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Abstract. We study the fluid-structure coupled problem between an incompressible fluid
and an elastic curved arch. The fluid flow is modeled by 2-D steady Stokes equations
with normal velocity boundary condition on the curved interface and the arch verifies a
particular 1-D case of the thin shell theory of Koiter. We present an optimal control
formulation for this fluid-arch interaction. More precisely, the control is the normal force
acting on the interface and the observation is the normal velocity of the fluid on the
interface. Numerical results arising from modelling blood flow in arteries are presented.

1 PRESENTATION OF THE PROBLEM

Let us consider a fluid which fills a two-dimensional domain ΩF
u , the boundary of which

is composed by the inflow section Σ1, the rigid boundary Σ2, the outflow section Σ3 and
the interface between the fluid and the structureΓu. The boundary Γu depends on the
displacement u of the elastic arch. Moreover, we denote by n = (n1, n2)

T the unit outward
normal vector and by τ = (−n2, n1)

T the unit tangential vector to the boundary of the
fluid domain (see Figure 1).

The fluid flow is modeled by the steady Stokes equations and the arch verifies a par-
ticular case of the thin shell theory of Koiter. Thus, for a given pressure on the inflow
and outflow sections, the coupled problem is to find the displacement u of the arch, the
velocity v and the pressure p of the fluid.

This kind of fluid-structure interaction arises in some processes of the cardiovascular
system, for example, blood-heart interaction1,2, blood flow in large arteries3,4,5, arteries
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Figure 1: Geometrical model and notations for a fluid-structure interaction with curved interface

with aneurysm, air flow in artificial lungs6, or in the car industries, for example fluid flow
in a shock absorber7.

2 WEAK FORMULATION OF THE ARCH PROBLEM

In this section, we first adapt from Bernadou-Lucatel8 the usual notations in thin shell
theory.

Let L > 0 and φ1, φ2 : [0, L] → R so that the parametric description of the undeformed
arch is given by:

Γ0 =
{

(x1, x2) ∈ R
2; x1 = φ1(ξ), x2 = φ2(ξ), ξ ∈ [0, L]

}

.

That is, the boundary Γ0 is the image of the map φ = (φ1, φ2) : [0, L] → R
2. We denote

by ′ the derivative with respect ξ. Then, the covariant basis (a1, a3) is given by

a1 =
(

(

φ1
)′
,
(

φ2
)′

)T

, a3 =
1√
a

(

(

φ2
)′
,−

(

φ1
)′

)T

and the associated contravariant basis (a1, a3) is

a1 =
1√
a
a1, a3 = a3

where a =
(

(φ1)
′)2

+
(

(φ2)
′)2

. So, we have ‖a1‖ = ‖a3‖ = ‖a3‖ = 1, where ‖·‖ is the
Euclidean norm in R

2. Notice thay in general ‖a1‖ 6= 1. Next, we associate to any
displacement field ψ = ψ1a

1 + ψ3a
3 the 1-D plane strain (γ) and change of curvature

tensors (ρ)

γ1
1 (ψ) =

1√
a

((

ψ1√
a

)′

+

√
a

R
ψ3

)

, ρ1
1 (ψ) =

1√
a

(

1√
a

(

ψ′
3 −

1

R
ψ1

))′

where
1

R
=

(φ1)
′
(φ2)

′′ − (φ1)
′′
(φ2)

′

a3/2
.
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Now, we introduce the admissible displacement space, U , given by

U =
{

ψ = (ψ1, ψ3) ∈ H1
0 (]0, L[) ×H2

0 (]0, L[)
}

.

Thus, assuming an elastic, homogeneous and isotropic arch, we define the bilinear form
aS : U × U → R by

aS (u,ψ) =
Ee

1 − ν2

∫ L

0

(

γ1
1 (u) γ1

1 (ψ) +
e2

12
ρ1

1 (u) ρ1
1 (ψ)

)√
a dξ

where e > 0, E > 0 and 0 < ν < 1/2 denote the thickness, the Young’s modulus and the
Poisson’s ratio of the arch, respectively.

Weak formulation of the arch displacement problem

For given fS =
(

fS,1, fS,3
)

and λ = (λ1, λ3) this formulation is posed as follows:
Find u = (u1, u3) ∈ U , such that:

aS (u,ψ) =

∫ L

0

(

λ1ψ1 + λ3ψ3

)√
a dξ +

∫ L

0

(

fS,1ψ1 + fS,3ψ3

)√
a dξ, ∀ψ ∈ U. (1)

Proposition 1 Let fS =
(

fS,1, fS,3
)

and λ = (λ1, λ3) in L2 (]0, L[) × L2 (]0, L[). Then,
the problem (1) has an unique solution.

A standard reference for the existence results in shell theory is Ciarlet9.
The physical meaning of fS is that of an external volume force applied to the elastic arch

(for example, the gravity forces). In a fluid-structure interaction problem, λ is associated
to the surface forces from the fluid acting on the structure.

Thus, the parametric description of the deformed arch is

Γu =
{

(x1, x2) ∈ R
2; (x1, x2)

T = φ(ξ) + u1(ξ)a
1(ξ) + u3(ξ)a

3(ξ), ξ ∈ [0, L]
}

.

3 MIXED HYBRID FORMULATION OF THE FLUID PROBLEM

Strong form of the fluid equations

For given µ, fF , Pin and σF , this problem is posed as follows:
Find v : ΩF

u → R
2 and p : ΩF

u → R such that:

−µ∆v + ∇p = fF , in ΩF
u (2)

∇ · v = 0, in ΩF
u (3)

v × n = 0, on Σ1 (4)

n ·
(

σFn
)

= −Pin, on Σ1 (5)

v = 0, on Σ2 (6)

v × n = 0, on Σ3 (7)

n ·
(

σFn
)

= −Pout, on Σ3 (8)

v × n = 0, on Γu (9)

n ·
(

σFn
)

= −λ3 ◦
(

φ+ u1a
1 + u3a

3
)−1

, on Γu (10)
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where

• µ > 0 is the viscosity of the fluid,

• fF = (fF
1 , f

F
2 ) are the applied volume forces, in general the gravity forces,

• Pin : Σ1 → R and Pout : Σ3 → R are prescribed normal boundary forces,

• σF = −p I + µ
(

∇v + ∇vT
)

is the stress tensor of the fluid.

In two-dimensions, we have v × n = v1n2 − v2n1.

Remark 1 Condition (10) is a consequence of the action and reaction principle concern-
ing the normal stress on the interface. Since n ·

(

σFn
)

is defined on Γu, while λ3 is defined
on [0, L], we have to use in (10) the inverse of the map φ + u1a

1 + u3a
3. We will come

back to this topic in Section 4.

Weak formulation of the fluid problem

We introduce the following Hilbert spaces:

W =
{

w = (w1, w2) ∈
(

H1
(

ΩF
u

))2
; w = 0 on Σ2, v2 = 0 on Σ1 ∪ Σ3

}

,

Q = L2
(

ΩF
u

)

,

Z = H1/2 (Γu) .

Since Σ1 and Σ3 are vertical boundaries, the conditions (4) and (7) are equivalent with
w2 = 0 on Σ1 ∪ Σ3.

We denote by ε(v) = (εij(v))1≤i,j≤2, the strain rate tensor, where εij(v) = 1
2

(

∂vi

∂xj
+

∂vj

∂xi

)

.

Next, let us consider the maps aF : W×W → R, bF : W×Q → R and cF : W×Z → R,
defined by

aF (v,w) = 2µ

2
∑

i,j=1

∫

ΩF
u

εij(v)εij(w) dx

bF (w, q) = −
∫

ΩF
u

(∇ ·w) q dx

cF (w, ζ) = −
∫

Γu

(w · τ ) ζ dγ

`F (w) =

∫

ΩF
u

fF ·w dx −
∫

Γu

(w · n)λ3 ◦
(

φ + u1a
1 + u3a

3
)−1

dγ

−
∫

Σ1

(w · n)Pin dγ −
∫

Σ3

(w · n)Pout dγ
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The weak form of Problem (2)–(10) is posed as follows:
Find v ∈ W, p ∈ Q and η ∈ Z, such that

aF (v,w) + bF (w, p) + cF (w, η) = `F (w) , ∀w ∈ W (11)

bF (v, q) = 0, ∀q ∈ Q (12)

cF (v, ζ) = 0, ∀ζ ∈ Z (13)

The physical meaning of η is that of the tangential stress on the interface, i.e. η =
τ · σFn, while the mathematical meaning is that of a Lagrange multiplier associated to
the constraint v · τ = 0 on the interface.

The system (11)–(13) is a mixed-hybrid like problem10. The bilinear form aF is con-
tinuous and elliptic11 only if the map from W to Q× Z

w 7→ (−∇ · w,−w · τ |Γu
) (14)

is onto.
The problem (11)–(13) is similar to the mixed-hybrid system12,13, but in this papers

the condition v · n = 0 is treated by a Lagrange multiplier.
Strong and weak treatment of the condition v · τ = 0 is analyzed in Pironneau14.

4 COUPLED FLUID-ARCH PROBLEM

The fluid and the arch problems are coupled via two boundary conditions: continuity
of velocity and stress on the interface.

Since the velocity of the arch is zero in the steady case, we search a solution of the
coupled problem such that v = 0 on the interface. From condition (9), we have v · τ = 0
on Γu. So, in order to obtain the continuity of the velocity at the interface, it remains to
find a fluid velocity such that v · n = 0 on Γu.

The surface forces acting on the arch in a point φ(ξ) of Γ0 are given by

λ1a1 + λ3a3,

while the surface forces acting on the fluid in the point φ(ξ) + u1(ξ)a
1(ξ) + u3(ξ)a

3(ξ) of
Γu are given by

σFn =
(

τ ·
(

σFn
))

τ +
(

n ·
(

σFn
))

n.

In the case of small displacements, we assume that

1√
a
a1 = a1 ≈ τ , a3 = a3 ≈ n.

So, according with the action and reaction principle, it follows that

−λ1
√
a ≈ τ ·

(

σFn
)

= η
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and
−λ3 ≈ n ·

(

σFn
)

.

The last condition is handled by (10) in the fluid problem.
For a given λ, we obtain the displacement u by solving the arch problem (1). Then,

from the fluid problem (11)–(13), we get the velocity v, the pressure p of the fluid and
the tangential stress on the interface η.

Thus, the fluid-arch interaction problem is to find λ such that

v · n = 0, on Γu (15)

−λ1
√
a = η ◦

(

φ+ u1a
1 + u3a

3
)

, on [0, L] . (16)

Notice that equation (16) represents the continuity of the tangential stress on the
interface.

We recall that the tangential velocity of the fluid vanishes (see equation (7)) and the
continuity of the normal stress on the interface is treated by (10).

In the following, we assume that the arch displacement only depends on λ3. This is
true in the cardiovascular system, where the blood pressure is more important than the
viscous part of the stress tensor, so the normal component of the stress,

n ·
(

σFn
)

= −p+ µn ·
(

∇v + ∇vT
)

n ,

is very large compared to the tangential component

τ ·
(

σFn
)

= µ τ ·
(

∇v + ∇vT
)

n.

Then, Problem (1) can be written as:
Find u = (u1, u3) ∈ U , such that:

aS (u,ψ) =

∫ L

0

λ3ψ3

√
a dξ +

∫ L

0

(

fS,1ψ1 + fS,3ψ3

)√
a dξ, ∀ψ ∈ U. (17)

The tangential deformation of the arch is not null in general, even though the stress
on the interface is normal.

The solution (v, p, η) of the fluid problem (11)-(13) does not depend on λ1, so if we
set:

λ1 = − 1√
a
η ◦

(

φ+ u1a
1 + u3a

3
)

,

then the condition (16) holds.
Now, the coupled fluid-arch problem can be posed as:
Find λ3 (the normal stress on the interface) such that v · n|Γu

= 0.
We transform this exact controllability problem into the following optimal control one:

inf
1

2

∫

Γu

(v · n)2 dγ , (18)
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subject to :

− λ3 ∈ L2 (]0, L[) (19)

− u solution of the arch problem (17) (20)

− (v, p, η) solution of the fluid problem (11) − (13) (21)

This formulation generalizes the work in Murea-Vázquez15 to the case of elastic curved
interface.

5 NUMERICAL RESULTS

In this section we present some illustrative test examples concerning the blood flow in
arteries.
Geometry data

For L = 6 cm, the parametric description of the undeformed arch is given by

Γ0 =
{

(x1, x2) ∈ R
2; x1 = ξ, x2 = −5 +

√

45 − (ξ − 3)2, ξ ∈ [0, L]
}

.

The top boundary of the fluid domain (see Figure 1) is composed by the arch in the
middle, the following fixed boundary at the left

Σl
2 =

{

x1 = ξ, x2 = 0.1ξ3 + 0.4ξ2 + 0.5ξ + 1, ξ ∈ [−1, 0]
}

and the following fixed boundary at the right

Σr
2 =

{

x1 = ξ, x2 = −0.1ξ3 + 2.2ξ2 − 16.1ξ + 40, ξ ∈ [6, 7]
}

.

The bottom of the fluid domain is Σd
2 = {(x, 0)/− 1 ≤ x ≤ 7}, while the inflow bound-

ary, Σ1, and outflow one, Σ3, are appropriate vertical segments of length 0.8cm.

Physical parameters

In the arch problem, the thickness of the elastic wall is e = 0.1 cm, the Young’s modulus
is taken to E = 0.75 · 106 g

cm·s2 , the Poisson’s ratio is ν = 0.49 and the mass density is
ρS = 1.1 g

cm3 .
In the fluid problem, the blood viscosity was taken to be µ = 0.035 g

cm·s
. Moreover,

the volume force is fF = (0, 0)T and the outflow pressure is Pout = 0.

Finite elements discretization

The normal displacement of the arch is approached by P3 Hermite finite elements, while
the tangential displacement is approached by P1 finite elements on segments.

For the approximation of the fluid velocity and pressure we have employed the triangu-
lar P1+bubble and P1 finite elements, respectively. The tangential stress on the interface
is approached by P1 finite elements on segments.

Notice that the arch and the fluid meshes do not necessarily match themselves and, in
general, the fluid mesh is much finer than the structure mesh.

7



C.M. Murea and C. Vázquez

All the fluid meshes are obtained by moving a fixed mesh with a displacement which
is the solution of a Laplace problem with Dirichlet boundary conditions. On the fixed
boundaries, Σ1, Σ2 and Σ3, the mesh displacement vanishes, while it is equal to the arch
displacement on the interface Γu.

Figure 2: Typical fluid and arch meshes

Numerical solution of the optimal control problem

In order to solve numerically Problem (18)–(21), the Broyden, Fletcher, Goldforb,
Shano (BFGS) method has been used, where the gradient of the cost function was ap-
proached by a first order finite differences method with the grid spacing 0.01.

Moreover, we have used the stopping criteria |J | < ε1 or ‖∇J‖∞ < ε2.

5.1 Control of normal velocity by normal stress on interface

In all the following numerical tests, the arch mesh has 10 segments (see Figure 2). Let
{0 = ξ0 < ξ1 < · · · < ξ10 = L} be a uniform partition of the interval [0, L]. The normal
stress on the interface λ3 is approached by λ3

h ∈ C[0, L], λ3
h ∈ P1 on each segment [ξi, ξi+1],

i = 0, . . . , 9.
In all the simulations, for solving the optimization problem, the initial used value is

λ3
h(ξi) = Pout + (Pin − Pout)

10 − i

10
, i = 0, . . . , 10.

We have used the stopping criteria ‖∇J‖∞ < 0.05.

Fluid mesh with 20 segments on the interface

In this test the fluid mesh has 226 triangles, 144 vertices and 20 segments on the elastic
boundary. The solution of the optimal control problem verifies ‖∇J‖∞ = 1.9 · 10−2. The
sequence of values of cost function produced by the BFGS method is shown in Table 1.
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Iteration J
0 2547.091786
1 1211.782266
2 725.6283591
3 510.1113951
4 55.08303685
5 14.69322181
6 2.761055109
7 1.355973240

Iteration J
8 1.023813629
9 0.541353106
10 0.196142907
11 0.074620024
12 0.061075290
13 0.059283206
14 0.059257208

Table 1: The BFGS iterations when fluid mesh has 20 segments on the interface

Fluid mesh with 50 segments on the interface

In this case, the fluid mesh has 1406 triangles, 779 vertices and 50 segments on the
elastic boundary, the results being shown in Table 2. The last iteration value of the
optimal control problem verifies ‖∇J‖∞ = 1.0 · 10−2.

Iteration J
0 2961.338390
1 2160.756802
2 1392.917188
3 879.6830449
4 206.9249346
5 28.11455274
6 18.81352198

Iteration J
7 8.851579284
8 2.369258721
9 1.271752295
10 0.382701032
11 0.179680309
12 0.124469558
13 0.123437472

Table 2: The BFGS iterations when fluid mesh has 50 segments on the interface

Fluid mesh with 80 segments on the interface

In this test, the fluid mesh has 3644 triangles, 1943 vertices and 80 segments on the
elastic boundary, the associated results are shown in Table 3. The solution of the optimal
control problem verifies ‖∇J‖∞ = 3.3 · 10−2.

Discussion of numerical results

Since the arch mesh has 10 segments and the normal stress on the interface is ap-
proached by the finite element P1, then the optimization problem obtained after the finite
element approximation of (18)–(21) is of dimension 11.

Previous numerical results show that we can obtain very small normal velocity on 80
segments of the interface, using only 11 scalar controls.
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Iteration J
0 3619.097215
1 1503.175625
2 258.7993032
3 91.91149097
4 61.75894998
5 42.29953564

Iteration J
6 29.86861359
7 13.36326171
8 10.33965940
9 0.753294422
10 0.095747979
11 0.092956444

Table 3: The BFGS iterations when fluid mesh has 80 segments on the interface

The optimal control problem (18)–(21) is a nonlinear least squares like system with
zero residual. In our case, the residual function is the normal velocity on the interface.
We try to find the normal stress on the interface such that the residual function vanishes.

Notice that the BFGS is an algorithm for general unconstrained optimization problems,
that is not specially designed for the least squares problems. Despite of this, the BFGS
method finds very small residual function in our application. A standard reference for
nonlinear least squares problems is Dennis-Schnabel16.

The optimal values of the cost function 0.05, 0.12, 0.09 obtained for the fluid meshes
with 20, 50, 80 segments on the interface is not a decreasing sequence. One reason could
be the fact that the BFGS method doesn’t find the global minimum, but a local one. A
second reason is the following: after the finite element discretization of the arch equations,
it is possible that the optimal value of the cost function is not zero even for very fine fluid
meshes.

5.2 Computed solutions for some inflow pressure

The interest in the following numerical simulation study lies in predicting the deforma-
tions of the arterial wall which are dependent on the fluid pressure at the inflow section.

In the simulations presented in this section the arch mesh has 10 segments. More-
over, all the fluid meshes have 516 triangles, 304 vertices and 30 segments on the elastic
boundary Γu.

The tests correspond to the numerical solution of the fluid-structure problem for the
following inflow pressures: Pin = 50, 100, 200, 400 dyn/cm2.

As stopping criteria in the BGFS algorithm we have chosen |J | < 0.5 or ‖∇J‖∞ < 0.1.
The starting point for the BFGS method for Pin = 100 was the numerical solution obtained
for Pin = 50 and so on.
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Pin initial J final J no. BFGS iterations
50 2928.63 0.23 9

100 356.86 0.26 13
200 1378.34 0.56 17
400 5257.25 2.08 20

Table 4: Results obtained by BFGS method for different inflow pressure

 0

 0.5
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 2.5
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 0  1  2  3  4  5  6

undeformed
Pin=50

Pin=100
Pin=200
Pin=400

Figure 3: Deformations [cm] of the boundary for different inflow pressures

Vec Value
0
1.97811
3.95622
5.93433
7.91244
9.89056
11.8687
13.8468
15.8249
17.803
19.7811
21.7592
23.7373
25.7154
27.6936
29.6717
31.6498
33.6279
35.606
37.5841

Figure 4: Fluid velocities [cm/s] scaled by a factor 0.008 in the case Pin = 50 dyn/cm2
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IsoValue
1.21534
3.72569
6.23603
8.74637
11.2567
13.7671
16.2774
18.7877
21.2981
23.8084
26.3188
28.8291
31.3395
33.8498
36.3601
38.8705
41.3808
43.8912
46.4015
48.9119

Figure 5: Fluid pressure [dyn/cm2] in the case Pin = 50

Vec Value
0
16.1046
32.2092
48.3139
64.4185
80.5231
96.6277
112.732
128.837
144.942
161.046
177.151
193.255
209.36
225.465
241.569
257.674
273.779
289.883
305.988

Figure 6: Fluid velocities [cm/s] scaled by a factor 0.001 in the case Pin = 400 dyn/cm2
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IsoValue
9.70817
29.7947
49.8812
69.9678
90.0543
110.141
130.227
150.314
170.4
190.487
210.574
230.66
250.747
270.833
290.92
311.006
331.093
351.179
371.266
391.352

Figure 7: Fluid pressure [dyn/cm2] in the case Pin = 400

6 CONCLUSIONS

We have formulated a fluid-structure interaction as an optimal control problem. The
control is the normal force acting on the interface and the observation is the normal
velocity of the fluid on the interface.

The BFGS method finds numerically small residual function even for a reduced number
of controls.
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