé constants λ = 5000, µ = 5000.
For 3D, we have the same formula for (7), but (9) is replaced by

K̂ =

{
ŵ : Ω̂→ R3; ŵ =

1
N

UD on Γn
D,

∂ψ(x̂1, x̂2)

∂x̂1
ŵ1(x̂) +

∂ψ(x̂1, x̂2)

∂x̂2
ŵ2(x̂)− ŵ3(x̂) ≤ x̂3 − ψ(x̂1, x̂2) on Γn

C

}
.

The mesh is controled by the number k of segments on each edge of the cube. The
mesh of Ω0 has: 9261 vertices and 48,000 tetrahedrons for k = 20, 35,937 vertices and
197,608 tetrahedrons for k = 32 and 68,921 vertices and 384,000 tetrahedrons for k = 40. We
employ the finite element P1, and we set N = 4 as the number of increments.

Figure 4. Cube: initial configuration.

The optimization problem has
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• k = 20: 27,783 variables, 361 inequality constraints, 441 variables with imposed
displacement;

• k = 32: 107,811 variables, 961 inequality constraints, 1089 variables with imposed
displacement;

• k = 40: 206,763 variables, 1531 inequality constraints, 1681 variables with imposed
displacement.

The average number of iterations of the IPOPT algorithm is 14 for k = 20 and 16.75 for
k = 40. The total CPU time on an Intel Sandy Bridge 16 × 3.30 GHz and 64 GB RAM was
6 min for k = 20, 24 min for k = 32 and 50 min for k = 40.

We denote by Uk20
nh , Uk32

nh , Uk40
nh the solutions for k = 20, k = 32, k = 40, respec-

tively. The L2 error between computed solutions are:
∥∥∥Uk32

nh −Uk20
nh

∥∥∥
L2(Ω0)

= 0.002149,∥∥∥Uk40
nh −Uk20

nh

∥∥∥
L2(Ω0)

= 0.002868,
∥∥∥Uk40

nh −Uk32
nh

∥∥∥
L2(Ω0)

= 0.0007273.

In Figure 5, we plot the vertical displacement and von Mises stress at the final configu-
ration for k = 32.
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Figure 5. Cube, k = 32, cut of the final configuration: vertical displacement U3 (a), zoom of the
contact zone for U3 (b), von Mises stress (c).

6. Conclusions

An Updated Lagrangian method for nonlinear elasticity with frictionless contact was
presented. The linearized problem written in the updated configuration for Neo-Hookean
and Ogden compressible materials were derived. At each iteration, only a linear system
was solved. Two- and three-dimensional numerical simulations were performed.
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