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tionIn this paper we 
onsider a two dimensional 
uid stru
ture intera
tion. The mathemati
almodel whi
h governs the 
uid is the steady Stokes equations, while the stru
ture veri�es thebeam equation whi
h does not involve shearing stress. The solution of the model is given bythe displa
ement of the stru
ture, the velo
ity and the pressure of the 
uid. The boundary ofthe 
uid admits the following de
omposition: a moving part, whi
h represents the interfa
ebetween the 
uid and the stru
ture, and a rigid part. This kind of problem is of 
onsiderableinterest in the simulation of blood 
ow in large arteries (see [1℄, [2℄, [3℄) or in aeroelasti
ity(see [4℄).The existen
e results for the 
uid stru
ture intera
tion 
an be found in [5℄, [6℄ for thesteady 
ase and in [7℄, [8℄, [9℄ for the unsteady 
ase.Sensitivity analysis of a 
oupled 
uid stru
ture system was investigated in [10℄.The asymptoti
 limit when the 
uid domain width approa
hes to zero 
an be modeled bya one dimensional model of Stokes equation, widely used in lubri
ation theory (see [11℄).In a previous work ([12℄), a three dimensional 
uid stru
ture intera
tion was formulatedas an optimal 
ontrol system, where the 
ontrol is the for
e a
ting on the interfa
e and theobservation is the velo
ity of the 
uid on the interfa
e. The 
uid equations were solved takinginto a

ount a given surfa
e for
e on the interfa
e.A similar approa
h was used in [13℄, where it was proved that the 
ost fun
tion is di�er-entiable. The analyti
 
omputation of the gradient for the 
ost fun
tion is important be
auseit enables us to apply a

urate numeri
al methods (see [14℄). The exa
t gradient of the 
ostfun
tion is 
omputed in [13℄.Numeri
al results for a two dimensional 
uid stru
ture intera
tion using the optimal 
on-trol method are presented in [15℄. The 
uid equations are solved subje
t to the 
onditions ofzero normal velo
ity and a given value of pressure on the interfa
e. The 
ontrol is the valueof the pressure at the interfa
e and the observation is the tangential velo
ity on the interfa
e.1



The most frequently, the 
uid-stru
ture intera
tion problems are solved numeri
ally bypartitioned pro
edures, i.e. the 
uid and the stru
ture equations are solved separately, whi
henables us to use the existing solvers for ea
h sub-problem.This 
an be done using �xed point strategies with eventually a relaxation parameter, butthese methods do not always 
onverge or they have slow 
onvergen
e rate [16℄, [17℄, [1℄. The
onvergen
e 
an be a

elerated using Aitken's method [2℄ or transpiration 
ondition [18℄.Other way to a

elerate the 
onvergen
e is to use methods whi
h employ the derivative. In[19℄ a blo
k Newton algorithm was used where the derivative of the operators are approa
hedby �nite di�eren
es. Good 
onvergen
e rate was obtained in [2℄ where the derivative of theoperator was repla
ed by a simpler operator. At ea
h time step, a quasi-Newton algorithmwas used to solve a 
uid-stru
ture intera
tion problem. The mean number of iterations of thequasi-Newton algorithm is 6.1. With the Aitken a

eleration method this number is 24.1. Atea
h iteration, a Stokes and a Lapla
ian problems were solved in the 
urrent 
uid domain.In the present work, a 
uid stru
ture intera
tion problem was formulated as an optimal
ontrol system, where the 
ontrol is the for
e a
ting on the interfa
e and the observation isthe pressure on the interfa
e. The boundary 
ondition to be imposed on the 
uid is that all
omponents of the velo
ity are zero at the interfa
e.To solve numeri
ally the optimal 
ontrol problem, we use a quasi Newton method whi
hemploys the analyti
 gradient of the 
ost fun
tion and the approximation of the inverse Hessianis updated by the Broyden, Flet
her, Goldforb, Shano (BFGS) s
heme. This algorithm isfaster than �xed point with relaxation or blo
k Newton methods whi
h represents the mainadvantage of using the optimal 
ontrol approa
h for 
uid-stru
ture intera
tion problem. The�nite element fun
tions of the normal stresses at the interfa
e are not ne
essary the same asthe tra
e on the interfa
e of the pressure �nite element fun
tions. This is another advantageby 
omparison with the �xed point approa
h.An outline of the paper is as follows. First, we prove that the normal for
e a
ting onthe stru
ture depends only on the pressure. Then, an exa
t solution for a parti
ular 
uidstru
ture intera
tion is given. Using the Least Square Method, the 
uid stru
ture intera
tionwill be reformulated as an optimal 
ontrol problem. We will analyse the dependen
e of thedispla
ement of the interfa
e, the velo
ity, the pressure of the 
uid and the 
ost fun
tion onvariations of the dis
rete 
ontrol. Finally, numeri
al results are presented.2 NotationsLet L and H be two positive 
onstants. We de�ne the setUad = �u 2 C1 ([0; L℄) ; u (0) = u (L) = u0 (0) = u0 (L) = 0;R L0 u(x1) dx1 = 0; infx12[0;L℄ fH + u (x1)g > 0owhere u0 is the �rst derivative of u.6
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Figure 1: Sets appearing in the 
uid-stru
ture problem2



For ea
h u 2 Uad, we introdu
e the notations (see Figure 1)
Fu = �(x1; x2) 2 R2 ; x1 2 (0; L); 0 < x2 < H + u (x1)	 ;�u = �(x1; x2) 2 R2 ; x1 2 (0; L); x2 = H + u (x1)	 :Also, we denote �1 = �(0; x2) 2 R2 ; x2 2 (0; H)	�2 = �(x1; 0) 2 R2 ; x1 2 (0; L)	�3 = �(L; x2) 2 R2 ; x2 2 (0; H)	 :The two-dimensional domain o

upied by the 
uid is 
Fu , the interfa
e between the 
uidand the stru
ture is �u, while � = �1 [ �2 [ �3 represents the rigid boundary of the 
uid.In the following, we denote by n = (n1; n2)T the unit outward normal ve
tor and by� = (�1; �2)T = (�n2; n1)T the unit tangential ve
tor to �
Fu .3 Position of the problemWe suppose that the 
uid is governed by the steady Stokes equations, while the deformationof the elasti
 part of the boundary veri�es a parti
ular beam equation whi
h does not involveshearing stress (see [20℄). We 
onsider that the stru
ture is a beam of axis parallel to Ox1with 
onstant thi
kness h. We assume that the displa
ement of the beam is normal to itsaxis.The problem is to �nd:� u : [0; L℄! R the displa
ement of the stru
ture,� v = (v1; v2)T : 
Fu ! R2 the velo
ity of the 
uid and� p : 
Fu ! R the pressure of the 
uid,su
h that u0000(x1) = 1D �fS(x1) + p (x1; H + u(x1))� ; 8x1 2 (0; L) (1)u (0) = u (L) = u0 (0) = u0 (L) = 0 (2)Z L0 u(x1) dx1 = 0 (3)0 < infx12[0;L℄ fH + u (x1)g (4)���v +rp = fF ; in 
Fu (5)div v = 0; in 
Fu (6)v = g; on � (7)v = 0; on �u (8)where� D = Eh312 is a stru
ture 
onstant, E is the Young modulus, h is the thi
kness.� fS : (0; L) ! R are the averaged volume for
es of the stru
ture, in general the gravityfor
es and in this 
ase we have fS(x1) = �g0�Sh, where g0 is the gravity, �S is thedensity of the stru
ture,� � > 0 is the vis
osity of the 
uid, 3



� fF = (fF1 ; fF2 )T : 
Fu ! R2 are the volume for
es of the 
uid, in general the gravityfor
es,� g = (g1; g2)T : �! R2 is the imposed velo
ity pro�le of the 
uid on the rigid boundary,su
h that Z� g � n d� = 0: (9)The in
ompressibility of the 
uid (6) together with the boundary 
onditions (7), (8) andthe relation (9) imply that the volume of the 
uid is 
onserved or equivalently R L0 u(x1) dx1is 
onstant. Without loss of generality, we assume that this 
onstant is zero and we obtainthe 
ondition (3).The inequality (4) states that the 
uid domain is 
onne
ted.For the Newtonian 
uids, the stress tensor � has the form� = �p I + � �rv +rvT � ;
onsequently, the 
uid for
es a
ting on the stru
ture are ��n.Proposition 1 If v 2 �H2 �
Fu ��2, p 2 H1 �
Fu �, v is 
onstant on �u, div v = 0 in 
Fu ,then � (�n) � n = p on �u.Proof. This result is a 
orollary of the Proposition 3.1 from [21℄ and it is similar to theProposition 4.5 from the same paper. We have that� (�n) � n = p� � ��rv +rvT �n� � nand rv +rvT =  2 �v1�x1 �v1�x2 + �v2�x1�v1�x2 + �v2�x1 2 �v2�x2 ! :It is follows that��rv +rvT �n� � n = 2 �v1�x1n21 + 2��v1�x2 + �v2�x1�n1n2 + 2 �v2�x2n22:In Proposition 3.1 from [21℄, it is proved that �vi�xj nk = �vi�xknj , 8i; j; k 2 f1; 2g, so� �v1�x2 + �v2�x1�n1n2 = �v1�x1n22 + �v2�x2n21 and this implies that��rv +rvT �n� � n = 2 �v1�x1 �n21 + n22�+ 2 �v2�x2 �n21 + n22� = 2div v = 0whi
h ends the proof. �Under the assumption of small displa
ement of the beam, it follows that n � (0; 1)T . Then,it is reasonable to solve the beam equation (1) under the 
uid for
es given by p (x1; H + u(x1)),x1 2 (0; L).4 Exa
t solution for a parti
ular 
aseWe assume that the density of the 
uid is 
onstant �F and the volume for
es in the 
uid havethe form fF = (0;��F g0)T , where g0 is the gravitational a

eleration. The velo
ity pro�le ofthe 
uid on the rigid boundary is given by:g1(x1; x2) = ( �1� x22H2 �V0; (x1; x2) 2 �1 [ �3V0; (x1; x2) 2 �2g2(x1; x2) = 0; (x1; x2) 2 �:4



We assume that the density of the stru
ture �S and its thi
kness h are 
onstant.We assume that the averaged volume for
es in the stru
ture have the formfS(x1) = ��Sg0 h+ 2�V0H2 x1; 8x1 2 (0; L): (10)Then, we have the following solution for the system (1){(8):u(x1) = 0; 8x1 2 (0; L)v1(x1; x2) = �1� x22H2�V0; 8(x1; x2) 2 
Fuv2(x1; x2) = 0; 8(x1; x2) 2 
Fup(x1; x2) = �Sg0 h� 2�V0H2 x1 + �F g0 (H � x2) ; 8(x1; x2) 2 
Fu :Remark 1 The term 2�V0H2 x1 in (10) is arti�
ial. It was added to obtain a solution wherethe displa
ement of the beam is null and the 
ow is Poiseuille.5 Fixed point approa
hWe start with a result 
on
erning the equations of the interfa
e.Proposition 2 For a given 
ontinuous fun
tion � : [0; L℄! R there exist a unique fun
tionu : [0; L℄! R of 
lass C4 and a unique 
onstant 
 2 R solutions ofu0000(x1) = 1D (�(x1) + 
) ; 8x1 2 (0; L) (11)with boundary 
onditions (2), su
h that the equality (3) holds.Proof. Existen
e. Let u� : [0; L℄! R be the unique solution ofu0000(x1) = 1D�(x1); 8x1 2 (0; L)with boundary 
onditions (2). The unique solution ofu0000(x1) = 1D; 8x1 2 (0; L)with boundary 
onditions (2) is x1 2 [0; L℄ 7! x21(x1�L)224D 2 R.Then, the solutions of (11) and (2) have the formu(x1) = u�(x1) + 
x21(x1 � L)224D :The equality (3) is equivalent toZ L0 u�(x1) dx1 + 
 Z L0 x21(x1 � L)224D dx1 = 0
onsequently, if we set 
 = �720DL5 Z L0 u�(x1) dx1;then the 
ondition (3) holds.Uniqueness. Let ui, 
i, i = 1; 2 be two solutions of (11), su
h that R L0 ui dx1 = 0. Bysubtra
ting, we obtain that(u1 � u2)0000(x1) = 1D (
1 � 
2) ; 8x1 2 (0; L)5



and u1 � u2 veri�es the boundary 
onditions (2). Consequently we have (u1 � u2)(x1) =(
1 � 
2) x21(x1�L)224D . Sin
e R L0 (u1 � u2)dx1 = 0, we obtain 
1 � 
2 = 0 and u1 � u2 = 0. �From the above Proposition, it follows that for a given 
ontinuous fun
tion �0 : (0; L)! R,su
h that R L0 �0(x1) dx1 = 0, we 
an solve the beam equationsu0000(x1) = 1D �fS(x1) + �0(x1) + 
� ; 8x1 2 (0; L) (12)with boundary 
onditions (2) where 
 is the real 
onstant su
h that the equality (3) holds.Let S be de�ned by S(�0) = u: (13)If 0 < infx12[0;L℄ fH + u (x1)g, we 
an solve the Stokes equations (5){(8) and we obtainv and p. The pressure is determined up to an additive 
onstant, i.e. it has the form p =p0 + C, where p0 is a parti
ular solution and C is a real 
onstant. We will take p0 su
h thatR L0 p0 (x1; H + u(x1)) dx1 = 0.We denote by F(u) the fun
tionx1 2 (0; L) 7! p0 (x1; H + u(x1)) : (14)The fun
tion F(u) is well de�ned, if the tra
e of the pressure p0 on �u exits. For this, wehave to pre
ise the regularity of the solution of Stokes equations.Let g : �
Fu ! R be de�ned by g(x) = 0 for x 2 �u and g(x) = g(x) for x 2 �.If �
Fu is Lips
hitz 
ontinuous, 
Fu is a 
onne
ted domain, fF 2 �H�1 �
Fu ��2, g 2�H1=2 ��
Fu ��2 su
h that R�
Fu g � n d� = 0, then the problem :�nd v 2 �H1 �
Fu ��2, v = g on �
Fu and p 2 L2 �
Fu � =R8>><>>: Z
Fu rv � rw dx� Z
Fu (div w) p dx = Z
Fu fF �w dx; 8w 2 �H10 �
Fu ��2� Z
Fu (div v) q dx = 0; 8q 2 L2 �
Fu � =R (15)has a unique solution.Moreover, if �
Fu is of 
lass C2, fF 2 �L2 �
Fu ��2 and g 2 �H3=2 ��
Fu ��2, then v 2�H2 �
Fu ��2 and p 2 H1 �
Fu � =R.These results 
ould be found in [22, p. 88℄.The �xed point approa
h is to �nd �0 su
h that F Æ S(�0) = �0, where S and F arede�ned by (13) and (14).The existen
e of a �xed point will not be treated here. It is important to note that if wewant to apply the S
hauder's �xed point theorem, the regularity of �0 and F ÆS(�0) must bethe same. It is not the 
ase in our framework: for �0 2 C0 (0; L), we have S(�0) = u 2 C4 (0; L)and 
onsequently F(u) 2 H1=2 (0; L). It is known that H1=2 (0; L) is not in
luded in C0 (0; L),but H1=2+� (0; L) � C0 (0; L) for � > 0. Existen
e results for related steady 
uid-stru
tureintera
tion problems 
an be found in [5℄ and [6℄.In the following, we relax the �xed point problem by the Least Squares Method and weobtain an optimization problem.
6



6 Least Squares approa
hLet �i : [0; L℄! R be some parti
ular given fun
tions and �i are the s
alar parameters to beidenti�ed, 1 � i � m.Let us 
omment the regularity and the shape of �i. We take �i 2 C0 (0; L), the 
onditionR L0 �i(x1)dx1 = 0 is not ne
essary needed. Also, the fun
tions �i are not ne
essary the samethat the tra
e on the interfa
e of the pressure �nite element fun
tions. This is an advantageby 
omparison with the �xed point approa
h.For given � = (�1; : : : ; �m), we �nd u : [0; L℄! R and 
(�) 2 R solutions ofu0000(x1) = 1D  fS(x1) + mXi=1 �i�i(x1) + 
(�)! ; 8x1 2 (0; L) (16)with boundary 
onditions (2), su
h that (3) holds.The next step is to solve the Stokes equations in the domain 
Fu and we obtain v and p.We assume that p 2 H1 �
Fu � and we set p0 = p� 1L R L0 p (x1; H + u(x1)) dx1. It follows thatZ L0 p0 (x1; H + u(x1)) dx1 = 0: (17)Let J : Rm ! R be de�ned byJ (�) = Z L0  mXi=1 �i �i(x1)� 1L Z L0 �i(x1)dx1!� p0 (x1; H + u(x1))!2 dx1:Now, the problem is to �nd � 2 Rm solution of8>>>><>>>>: inf J (�)u solution of (16 ); (2 ); (3 );u veri�es (4 );v; p0 solution of (5 )� (8 );p0 veri�es (17 ): (18)In other words, we try to �nd a solution of the system (1){(8) su
h thatp (x1; H + u(x1)) � mXi=1 �i�i(x1) + 
(�); 8x1 2 (0; L)where � 2 Rm and p(x1; x2) = p0(x1; x2) +Pmi=1 �iL R L0 �i(x1)dx1 + 
(�), for (x1; x2) 2 
Fu .The dis
rete 
ontrol is � 2 Rm and the observation is the tra
e of the pressure on theinterfa
e, more pre
isely x1 2 (0; L)! p0 (x1; H + u(x1)) :7 Sensitivity analysisWe shall analyse the dependen
e of the displa
ement of the interfa
e u, the velo
ity, thepressure of the 
uid v, p and the 
ost fun
tion J on variations of the dis
rete 
ontrol �.7.1 Sensitivity of the displa
ement of the interfa
eProposition 3 The appli
ations � ! u and � ! 
(�) are aÆne, where u and 
(�) arethe solutions of the equation (16) with boundary 
onditions (2), su
h that (3) holds. Morepre
isely, u = u0 +Pmi=1 �iui
(�) = 
0 +Pmi=1 �i
i7



where u0, 
0 verify8<: u00000 (x1) = 1D �fS(x1) + 
0� ; 8x1 2 (0; L)u0 (0) = u0 (L) = u00 (0) = u00 (L) = 0R L0 u0(x1) dx1 = 0 (19)and ui, 
i verify 8<: u0000i (x1) = 1D (�i(x1) + 
i) ; 8x1 2 (0; L)ui (0) = ui (L) = u0i (0) = u0i (L) = 0R L0 ui(x1) dx1 = 0: (20)Proof. A

ording to Proposition 2, the systems (19) and (20) have unique solutions. Byaddition, we obtain u0 + mXi=1 �iui!0000 (x1) = 1D  fS(x1) + mXi=1 �i�i(x1) + 
0 + mXi=1 �i
i! :Also, the appli
ation x1 7! (u0 +Pmi=1 �iui) (x1) veri�es the boundary 
onditions (2) andR L0 (u0 +Pmi=1 �iui) (x1) dx1 = 0. From the Proposition 2 and the de�nition of u and 
(�)by (16), (2), (3), we obtain the 
on
lusion. �7.2 Sensitivity of the velo
ity and the pressure of the 
uidIn order to study the sensitivity of the velo
ity and the pressure of the 
uid we follow [13℄where the Arbitrary Lagrangian Eulerian (ALE) 
oordinates have been used.We denote by 
F0 = (0; L)� (0; H) the referen
e domain and by �0 = (0; L)�fHg its topboundary. For ea
h u 2 Uad we 
onsider the following one-to-one 
ontinuous di�erentiabletransformation Tu : 
F0 ! 
Fu given by:Tu (bx1; bx2) = �bx1; H + u (bx1)H bx2�whi
h admits the 
ontinuous di�erentiable inverse mappingT�1u (x1; x2) = �x1; Hx2H + u (x1)�and veri�es that Tu �
F0 � = 
Fu , Tu (�0) = �u and Tu (bx) = bx, 8bx 2 �.We set x = Tu (bx) for ea
h x = (x1; x2) 2 
Fu and bx = (bx1; bx2) 2 
F0 .We denote by bv(bx) = v (Tu(bx)) and bp(bx) = p (Tu(bx)) the velo
ity and the pressure in thereferen
e domain 
F0 .In order to pose the variational formulation in the referen
e 
on�guration let us 
onsiderthe following Hilbert spa
es: 
W = �H10 �
F0 ��2bQ = L2 �
F0 � =Requipped with their usual inner produ
ts. We introdu
e the formsbaF : Rm � �H1 �
F0 ��2 � �H1 �
F0 ��2 ! R bbF : Rm � �H1 �
F0 ��2 � bQ! R8



de�ned bybaF (�; bv; bw) = 2Xi=1 Z
F0 �H + u (bx1)H �bvi�bx1 � bwi�bx1 � u0 (bx1) bx2H �bvi�bx2 � bwi�bx1� dbx+ 2Xi=1 Z
F0  �u0 (bx1) bx2H �bvi�bx1 � bwi�bx2 + H2 + (u0 (bx1) bx2)2H (H + u (bx1)) �bvi�bx2 � bwi�bx2! dbx;bbF (�; bw; bq) = � Z
F0 �H + u (bx1)H � bw1�bx1 � u0 (bx1) bx2H � bw1�bx2 + � bw2�bx2 � bq dbx:We assume that the volume for
es in 
uid are 
onstant fF = (fF1 ; fF2 )T 2 R2 and we
onsider bfF (�) 2 
W 0 de�ned byDbfF (�) ; bwE = 2Xi=1 Z
F0 H + u (bx1)H fFi bwi dbx; 8bw 2 
W:We remark that the displa
ement u whi
h appears in the 
oeÆ
ients depends on �.The problem: �nd bv 2 �H1 �
F0 ��2, bvj� = g, bvj�0 = 0, bp 2 bQ su
h that( baF (�; bv; bw) +bbF (�; bw; bp) = DbfF (�) ; bwE ; 8bw 2 
WbbF (�; bv; bq) = 0; 8bq 2 bQ (21)has a unique solution.The problem (21) is obtained from (15) and 
onversely by using the one-to-one transfor-mations Tu and T�1u . The equivalen
e of (21) and (15) follows from the transport theoremsin 
ontinuum me
hani
s (see [23℄), the 
hain rule and basi
 results for Sobolev spa
es (see[24℄). The 
on
lusion of this proposition is a 
onsequen
e of the existen
e and uniqueness of(15).Let bv, bw be given in �H1 �
F0 ��2 and bq in bQ. Then fun
tions from Rm to R de�ned by� 7�! baF (�; bv; bw)� 7�! bbF (�; bw; bq)� 7�! DbfF (�) ; bwEare di�erentiable and the partial derivatives have the forms:�baF��k (�; bv; bw) = 2Xi=1 Z
F0 �uk (bx1)H �bvi�bx1 � bwi�bx1 � u0k (bx1) bx2H �bvi�bx2 � bwi�bx1� dbx+ 2Xi=1 Z
F0 ��u0k (bx1) bx2H �bvi�bx1 � bwi�bx2� dbx+ 2Xi=1 Z
F0  2u0k (bx1)u0 (bx1) (bx2)2H (H + u (bx1)) �bvi�bx2 � bwi�bx2! dbx+ 2Xi=1 Z
F0 0��uk (bx1)�H2 + (u0 (bx1) bx2)2�H (H + u (bx1))2 �bvi�bx2 � bwi�bx21A dbx�bbF��k (�; bw; bq) = � Z
F0 �uk (bx1)H � bw1�bx1 � u0k (bx1) bx2H � bw1�bx2 � bq dbx���k DbfF (�) ; bwE = 2Xi=1 Z
F0 uk (bx1)H fFi bwi dbx:9



This above result is a 
onsequen
e of the di�erentiability of integrals with respe
t toparameters. In our 
ase the parameter is �. Applying the Impli
it Fun
tion Theorem, weobtain the following result.The appli
ations � 2 Rm 7! bv 2 �H1 �
F0 ��2 and � 2 Rm 7! bp 2 bQ are di�erentiablesand the partial derivatives �bv��k 2 
W and �bp��k 2 bQ verify8<: baF ��; �bv��k ; bw�+bbF ��; bw; �bp��k � = ���k DbfF (�) ; bwE� �baF��k (�; bv; bw)� �bbF��k (�; bw; bp) ;bbF ��; �bv��k ; bq� = � �bbF��k (�; bv; bq) (22)for all bw in 
W and for all bq in bQ.7.3 Sensitivity of the 
ost fun
tionIf p0 2 H1 �
Fu � su
h that R L0 p0 (x1; H + u(x1)) dx1 = 0, then R L0 bp0 (x1; H) dx1 = 0, wherebp0 = p0 Æ Tu. Also, we have R L0 �bp0��k (x1; H) dx1 = 0.The appli
ation � 2 Rm 7! J(�) is di�erentiable and the partial derivatives �J��k (�) havethe forms:2 Z L0  �k(x1)� Z L0 �kL dx1 � �bp0��k (x1; H)! mXi=1 �i �i(x1)� Z L0 �iL dx1!� bp0 (x1; H)! dx1(23)8 Numeri
al resultsWe are interested in simulating the blood 
ow through medium vessels (arteries). The 
om-putation has been made in a domain of length L = 3 
m and height H = 0:5 
m whi
hrepresents a half width of the vessel. In this 
ase, the 
uid is the blood and the stru
ture isthe wall of the vessel.The numeri
al values of the following physi
al parameters have been taken from [1℄. Thevis
osity of the blood was taken to be � = 0:035 g
m�s , its density �F = 1 g
m3 . The thi
knessof the vessel is h = 0:1 
m, the Young modulus E = 0:75 �106 g
m�s2 , the density �S = 1:1 g
m3 .The gravitational a

eleration is g0 = 981 
ms2 and the averaged volume for
e of thestru
ture is fS(x1) = �g0�Sh.On the rigid boundary, we impose the following boundary 
onditions:v1(x1; x2) = ( �1� x22H2 �V0; (x1; x2) 2 �1 [ �3V0; (x1; x2) 2 �2v2(x1; x2) = 0; (x1; x2) 2 �where V0 = 30 
ms (see [25℄). The volume for
e in 
uid is fF = (0;�g0�F )T .The numeri
al tests have been produ
ed using freefem++ v1.27 (see [26℄).For the 
uid we have used the Mixed Finite Element Method, P2 Lagrange triangles forthe velo
ity and P1 for the pressure. 10



8.1 Optimization without using the derivativeNumeri
al test 1.We use the same notations as in the previous se
tions, in parti
ular m and �i refer to theequation (16). We set m = 1 and �1(x1) = x1 �L=2. In this 
ase 
0 = g0�Sh, u0 = 0, 
1 = 0and u1(x1) = x21 (L� x1)2 (x1 � L=2)240D ; u(x1) = �1u1(x1):We remark that the displa
ement of the interfa
e is 
omputed exa
tly.We have evaluated the 
ost fun
tion for equidistant points of step length 0:5 in the interval[�20; 5℄. For ea
h �1, we generate a mesh for 
Fu , where the displa
ement u depends on �1.A typi
al mesh of 198 triangles and 128 verti
es is shown below.
Figure 2: A typi
al meshThe 
ondition (4) was not violated. Then, we solve the Stokes equations (15) on thismesh.
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Figure 3: The 
ost fun
tionThe graph �1 ! J(�1) seems to be stri
tly 
onvex, 
onsequently the optimal 
ontrol isunique (see Figure 3). The 
ost fun
tion has the value J = 158:76 for �1 = 0. The minimalvalue of the 
ost fun
tion J = 3:04 was obtained for �1 = �7.
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Figure 4: The displa
ement of the vessel magni�ed by 1011



The displa
ement of the vessel is very small, so the behavior of the blood 
ow is like thePoiseuille 
ow.
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Figure 5: The optimal 
ontrol �1�1(x1) and the optimal observation p0(x1; H + u(x1))The optimal 
ontrol is �7 and the pressure on the interfa
e 
an be approa
hed by �7(x1�L=2) + g0�Sh. The pressure di�eren
e between the out
ow (right) and in
ow (left) is �7L.If we take the averaged volume for
es in the vessel of the form fS(x1) = 2�V0H2 x1 � �Sg0 hwe obtain the Poiseuille 
ow for the blood. The pressure on the interfa
e in this 
ase isp(x1; H) = � 2�V0H2 x1 + g0�Sh where � 2�V0H2 = �8:4 and the pressure di�eren
e between theout
ow and in
ow is �8:4L, so there is a lose of the pressure. The displa
ement of theinterfa
e is 
onsequent: the shape of the vessel is in
ow at the left and out
ow at the right(see Figure 4). In Figure 5 we observe the di�eren
e between the optimal 
ontrol and theoptimal observation. In the �xed point approa
h, the two graphs must be identi
al.If the 
ondition (4) is violated, we haveinfx12[0;L℄ fH + u (x1)g = 0and we say that the vessel is 
ollapsed. Numeri
al results for this 
ase are presented in [27℄.8.2 The BFGS algorithmThe BFGS algorithm is a quasi-Newton iterative method for solving un
onstrained optimiza-tion problem inf fJ(�); � 2 Rmg.Step 0 Choose a starting point �0 2 Rm , an m�m symmetri
 positive matrix H0 and apositive s
alar �. Set k = 0.Step 1 Compute rJ(�k).Step 2 If 

rJ(�k)

 < � stop.Step 3 Set dk = �HkrJ(�k).Step 4 Determine �k+1 = �k + �kdk, �k > 0 by means of an approximate minimizationJ(�k+1) � min��0 J(�k + �dk):Step 5 Compute Æk = �k+1 � �k.Step 6 Compute rJ(�k+1) and 
k = rJ(�k+1)�rJ(�k).Step 7 ComputeHk+1 = Hk +�1 + 
Tk Hk
kÆTk 
k � ÆkÆTkÆTk 
k � Æk
Tk Hk +Hk
kÆTkÆTk 
kStep 8 Update k = k + 1 and go to the Step 2.12



For the ina

urate line sear
h at the Step 4, the methods of Goldstein and Armijo wereused. If we denote by g : [0;1)! R the fun
tion g(�) = J(�k + �dk), we determine �k > 0su
h that g(0) + (1� �) �kg0(0) � g(�k) � g(0) + ��kg0(0) (24)where � 2 (0; 1=2).In the BGSF algorithm, we have used (21) whi
h is the ALE version of the Stokes equationsin the referen
e domain in order to 
ompute the 
ost fun
tion and we have used (22) and (23)in order to 
ompute rJ(�).Remark 2 In order to 
ompute rJ(�) by (22) and (23), we have to solve m linear systemswhi
h have the same matrix. The linear systems were solved by LU de
omposition. We observethat (21) and (22) have the same left-hand side, so when we 
ompute rJ(�) we 
an use thesame LU de
omposition obtained 
omputing J(�) by (21).We 
ould 
ompute rJ(�) by the Finite Di�eren
es Method�J��k (�) � J(�+��kek)� J(�)��k (25)where ek is the k-th ve
tor of the 
anoni
al base of Rm and ��k > 0 is the grid spa
ing. Inthis 
ase, the 
ost fun
tion J need to be evaluated in ea
h � + ��kek, k = 1; : : : ;m. Wehave to solve m linear systems obtained from (21), but the matri
es are di�erent, so usingthe analyti
 formula of the gradient (22) is more advantageous.Numeri
al test 2.We have performed the numeri
al test in the 
ase m = 1 and �1(x1) = x1 � L=2.In the table below, we show the gradient of the 
ost fun
tion 
omputed by (22) and (23),respe
tively by the Finite Di�eren
es Method (25) with ��1 = 0:5, whi
h proves the validityof the analyti
 formula.�1 rJ(�1) using (22) and (23) rJ(�1) using Finite Di�eren
es (25)-20 -77.88 -76.50-15 -47.55 -46.09-10 -17.22 -15.70-5 13.13 14.630 43.49 45.035 73.87 72.40The starting point for the BFGS algorithm is �1 = 0 and the stopping 
riteria is krJ k1 �10�6. Iterations �1 J(�1) krJ(�1)k10 0 158.70 43.491 -43.49 4003.66 -220.032 -7.17907 2.95985 -0.1005823 -7.16247 2.95899 0.0002327244 -7.1625 2.95899 -2.53259e-10The 
ondition (4) was not violated. The minimal value of the 
ost fun
tion J = 2:95899was obtained for �1 = �7:1625, after 5 iterations. The line sear
h algorithm for the ap-proximate minimization at the Step 4 was not a
tivated, we take �K = 1. The 
omputeddispla
ements of the vessel are almost the same as in the Figure 4. If we a
tivate the linesear
h algorithm and we set to 3 the maximal number of evaluation of the 
ost fun
tion atthe Step 4, we obtain �01 = 0, �11 = �7:17207, �21 = �7:16251, �31 = �7:16249, �41 = �7:1625.13



Numeri
al test 3.We take m = 4. Let �i = (i � 1)L=(m � 1) for 1 � i � m be an uniform grid of [0; L℄.For ea
h i = 1; : : : ;m, there exists a unique �i polynomial fun
tion of degree 3, su
h that�i(�j) = Æij , where Æij is the Krone
ker's symbol. The fun
tions �i are not ne
essary thesame as the tra
e on the interfa
e of the pressure �nite element fun
tions. Other 
hoi
e for�i 
ould be the vibration modes of the beam equations.Let ui, 
i be the solutions of (20). We have 
omputed ui, 
i exa
tly, using the softwareMathemati
a. The displa
ements ui are polynomial fun
tions of degree 7.The 
uid equations were solved in the referen
e mesh shown in Figure 2.The starting point for the BFGS algorithm is � = 0 and the stopping 
riteria is krJ k1 �10�6. The analyti
 formula of the gradient was employed.Iterations J krJk10 158.70 21.291 42.88 3.512 20.39 2.383 0.168155 0.304 0.165842 0.0085 0.165653 2.5e-7Five iterations are required to a
hieve krJ k1 � 10�6 and the obtained dis
rete optimal
ontrol is(�1; �2; �3; �4) = (13:2723413; 2:89419278; �2:704038443; �13:46249563):The optimal value of the 
ost fun
tion for m = 4 is J = 0:165653 whi
h is less thanJ = 2:95899 in the 
ase m = 1.
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Figure 6: The optimal 
ontrol fun
tion Pmi=1 �i ��i(x1)� 1L R L0 �i(x1)dx1� and the optimalobservation p0(x1; H + u(x1))
Figure 7: The displa
ement [
m℄ of the vessel magni�ed by a fa
tor 20 and the velo
ity [
m=s℄redu
ed by a fa
tor 100The displa
ement of the vessel is very small, it is less than 0:04 
m. The 
omputed velo
itydistribution is similar to a Poiseuille 
ow (see Figure 7).14



9 Con
lusionsUsing the Least Squares Method and the Arbitrary Lagrangian Eulerian 
oordinates, a two di-mensional steady 
uid stru
ture intera
tion problem was transformed into an optimal 
ontrolproblem.The BFGS algorithm has given satisfa
tory numeri
al results even when a redu
ed numberof dis
rete 
ontrols were used. The analyti
 formula of the gradient was employed. Compu-tational results reveal that the displa
ement of the interfa
e is very small when the velo
itypro�le is paraboli
 at the in
ow and out
ow.We have obtained a smaller optimal value by in
reasing the number of the 
ontrols andby 
hanging the shape of the 
ontrol fun
tions.In a forth
oming paper, the te
hniques used here will be adapted to the unsteady 
uid-stru
ture intera
tion problems. The vibration modes of the stru
ture will be the 
ontrol shapefun
tions.A
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