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Abstract

Using the Arbitrary Lagrangian Eulerian coordinates and the Least Squares Method,
a two dimensional steady fluid structure interaction problem is transformed in an op-
timal control problem. Sensitivity analysis is presented. The BFGS algorithm gives
satistfactory numerical results even when we use a reduced number of discrete controls.
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1 Introduction

In this paper we consider a two dimensional fluid structure interaction. The mathematical
model which governs the fluid is the steady Stokes equations, while the structure verifies the
beam equation which does not involve shearing stress. The solution of the model is given by
the displacement of the structure, the velocity and the pressure of the fluid. The boundary of
the fluid admits the following decomposition: a moving part, which represents the interface
between the fluid and the structure, and a rigid part. This kind of problem is of considerable
interest in the simulation of blood flow in large arteries (see [1], [2], [3]) or in aeroelasticity
(see [4]).

The existence results for the fluid structure interaction can be found in [5], [6] for the
steady case and in [7], [8], [9] for the unsteady case.

Sensitivity analysis of a coupled fluid structure system was investigated in [10].

The asymptotic limit when the fluid domain width approaches to zero can be modeled by
a one dimensional model of Stokes equation, widely used in lubrication theory (see [11]).

In a previous work ([12]), a three dimensional fluid structure interaction was formulated
as an optimal control system, where the control is the force acting on the interface and the
observation is the velocity of the fluid on the interface. The fluid equations were solved taking
into account a given surface force on the interface.

A similar approach was used in [13], where it was proved that the cost function is differ-
entiable. The analytic computation of the gradient for the cost function is important because
it enables us to apply accurate numerical methods (see [14]). The exact gradient of the cost
function is computed in [13].

Numerical results for a two dimensional fluid structure interaction using the optimal con-
trol method are presented in [15]. The fluid equations are solved subject to the conditions of
zero normal velocity and a given value of pressure on the interface. The control is the value
of the pressure at the interface and the observation is the tangential velocity on the interface.



The most frequently, the fluid-structure interaction problems are solved numerically by
partitioned procedures, i.e. the fluid and the structure equations are solved separately, which
enables us to use the existing solvers for each sub-problem.

This can be done using fixed point strategies with eventually a relaxation parameter, but
these methods do not always converge or they have slow convergence rate [16], [17], [1]. The
convergence can be accelerated using Aitken’s method [2] or transpiration condition [18].

Other way to accelerate the convergence is to use methods which employ the derivative. In
[19] a block Newton algorithm was used where the derivative of the operators are approached
by finite differences. Good convergence rate was obtained in [2] where the derivative of the
operator was replaced by a simpler operator. At each time step, a quasi-Newton algorithm
was used to solve a fluid-structure interaction problem. The mean number of iterations of the
quasi-Newton algorithm is 6.1. With the Aitken acceleration method this number is 24.1. At
each iteration, a Stokes and a Laplacian problems were solved in the current fluid domain.

In the present work, a fluid structure interaction problem was formulated as an optimal
control system, where the control is the force acting on the interface and the observation is
the pressure on the interface. The boundary condition to be imposed on the fluid is that all
components of the velocity are zero at the interface.

To solve numerically the optimal control problem, we use a quasi Newton method which
employs the analytic gradient of the cost function and the approximation of the inverse Hessian
is updated by the Broyden, Fletcher, Goldforb, Shano (BFGS) scheme. This algorithm is
faster than fixed point with relaxation or block Newton methods which represents the main
advantage of using the optimal control approach for fluid-structure interaction problem. The
finite element functions of the normal stresses at the interface are not necessary the same as
the trace on the interface of the pressure finite element functions. This is another advantage
by comparison with the fixed point approach.

An outline of the paper is as follows. First, we prove that the normal force acting on
the structure depends only on the pressure. Then, an exact solution for a particular fluid
structure interaction is given. Using the Least Square Method, the fluid structure interaction
will be reformulated as an optimal control problem. We will analyse the dependence of the
displacement of the interface, the velocity, the pressure of the fluid and the cost function on
variations of the discrete control. Finally, numerical results are presented.

2 Notations

Let L and H be two positive constants. We define the set

Ua = {ueC ((0,L]);u(0)=u(L)=u(0)=u (L) =0,
foL u(zy)dry =0, inf, o) {H +u(21)} > 0}

where u' is the first derivative of w.
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Figure 1: Sets appearing in the fluid-structure problem



For each u € Uy,q, we introduce the notations (see Figure 1)

Qf = {(x1,22) eR% 21 €(0,L),0< 2y <H+u(z)},
r. = {(ﬂfl;wz)ERZ;ﬂflG(OaL);$2=H+U(ﬂf1)}-

Also, we denote

¥ = {(O,SUQ)ERZ;:UQE(O,H)}
22 = {(ﬂ?l,O)ERZ;QZlE(O,L)}
Y3 = {(L,ZL“Q)E]RZ;ZL“QG(O,H)}.

The two-dimensional domain occupied by the fluid is Q£ the interface between the fluid

and the structure is I',,, while ¥ = ¥; U ¥, U, represents the rigid boundary of the fluid.
In the following, we denote by n = (n;,n2)? the unit outward normal vector and by
7= (11,7)T = (=na,n1)T the unit tangential vector to ONL .

3 Position of the problem

We suppose that the fluid is governed by the steady Stokes equations, while the deformation
of the elastic part of the boundary verifies a particular beam equation which does not involve
shearing stress (see [20]). We consider that the structure is a beam of axis parallel to Oz
with constant thickness h. We assume that the displacement of the beam is normal to its
axis.

The problem is to find:

e u:[0,L] — R the displacement of the structure,
e v =(vy,09)T : QF = R? the velocity of the fluid and

e p: QL 5 R the pressure of the fluid,

such that
u" () = ) (fs(xl) +p (21, H +u(z1))), Vo €(0,L) (1)
uw(0) = w(L)=u(0)=u'(L)=0 (2)

L
/0 u(zy)dr; = 0 (3)
0 < inf {H+uo) ()
—pAv+Vp = ) inQF (5)
divv = 0, inQF (6)
v = g, on (7)
v = 0, only, (8)
where

e D= El—';s is a structure constant, E is the Young modulus, & is the thickness.

e f9:(0,L) — R are the averaged volume forces of the structure, in general the gravity
forces and in this case we have f%(z;) = —gop°h, where gy is the gravity, p is the
density of the structure,

e 11 > 0 is the viscosity of the fluid,



o £F = (I, 5T : QF — R? are the volume forces of the fluid, in general the gravity
forces,

e g=1(g1,92)" : £ — R? is the imposed velocity profile of the fluid on the rigid boundary,
such that

/Eg-ndazo. (9)

The incompressibility of the fluid (6) together with the boundary conditions (7), (8) and

the relation (9) imply that the volume of the fluid is conserved or equivalently fOL u(zy) dx;
is constant. Without loss of generality, we assume that this constant is zero and we obtain
the condition (3).

The inequality (4) states that the fluid domain is connected.

For the Newtonian fluids, the stress tensor o has the form

U:—pI—l—,u(Vv—l—VvT),
consequently, the fluid forces acting on the structure are —omn.

Proposition 1 If v € (H? (95))2, p € H' (QF), v is constant on T, div v = 0 in QF,
then — (om) -n=p on [,.

Proof. This result is a corollary of the Proposition 3.1 from [21] and it is similar to the
Proposition 4.5 from the same paper. We have that

—(on) n=p—p((Vv+Vvi)n) -n

and
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In Proposition 3.1 from [21], it is proved that g;’fnk = g—;’;nj, Vi, i,k € {1,2}, so
J
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((VV+VVT) n) ‘n = O

(n2+n§)+2 (n%+n§):2divv:0

which ends the proof. O

Under the assumption of small displacement of the beam, it follows that n =~ (0,1)?. Then,
it is reasonable to solve the beam equation (1) under the fluid forces given by p (z1, H + u(z1)),
xr1 € (0, L)

4 Exact solution for a particular case
We assume that the density of the fluid is constant p*" and the volume forces in the fluid have

the form £ = (0, —p% go)?, where gy is the gravitational acceleration. The velocity profile of
the fluid on the rigid boundary is given by:

2
_ X2 .
g1(z1,22) = { (1 H2)V0’ (#1,72) € Ty U s
VO’ ($17$2) € E2
g2(z1,22) = 0, (z1,22) € 2.



We assume that the density of the structure p° and its thickness h are constant.
We assume that the averaged volume forces in the structure have the form

2uVo

(@) = =p"goh+ J7E

z1, Va1 €(0,L). (10)

Then, we have the following solution for the system (1)—(8):

u(z1) = 0, Vz;€(0,L)
2
vi(z1,22) = (1 - %) Vo, V(x1,x2) € Q)
va(w1,m2) = 0, Y(wp,x2)€Qf
_ S 2pVo F F
p(ri,2) = p°goh — twr +pigo (H —x2), VY(w1,22) € Q.

Remark 1 The term 21“{‘2/0 x1 in (10) is artificial. It was added to obtain a solution where
the displacement of the beam is null and the flow is Poiseuille.

5 Fixed point approach
We start with a result concerning the equations of the interface.

Proposition 2 For a given continuous function n : [0, L] — R there ezist a unique function
u:[0,L] = R of class C* and a unique constant ¢ € R solutions of

W (31) = % (@) +¢), Vo € (0,L) (1)

with boundary conditions (2), such that the equality (3) holds.
Proof. Existence. Let u, : [0,L] = R be the unique solution of

ullll(

1
xl) = 577(?31): Vil?l € (OaL)

with boundary conditions (2). The unique solution of

1
u"(x1) = o Yz, € (0,L)
with boundary conditions (2) is 1 € [0, L] — %
Then, the solutions of (11) and (2) have the form

eR

22(z; — L)?

w(x1) = up(z1) + ¢ 54D

The equality (3) is equivalent to

L L, 2 2
zi(z1 — L)
u(ml)daz1+c/ e dry =0
/0 " o 24D

consequently, if we set

720D [F
c:—?/0 up(x1) da1,

then the condition (3) holds.

Uniqueness. Let u;, ¢;, i = 1,2 be two solutions of (11), such that fOL u;dr; = 0. By
subtracting, we obtain that

1

(U1 — Uz)””(ﬂ?l) = 5 (Cl — 62), ViL“l S (O,L)



and u; — ue verifies the boundary conditions (2). Consequently we have (u1 — u2)(z1) =

(c1 —¢2) %. Since fOL(m —ug)dzr; =0, we obtain ¢; —co =0 and uy —uy =0. O

From the above Proposition, it follows that for a given continuous function Ao : (0, L) — R
such that fOL Xo(x1) dzy = 0, we can solve the beam equations

" (1) = % (FS(@1) + Xole1) +¢), Var € (0,L) (12)

with boundary conditions (2) where ¢ is the real constant such that the equality (3) holds.
Let S be defined by
S(Xo) = u. (13)

If 0 < inf, o) {H +u(z1)}, we can solve the Stokes equations (5)—(8) and we obtain
v and p. The pressure is determined up to an additive constant, i.e. it has the form p =
po + C, where pg is a particular solution and C' is a real constant. We will take py such that
L
fo po (z1, H + u(xy)) dzy = 0.
We denote by F(u) the function

x1 € (0,L) = po (x1, H + u(x1)) . (14)

The function F(u) is well defined, if the trace of the pressure py on I'y, exits. For this, we
have to precise the regularity of the solution of Stokes equations.
Let g : 90 — R be defined by g(x) = 0 for x € [, and g(x) = g(x) for x € ¥.

If O0E s Lipschitz continuous, QL is a connected domain, ¥ € (H—1 (Qg))27 g €
(H1/2 (695))2 such that fBQF g -ndo =0, then the problem :
find v € (H' (Qg))2, v=gondNL andpe L* (0F) /R

Vv-dex—/ (div w)pdx = / 1 wdx, Vwe (Hg (95))2

QF Qr Qf

—/ (div v) gdx = 0, Vg e L* (F) /R
QF

u

(15)

has a unique solution. ‘
Moreover, if 0L is of class C?, fF' € (L* (95))2 and g € (H3/? (8(25))2, then v €
(H2 (Q5))? and p € H' (L) /R,

These results could be found in [22, p. 88].

The fixed point approach is to find Ag such that F o S(\g) = Ao, where S and F are
defined by (13) and (14).

The existence of a fixed point will not be treated here. It is important to note that if we
want to apply the Schauder’s fixed point theorem, the regularity of Ag and F o S(\g) must be
the same. It is not the case in our framework: for Ay € C° (0, L), we have S(\g) = u € C* (0, L)
and consequently F(u) € H'/? (0, L). Tt is known that H'/? (0, L) is not included in C° (0, L),
but H'/?t¢(0,L) c C°(0,L) for € > 0. Existence results for related steady fluid-structure
interaction problems can be found in [5] and [6].

In the following, we relax the fixed point problem by the Least Squares Method and we
obtain an optimization problem.



6 Least Squares approach

Let ¢; : [0, L] — R be some particular given functions and «; are the scalar parameters to be
identified, 1 < i < m.

Let us comment the regularity and the shape of ¢;. We take ¢; € C° (0, L), the condition
fOL ¢i(x1)dry = 0 is not necessary needed. Also, the functions ¢; are not necessary the same
that the trace on the interface of the pressure finite element functions. This is an advantage
by comparison with the fixed point approach.

For given a = (a1,...,ay), we find w : [0, L] = R and ¢(a) € R solutions of

u"(x1) = % (fs(xl) + Za,-gi),-(:vl) + c(a)> , Va1 €(0,L) (16)

with boundary conditions (2), such that (3) holds.
The next step is to solve the Stokes equations in the domain Q2 and we obtain v and p.

We assume that p € H! () and we set pp =p— 1 fOLp (z1, H + u(z1)) dzp. It follows that

L
/0 po (1, H +u(zy)) dzy = 0. (17)

Let J : R™ — R be defined by
2

L m L
T@= [ (;a (asi(a:l)—%/o @(:cl)dxl) - po (wl,H+u(x1))> dry.

Now, the problem is to find a € R™ solution of

inf J («)

u solution of (16), (2), (3),

u verifies (4), (18)
v, po solution of (5)— (8),

po verifies (17).

In other words, we try to find a solution of the system (1)—(8) such that
p(iL“l,H-f-U(:Ul)) ~ Za1¢z(wl) —f—C(Oé), Va, € (OaL)
i=1

where @ € R™ and p(z1,22) = pol(1,32) + > 10y OL ¢i(z1)dzy + c(a), for (z1,x2) € QL.
The discrete control is @ € R™ and the observation is the trace of the pressure on the
interface, more precisely
T € (0, L) — Do (2131, H+ U(;L'l)) .

7 Sensitivity analysis

We shall analyse the dependence of the displacement of the interface u, the velocity, the
pressure of the fluid v, p and the cost function .J on variations of the discrete control a.

7.1 Sensitivity of the displacement of the interface

Proposition 3 The applications o — u and a — c(a) are affine, where u and c(a) are
the solutions of the equation (16) with boundary conditions (2), such that (3) holds. More
precisely,
U= uot Y oy
c(@) co + D imy @ic



where ug, co verify

w'a) = 5 (f5@)
L w0 = uo(l)=ug(0) =uo (L) = (19)
fO Uo(:l?l)dilfl = 0

and u;, ¢; verify

u(zy) = % (¢i(x1) + i) s le € (0,L)
L w0 = wil)=uw(0)=w (L) =0 (20)
fO U,‘(ZE1) d£E1 = 0.

Proof. According to Proposition 2, the systems (19) and (20) have unique solutions. By
addition, we obtain

(uo + Zaiu,) (z1) = % (fs(xl) + Zaigi),-(xl) +co + Za,-c,-) .
i=1

i=1 i=1

Also, the application z1 — (ug + Y .-, au;) (x1) verifies the boundary conditions (2) and

fOL (wo + Y ;v au;) (21) dzy = 0. From the Proposition 2 and the definition of u and c¢(w)
by (16), (2), (3), we obtain the conclusion. O

7.2 Sensitivity of the velocity and the pressure of the fluid

In order to study the sensitivity of the velocity and the pressure of the fluid we follow [13]
where the Arbitrary Lagrangian Eulerian (ALE) coordinates have been used.

We denote by Q" = (0, L) x (0, H) the reference domain and by 'y = (0, L) x {H} its top
boundary. For each u € Uyq we consider the following one-to-one continuous differentiable
transformation T}, : QF — QF given by:

PO o H+u(z) ..
T, (z1,72) = (%%m)

which admits the continuous differentiable inverse mapping

_ Hzo
Tt = _—
w (:L'laxQ) <$1,H+U(§U1)>

and verifies that T, () = QL, T, (Ty) =Ty, and T, (Z) = T, VZ € X.

We set x = T, (%) for each x = (z1,22) € QF and X = (7,,72) € QF.

We denote by v(X) = v (T (X)) and p(X) = p (T (X)) the velocity and the pressure in the
reference domain Qf.

In order to pose the variational formulation in the reference configuration let us consider
the following Hilbert spaces:

W= (H(QF)
Q = L*(f)/Rr

equipped with their usual inner products. We introduce the forms

ap R x (H (D) x (HY () >R bp:R™ x (H () xQ - R



2

~ ~ A~ _ H +u (Z/U\l) 8@ 8@ u' (:/U\l)i/fz 8@ 8@1 ~
i (@9, W) = Z /Qg ( H 02, 0% H 05,05, ) &
N ZZ: / W ()T 00; 00 H? + (u/ Gl To)° 00; 0 i
Qg‘ H 8331 a:l?g H(H‘FU(ZEl)) a:l?g 8332
B (o 9,4 _/ (Ata@in @500 00)
QF

H 0T H 0z, 07

We assume that the volume forces in fluid are constant £¥° = (ff', )7 € R?> and we
consider f¥ (o) € W' defined by

2 ~

~ H N - o~

(i (@), @) =Y HAu@) erp az, v e W,
i—1 7 Qf H

We remark that the displacement u which appears in the coefficients depends on a.

The problem: find v € (H* (QOF))Z, Vg =g, Vlr, =0,p € Q such that

ar (0,9, %) +bp (0, %,5) = (7 (@), W), vweW )
bF(OQ{’\aE]\) = 07 VE]\EQ

has a unique solution.
The problem (21) is obtained from (15) and conversely by using the one-to-one transfor-
mations 7T, and 7,;!. The equivalence of (21) and (15) follows from the transport theorems

in continuum mechanics (see [23]), the chain rule and basic results for Sobolev spaces (see

[24]). The conclusion of this proposition is a consequence of the existence and uniqueness of
(15).

Let v, w be given in (H1 (Q{f))z and q in @ Then functions from R™ to R defined by

are differentiable and the partial derivatives have the forms:

dar , . . < ug (21) 00; Ow;  ul (1) To O0; O\
By VW) = ;/QF< H 0308  H 0 a@)dx
2 ) A~
_up (Z1) @2 Ov; 0w, \
+ ;/Qg‘ H 8331 8332 dx
2
2uj, (31) u' (31) (32)° 00; 0; | o
d
+ ;/Qg‘ ( H +U :Ul)) a:l?g aél?g x
. Z / —u @) (B + (' (@) 52)) a5, 0m, -
— — X
& Jog H+u(x1>>2 072 0%
bp L up (T1) 0wy uy (T1) To 0wy .
Oay, (@, %,9) o /QF < H 07, H OTs qdx

o /a R up (81) ,p~
aT.ék <fF (Oé) ,W> — ;/Qg H fz w; dx.



This above result is a consequence of the differentiability of integrals with respect to
parameters. In our case the parameter is a. Applying the Implicit Function Theorem, we
obtain the following result.

The applications o € lRm — Vv E (H1 (QF))2 and o« € R™ — p € @ are differentiables
and the partial derivatives 5~ - € W and 5= - € Q verify

ar (0, 22, %) + b (o A,;Tp) = 52 (1 (), %) - 22 (0,9, %) — & (, %, ),
br (a,%;@ = _ng; (a,v,q)
(22)

for all W in W and for all § in Q.

7.3 Sensitivity of the cost function
If po € H* () such that fOLpO (v1, H +u(z1)) dry = 0, then fOL po (z1, H) dx; = 0, where
Po = po o T,,. Also, we have fOL % (z1,H) dr; = 0.

The application o € R™ — J(a) is differentiable and the partial derivatives 8—Jk(a) have

Oa
the forms:

L L .
2\/0 <¢)k .’L’l / std Ir1] — gpo ;ljl, > (Zat ((ZSZ .’L’l / %d;l'}l) _1/)\0 (ZUl,H)) dl’l

(23)

8 Numerical results

We are interested in simulating the blood flow through medium vessels (arteries). The com-
putation has been made in a domain of length L = 3 ¢m and height H = 0.5 ¢m which
represents a half width of the vessel. In this case, the fluid is the blood and the structure is
the wall of the vessel.

The numerical values of the following physical parameters have been taken from [1]. The

viscosity of the blood was taken to be u = 0.035 —Z—, its density pf =1 -4, The thlckness
of the vessel is h = 0.1 ¢m, the Young modulus E= 0 75 108 4, the den51ty p° =11 3.
The gravitational acceleration is go = 981 <z and the averaged volume force of the
structure is f°(z1) = —goph.
On the rigid boundary, we impose the following boundary conditions:
2
vi(z1,22) = { ( B %) Vo, (1,22) € 31 U5
VO’ ($17$2) € E2
’Uz(iL“l,iL“z) = 0, (:Ul,élﬁz) D))

where Vo = 30 <2 (see [25]). The volume force in fluid is £¥ = (0, —gop™)”.

The numerical tests have been produced using freefem++ v1.27 (see [26]).

For the fluid we have used the Mixed Finite Element Method, P2 Lagrange triangles for
the velocity and P1 for the pressure.

10



8.1 Optimization without using the derivative

Numerical test 1.

We use the same notations as in the previous sections, in particular m and ¢; refer to the
equation (16). We set m = 1 and ¢, (1) = x; — L/2. In this case ¢y = gop°h, uop =0, ¢; =0
and
23 (L—21)” (w1 — L/2)

240D ’
We remark that the displacement of the interface is computed exactly.

We have evaluated the cost function for equidistant points of step length 0.5 in the interval
[-20, 5]. For each ay, we generate a mesh for Q" where the displacement u depends on a; .
A typical mesh of 198 triangles and 128 vertices is shown below.

ur(xy) = u(z1) = arug(xq).

Figure 2: A typical mesh

The condition (4) was not violated. Then, we solve the Stokes equations (15) on this
mesh.

600

" J(alpha1)

Figure 3: The cost function

The graph a; — J(ay) seems to be strictly convex, consequently the optimal control is
unique (see Figure 3). The cost function has the value J = 158.76 for @; = 0. The minimal
value of the cost function J = 3.04 was obtained for a; = —7.

H+10*u(x)
H

Figure 4: The displacement of the vessel magnified by 10
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The displacement of the vessel is very small, so the behavior of the blood flow is like the
Poiseuille flow.

alphal’phi1(x)
PO(.H+U()

Figure 5: The optimal control a; ¢ (z1) and the optimal observation po(z1, H + u(z1))

The optimal control is —7 and the pressure on the interface can be approached by —7(x1 —
L/2) + gop°h. The pressure difference between the outflow (right) and inflow (left) is —7L.

If we take the averaged volume forces in the vessel of the form fs(:vl) = 2}‘1‘2/0 1 —p°goh
we obtain the Poiseuille flow for the blood. The pressure on the interface in this case is
p(x1, H) = —21“{‘2/0 x1 + gop°h where —21‘}‘2/0 = —8.4 and the pressure difference between the
outflow and inflow is —8.4L, so there is a lose of the pressure. The displacement of the
interface is consequent: the shape of the vessel is inflow at the left and outflow at the right
(see Figure 4). In Figure 5 we observe the difference between the optimal control and the
optimal observation. In the fixed point approach, the two graphs must be identical.

If the condition (4) is violated, we have

inf {H + =0
o A +u ()}

and we say that the vessel is collapsed. Numerical results for this case are presented in [27].

8.2 The BFGS algorithm

The BFGS algorithm is a quasi-Newton iterative method for solving unconstrained optimiza-
tion problem inf {J(a); o € R™}.

Step 0 Choose a starting point a® € R™, an m x m symmetric positive matrix Hy and a
positive scalar €. Set £ = 0.

Step 1 Compute V.J(a*).

Step 2 If ||V.J(a")| < € stop.

Step 3 Set d¥ = —H,VJ(a*).

Step 4 Determine oft! = o* + 6,d*, 6;, > 0 by means of an approximate minimization

F+1Y i ko gdky.
J(a"T) Ienzng(oz + 6d")

Step 5 Compute 0 = aft1 — oF.
Step 6 Compute VJ(a**1) and v, = VJ(a*+1) — VJ(ak).

Step 7 Compute

Hiy1 = He + (1 + 71?Hk7k> L] N Ouye Hi + Hidy

op vk ) Ofk OF Yk
Step 8 Update k = k + 1 and go to the Step 2.

12



For the inaccurate line search at the Step 4, the methods of Goldstein and Armijo were
used. If we denote by g : [0,00) — R the function g(¢) = J(a* + 6d*), we determine 6 > 0
such that

9(0) + (1 = ) 8kg'(0) < g(Bk) < g(0) + Mg’ (0) (24)
where A € (0,1/2).
In the BGSF algorithm, we have used (21) which is the ALE version of the Stokes equations

in the reference domain in order to compute the cost function and we have used (22) and (23)
in order to compute V.J(a).

Remark 2 In order to compute V.J(a) by (22) and (23), we have to solve m linear systems
which have the same matriz. The linear systems were solved by LU decomposition. We observe
that (21) and (22) have the same left-hand side, so when we compute VJ(a) we can use the
same LU decomposition obtained computing J(a) by (21).

We could compute V.J(a) by the Finite Differences Method

ﬂ(a) _ Ja+Aagex) — J(a)
8ak = Aak

(25)

where ey is the k-th vector of the canonical base of R™ and Acay > 0 is the grid spacing. In
this case, the cost function J need to be evaluated in each o + Aagex, k = 1,...,m. We
have to solve m linear systems obtained from (21), but the matrices are different, so using
the analytic formula of the gradient (22) is more advantageous.

Numerical test 2.

We have performed the numerical test in the case m = 1 and ¢, (z1) = 21 — L/2.

In the table below, we show the gradient of the cost function computed by (22) and (23),
respectively by the Finite Differences Method (25) with Aa; = 0.5, which proves the validity
of the analytic formula.

oy | VJ(a1) using (22) and (23) | VJ(a1) using Finite Differences (25)
-20 -77.88 -76.50
-15 -47.55 -46.09
-10 -17.22 -15.70
-5 13.13 14.63
0 43.49 45.03
5 73.87 72.40

The starting point for the BFGS algorithm is a; = 0 and the stopping criteriais ||V ||, <
1075,

Iterations ay J(ar) | [IVJ(a)ll
0 0 158.70 43.49
1 -43.49 | 4003.66 -220.03
2 -7.17907 | 2.95985 -0.100582
3 -7.16247 | 2.95899 | 0.000232724
4 -7.1625 | 2.95899 | -2.53259e-10

The condition (4) was not violated. The minimal value of the cost function J = 2.95899
was obtained for a; = —7.1625, after 5 iterations. The line search algorithm for the ap-
proximate minimization at the Step 4 was not activated, we take 8 = 1. The computed
displacements of the vessel are almost the same as in the Figure 4. If we activate the line
search algorithm and we set to 3 the maximal number of evaluation of the cost function at
the Step 4, we obtain af =0, af = —7.17207, o} = —7.16251, a3 = —7.16249, af = —7.1625.

13



Numerical test 3.

We take m = 4. Let § = (i — 1)L/(m — 1) for 1 < i < m be an uniform grid of [0, L].
For each i = 1,...,m, there exists a unique ¢; polynomial function of degree 3, such that
¢i(&;) = 6;5, where §;; is the Kronecker’s symbol. The functions ¢; are not necessary the
same as the trace on the interface of the pressure finite element functions. Other choice for
¢; could be the vibration modes of the beam equations.

Let u;, ¢; be the solutions of (20). We have computed u;, ¢; exactly, using the software
Mathematica. The displacements u; are polynomial functions of degree 7.

The fluid equations were solved in the reference mesh shown in Figure 2.

The starting point for the BEGS algorithm is o = 0 and the stopping criteria is ||V 7|, <
1079, The analytic formula of the gradient was employed.

Iterations J IVJl
0 158.70 21.29
1 42.88 3.51
2 20.39 2.38
3 0.168155 0.30
4 0.165842 | 0.008
) 0.165653 | 2.5e-7

Five iterations are required to achieve [|[V.7]|,, < 107% and the obtained discrete optimal
control is

(ar, a2, s, o) = (13.2723413, 2.89419278, —2.704038443, —13.46249563).

The optimal value of the cost function for m = 4 is J = 0.165653 which is less than
J = 2.95899 in the case m = 1.

Figure 6: The optimal control function 221 Q; (gzﬁi (z1) — %fOL o; (wl)dwl) and the optimal
observation po(z1, H + u(x1))

Figure 7: The displacement [em] of the vessel magnified by a factor 20 and the velocity [em/s]
reduced by a factor 100

The displacement of the vessel is very small, it is less than 0.04 em. The computed velocity
distribution is similar to a Poiseuille flow (see Figure 7).
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9 Conclusions

Using the Least Squares Method and the Arbitrary Lagrangian Eulerian coordinates, a two di-
mensional steady fluid structure interaction problem was transformed into an optimal control
problem.

The BFGS algorithm has given satisfactory numerical results even when a reduced number
of discrete controls were used. The analytic formula of the gradient was employed. Compu-
tational results reveal that the displacement of the interface is very small when the velocity
profile is parabolic at the inflow and outflow.

We have obtained a smaller optimal value by increasing the number of the controls and
by changing the shape of the control functions.

In a forthcoming paper, the techniques used here will be adapted to the unsteady fluid-
structure interaction problems. The vibration modes of the structure will be the control shape
functions.
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