
The BFGS algorithm for a nonlinear least squaresproblem arising from blood ow in arteriesC. M. MureaLaboratoire de Math�ematiques et Appliations, Universit�e de Haute-Alsae,4, rue des Fr�eres Lumi�ere, 68093 MULHOUSE Cedex, Frane,e-mail: .murea�uha.frhttp://www.math.uha.fr/~edp/murea/AbstratUsing the Arbitrary Lagrangian Eulerian oordinates and the Least Squares Method,a two dimensional steady uid struture interation problem is transformed in an op-timal ontrol problem. Sensitivity analysis is presented. The BFGS algorithm givessatisfatory numerial results even when we use a redued number of disrete ontrols.keywords: uid struture interation, Arbitrary Lagrangian Eulerian oordinates,BFGS algorithm1 IntrodutionIn this paper we onsider a two dimensional uid struture interation. The mathematialmodel whih governs the uid is the steady Stokes equations, while the struture veri�es thebeam equation whih does not involve shearing stress. The solution of the model is given bythe displaement of the struture, the veloity and the pressure of the uid. The boundary ofthe uid admits the following deomposition: a moving part, whih represents the interfaebetween the uid and the struture, and a rigid part. This kind of problem is of onsiderableinterest in the simulation of blood ow in large arteries (see [1℄, [2℄, [3℄) or in aeroelastiity(see [4℄).The existene results for the uid struture interation an be found in [5℄, [6℄ for thesteady ase and in [7℄, [8℄, [9℄ for the unsteady ase.Sensitivity analysis of a oupled uid struture system was investigated in [10℄.The asymptoti limit when the uid domain width approahes to zero an be modeled bya one dimensional model of Stokes equation, widely used in lubriation theory (see [11℄).In a previous work ([12℄), a three dimensional uid struture interation was formulatedas an optimal ontrol system, where the ontrol is the fore ating on the interfae and theobservation is the veloity of the uid on the interfae. The uid equations were solved takinginto aount a given surfae fore on the interfae.A similar approah was used in [13℄, where it was proved that the ost funtion is di�er-entiable. The analyti omputation of the gradient for the ost funtion is important beauseit enables us to apply aurate numerial methods (see [14℄). The exat gradient of the ostfuntion is omputed in [13℄.Numerial results for a two dimensional uid struture interation using the optimal on-trol method are presented in [15℄. The uid equations are solved subjet to the onditions ofzero normal veloity and a given value of pressure on the interfae. The ontrol is the valueof the pressure at the interfae and the observation is the tangential veloity on the interfae.1



The most frequently, the uid-struture interation problems are solved numerially bypartitioned proedures, i.e. the uid and the struture equations are solved separately, whihenables us to use the existing solvers for eah sub-problem.This an be done using �xed point strategies with eventually a relaxation parameter, butthese methods do not always onverge or they have slow onvergene rate [16℄, [17℄, [1℄. Theonvergene an be aelerated using Aitken's method [2℄ or transpiration ondition [18℄.Other way to aelerate the onvergene is to use methods whih employ the derivative. In[19℄ a blok Newton algorithm was used where the derivative of the operators are approahedby �nite di�erenes. Good onvergene rate was obtained in [2℄ where the derivative of theoperator was replaed by a simpler operator. At eah time step, a quasi-Newton algorithmwas used to solve a uid-struture interation problem. The mean number of iterations of thequasi-Newton algorithm is 6.1. With the Aitken aeleration method this number is 24.1. Ateah iteration, a Stokes and a Laplaian problems were solved in the urrent uid domain.In the present work, a uid struture interation problem was formulated as an optimalontrol system, where the ontrol is the fore ating on the interfae and the observation isthe pressure on the interfae. The boundary ondition to be imposed on the uid is that allomponents of the veloity are zero at the interfae.To solve numerially the optimal ontrol problem, we use a quasi Newton method whihemploys the analyti gradient of the ost funtion and the approximation of the inverse Hessianis updated by the Broyden, Flether, Goldforb, Shano (BFGS) sheme. This algorithm isfaster than �xed point with relaxation or blok Newton methods whih represents the mainadvantage of using the optimal ontrol approah for uid-struture interation problem. The�nite element funtions of the normal stresses at the interfae are not neessary the same asthe trae on the interfae of the pressure �nite element funtions. This is another advantageby omparison with the �xed point approah.An outline of the paper is as follows. First, we prove that the normal fore ating onthe struture depends only on the pressure. Then, an exat solution for a partiular uidstruture interation is given. Using the Least Square Method, the uid struture interationwill be reformulated as an optimal ontrol problem. We will analyse the dependene of thedisplaement of the interfae, the veloity, the pressure of the uid and the ost funtion onvariations of the disrete ontrol. Finally, numerial results are presented.2 NotationsLet L and H be two positive onstants. We de�ne the setUad = �u 2 C1 ([0; L℄) ; u (0) = u (L) = u0 (0) = u0 (L) = 0;R L0 u(x1) dx1 = 0; infx12[0;L℄ fH + u (x1)g > 0owhere u0 is the �rst derivative of u.6
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Figure 1: Sets appearing in the uid-struture problem2



For eah u 2 Uad, we introdue the notations (see Figure 1)
Fu = �(x1; x2) 2 R2 ; x1 2 (0; L); 0 < x2 < H + u (x1)	 ;�u = �(x1; x2) 2 R2 ; x1 2 (0; L); x2 = H + u (x1)	 :Also, we denote �1 = �(0; x2) 2 R2 ; x2 2 (0; H)	�2 = �(x1; 0) 2 R2 ; x1 2 (0; L)	�3 = �(L; x2) 2 R2 ; x2 2 (0; H)	 :The two-dimensional domain oupied by the uid is 
Fu , the interfae between the uidand the struture is �u, while � = �1 [ �2 [ �3 represents the rigid boundary of the uid.In the following, we denote by n = (n1; n2)T the unit outward normal vetor and by� = (�1; �2)T = (�n2; n1)T the unit tangential vetor to �
Fu .3 Position of the problemWe suppose that the uid is governed by the steady Stokes equations, while the deformationof the elasti part of the boundary veri�es a partiular beam equation whih does not involveshearing stress (see [20℄). We onsider that the struture is a beam of axis parallel to Ox1with onstant thikness h. We assume that the displaement of the beam is normal to itsaxis.The problem is to �nd:� u : [0; L℄! R the displaement of the struture,� v = (v1; v2)T : 
Fu ! R2 the veloity of the uid and� p : 
Fu ! R the pressure of the uid,suh that u0000(x1) = 1D �fS(x1) + p (x1; H + u(x1))� ; 8x1 2 (0; L) (1)u (0) = u (L) = u0 (0) = u0 (L) = 0 (2)Z L0 u(x1) dx1 = 0 (3)0 < infx12[0;L℄ fH + u (x1)g (4)���v +rp = fF ; in 
Fu (5)div v = 0; in 
Fu (6)v = g; on � (7)v = 0; on �u (8)where� D = Eh312 is a struture onstant, E is the Young modulus, h is the thikness.� fS : (0; L) ! R are the averaged volume fores of the struture, in general the gravityfores and in this ase we have fS(x1) = �g0�Sh, where g0 is the gravity, �S is thedensity of the struture,� � > 0 is the visosity of the uid, 3



� fF = (fF1 ; fF2 )T : 
Fu ! R2 are the volume fores of the uid, in general the gravityfores,� g = (g1; g2)T : �! R2 is the imposed veloity pro�le of the uid on the rigid boundary,suh that Z� g � n d� = 0: (9)The inompressibility of the uid (6) together with the boundary onditions (7), (8) andthe relation (9) imply that the volume of the uid is onserved or equivalently R L0 u(x1) dx1is onstant. Without loss of generality, we assume that this onstant is zero and we obtainthe ondition (3).The inequality (4) states that the uid domain is onneted.For the Newtonian uids, the stress tensor � has the form� = �p I + � �rv +rvT � ;onsequently, the uid fores ating on the struture are ��n.Proposition 1 If v 2 �H2 �
Fu ��2, p 2 H1 �
Fu �, v is onstant on �u, div v = 0 in 
Fu ,then � (�n) � n = p on �u.Proof. This result is a orollary of the Proposition 3.1 from [21℄ and it is similar to theProposition 4.5 from the same paper. We have that� (�n) � n = p� � ��rv +rvT �n� � nand rv +rvT =  2 �v1�x1 �v1�x2 + �v2�x1�v1�x2 + �v2�x1 2 �v2�x2 ! :It is follows that��rv +rvT �n� � n = 2 �v1�x1n21 + 2��v1�x2 + �v2�x1�n1n2 + 2 �v2�x2n22:In Proposition 3.1 from [21℄, it is proved that �vi�xj nk = �vi�xknj , 8i; j; k 2 f1; 2g, so� �v1�x2 + �v2�x1�n1n2 = �v1�x1n22 + �v2�x2n21 and this implies that��rv +rvT �n� � n = 2 �v1�x1 �n21 + n22�+ 2 �v2�x2 �n21 + n22� = 2div v = 0whih ends the proof. �Under the assumption of small displaement of the beam, it follows that n � (0; 1)T . Then,it is reasonable to solve the beam equation (1) under the uid fores given by p (x1; H + u(x1)),x1 2 (0; L).4 Exat solution for a partiular aseWe assume that the density of the uid is onstant �F and the volume fores in the uid havethe form fF = (0;��F g0)T , where g0 is the gravitational aeleration. The veloity pro�le ofthe uid on the rigid boundary is given by:g1(x1; x2) = ( �1� x22H2 �V0; (x1; x2) 2 �1 [ �3V0; (x1; x2) 2 �2g2(x1; x2) = 0; (x1; x2) 2 �:4



We assume that the density of the struture �S and its thikness h are onstant.We assume that the averaged volume fores in the struture have the formfS(x1) = ��Sg0 h+ 2�V0H2 x1; 8x1 2 (0; L): (10)Then, we have the following solution for the system (1){(8):u(x1) = 0; 8x1 2 (0; L)v1(x1; x2) = �1� x22H2�V0; 8(x1; x2) 2 
Fuv2(x1; x2) = 0; 8(x1; x2) 2 
Fup(x1; x2) = �Sg0 h� 2�V0H2 x1 + �F g0 (H � x2) ; 8(x1; x2) 2 
Fu :Remark 1 The term 2�V0H2 x1 in (10) is arti�ial. It was added to obtain a solution wherethe displaement of the beam is null and the ow is Poiseuille.5 Fixed point approahWe start with a result onerning the equations of the interfae.Proposition 2 For a given ontinuous funtion � : [0; L℄! R there exist a unique funtionu : [0; L℄! R of lass C4 and a unique onstant  2 R solutions ofu0000(x1) = 1D (�(x1) + ) ; 8x1 2 (0; L) (11)with boundary onditions (2), suh that the equality (3) holds.Proof. Existene. Let u� : [0; L℄! R be the unique solution ofu0000(x1) = 1D�(x1); 8x1 2 (0; L)with boundary onditions (2). The unique solution ofu0000(x1) = 1D; 8x1 2 (0; L)with boundary onditions (2) is x1 2 [0; L℄ 7! x21(x1�L)224D 2 R.Then, the solutions of (11) and (2) have the formu(x1) = u�(x1) + x21(x1 � L)224D :The equality (3) is equivalent toZ L0 u�(x1) dx1 +  Z L0 x21(x1 � L)224D dx1 = 0onsequently, if we set  = �720DL5 Z L0 u�(x1) dx1;then the ondition (3) holds.Uniqueness. Let ui, i, i = 1; 2 be two solutions of (11), suh that R L0 ui dx1 = 0. Bysubtrating, we obtain that(u1 � u2)0000(x1) = 1D (1 � 2) ; 8x1 2 (0; L)5



and u1 � u2 veri�es the boundary onditions (2). Consequently we have (u1 � u2)(x1) =(1 � 2) x21(x1�L)224D . Sine R L0 (u1 � u2)dx1 = 0, we obtain 1 � 2 = 0 and u1 � u2 = 0. �From the above Proposition, it follows that for a given ontinuous funtion �0 : (0; L)! R,suh that R L0 �0(x1) dx1 = 0, we an solve the beam equationsu0000(x1) = 1D �fS(x1) + �0(x1) + � ; 8x1 2 (0; L) (12)with boundary onditions (2) where  is the real onstant suh that the equality (3) holds.Let S be de�ned by S(�0) = u: (13)If 0 < infx12[0;L℄ fH + u (x1)g, we an solve the Stokes equations (5){(8) and we obtainv and p. The pressure is determined up to an additive onstant, i.e. it has the form p =p0 + C, where p0 is a partiular solution and C is a real onstant. We will take p0 suh thatR L0 p0 (x1; H + u(x1)) dx1 = 0.We denote by F(u) the funtionx1 2 (0; L) 7! p0 (x1; H + u(x1)) : (14)The funtion F(u) is well de�ned, if the trae of the pressure p0 on �u exits. For this, wehave to preise the regularity of the solution of Stokes equations.Let g : �
Fu ! R be de�ned by g(x) = 0 for x 2 �u and g(x) = g(x) for x 2 �.If �
Fu is Lipshitz ontinuous, 
Fu is a onneted domain, fF 2 �H�1 �
Fu ��2, g 2�H1=2 ��
Fu ��2 suh that R�
Fu g � n d� = 0, then the problem :�nd v 2 �H1 �
Fu ��2, v = g on �
Fu and p 2 L2 �
Fu � =R8>><>>: Z
Fu rv � rw dx� Z
Fu (div w) p dx = Z
Fu fF �w dx; 8w 2 �H10 �
Fu ��2� Z
Fu (div v) q dx = 0; 8q 2 L2 �
Fu � =R (15)has a unique solution.Moreover, if �
Fu is of lass C2, fF 2 �L2 �
Fu ��2 and g 2 �H3=2 ��
Fu ��2, then v 2�H2 �
Fu ��2 and p 2 H1 �
Fu � =R.These results ould be found in [22, p. 88℄.The �xed point approah is to �nd �0 suh that F Æ S(�0) = �0, where S and F arede�ned by (13) and (14).The existene of a �xed point will not be treated here. It is important to note that if wewant to apply the Shauder's �xed point theorem, the regularity of �0 and F ÆS(�0) must bethe same. It is not the ase in our framework: for �0 2 C0 (0; L), we have S(�0) = u 2 C4 (0; L)and onsequently F(u) 2 H1=2 (0; L). It is known that H1=2 (0; L) is not inluded in C0 (0; L),but H1=2+� (0; L) � C0 (0; L) for � > 0. Existene results for related steady uid-strutureinteration problems an be found in [5℄ and [6℄.In the following, we relax the �xed point problem by the Least Squares Method and weobtain an optimization problem.
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6 Least Squares approahLet �i : [0; L℄! R be some partiular given funtions and �i are the salar parameters to beidenti�ed, 1 � i � m.Let us omment the regularity and the shape of �i. We take �i 2 C0 (0; L), the onditionR L0 �i(x1)dx1 = 0 is not neessary needed. Also, the funtions �i are not neessary the samethat the trae on the interfae of the pressure �nite element funtions. This is an advantageby omparison with the �xed point approah.For given � = (�1; : : : ; �m), we �nd u : [0; L℄! R and (�) 2 R solutions ofu0000(x1) = 1D  fS(x1) + mXi=1 �i�i(x1) + (�)! ; 8x1 2 (0; L) (16)with boundary onditions (2), suh that (3) holds.The next step is to solve the Stokes equations in the domain 
Fu and we obtain v and p.We assume that p 2 H1 �
Fu � and we set p0 = p� 1L R L0 p (x1; H + u(x1)) dx1. It follows thatZ L0 p0 (x1; H + u(x1)) dx1 = 0: (17)Let J : Rm ! R be de�ned byJ (�) = Z L0  mXi=1 �i �i(x1)� 1L Z L0 �i(x1)dx1!� p0 (x1; H + u(x1))!2 dx1:Now, the problem is to �nd � 2 Rm solution of8>>>><>>>>: inf J (�)u solution of (16 ); (2 ); (3 );u veri�es (4 );v; p0 solution of (5 )� (8 );p0 veri�es (17 ): (18)In other words, we try to �nd a solution of the system (1){(8) suh thatp (x1; H + u(x1)) � mXi=1 �i�i(x1) + (�); 8x1 2 (0; L)where � 2 Rm and p(x1; x2) = p0(x1; x2) +Pmi=1 �iL R L0 �i(x1)dx1 + (�), for (x1; x2) 2 
Fu .The disrete ontrol is � 2 Rm and the observation is the trae of the pressure on theinterfae, more preisely x1 2 (0; L)! p0 (x1; H + u(x1)) :7 Sensitivity analysisWe shall analyse the dependene of the displaement of the interfae u, the veloity, thepressure of the uid v, p and the ost funtion J on variations of the disrete ontrol �.7.1 Sensitivity of the displaement of the interfaeProposition 3 The appliations � ! u and � ! (�) are aÆne, where u and (�) arethe solutions of the equation (16) with boundary onditions (2), suh that (3) holds. Morepreisely, u = u0 +Pmi=1 �iui(�) = 0 +Pmi=1 �ii7



where u0, 0 verify8<: u00000 (x1) = 1D �fS(x1) + 0� ; 8x1 2 (0; L)u0 (0) = u0 (L) = u00 (0) = u00 (L) = 0R L0 u0(x1) dx1 = 0 (19)and ui, i verify 8<: u0000i (x1) = 1D (�i(x1) + i) ; 8x1 2 (0; L)ui (0) = ui (L) = u0i (0) = u0i (L) = 0R L0 ui(x1) dx1 = 0: (20)Proof. Aording to Proposition 2, the systems (19) and (20) have unique solutions. Byaddition, we obtain u0 + mXi=1 �iui!0000 (x1) = 1D  fS(x1) + mXi=1 �i�i(x1) + 0 + mXi=1 �ii! :Also, the appliation x1 7! (u0 +Pmi=1 �iui) (x1) veri�es the boundary onditions (2) andR L0 (u0 +Pmi=1 �iui) (x1) dx1 = 0. From the Proposition 2 and the de�nition of u and (�)by (16), (2), (3), we obtain the onlusion. �7.2 Sensitivity of the veloity and the pressure of the uidIn order to study the sensitivity of the veloity and the pressure of the uid we follow [13℄where the Arbitrary Lagrangian Eulerian (ALE) oordinates have been used.We denote by 
F0 = (0; L)� (0; H) the referene domain and by �0 = (0; L)�fHg its topboundary. For eah u 2 Uad we onsider the following one-to-one ontinuous di�erentiabletransformation Tu : 
F0 ! 
Fu given by:Tu (bx1; bx2) = �bx1; H + u (bx1)H bx2�whih admits the ontinuous di�erentiable inverse mappingT�1u (x1; x2) = �x1; Hx2H + u (x1)�and veri�es that Tu �
F0 � = 
Fu , Tu (�0) = �u and Tu (bx) = bx, 8bx 2 �.We set x = Tu (bx) for eah x = (x1; x2) 2 
Fu and bx = (bx1; bx2) 2 
F0 .We denote by bv(bx) = v (Tu(bx)) and bp(bx) = p (Tu(bx)) the veloity and the pressure in thereferene domain 
F0 .In order to pose the variational formulation in the referene on�guration let us onsiderthe following Hilbert spaes: W = �H10 �
F0 ��2bQ = L2 �
F0 � =Requipped with their usual inner produts. We introdue the formsbaF : Rm � �H1 �
F0 ��2 � �H1 �
F0 ��2 ! R bbF : Rm � �H1 �
F0 ��2 � bQ! R8



de�ned bybaF (�; bv; bw) = 2Xi=1 Z
F0 �H + u (bx1)H �bvi�bx1 � bwi�bx1 � u0 (bx1) bx2H �bvi�bx2 � bwi�bx1� dbx+ 2Xi=1 Z
F0  �u0 (bx1) bx2H �bvi�bx1 � bwi�bx2 + H2 + (u0 (bx1) bx2)2H (H + u (bx1)) �bvi�bx2 � bwi�bx2! dbx;bbF (�; bw; bq) = � Z
F0 �H + u (bx1)H � bw1�bx1 � u0 (bx1) bx2H � bw1�bx2 + � bw2�bx2 � bq dbx:We assume that the volume fores in uid are onstant fF = (fF1 ; fF2 )T 2 R2 and weonsider bfF (�) 2 W 0 de�ned byDbfF (�) ; bwE = 2Xi=1 Z
F0 H + u (bx1)H fFi bwi dbx; 8bw 2 W:We remark that the displaement u whih appears in the oeÆients depends on �.The problem: �nd bv 2 �H1 �
F0 ��2, bvj� = g, bvj�0 = 0, bp 2 bQ suh that( baF (�; bv; bw) +bbF (�; bw; bp) = DbfF (�) ; bwE ; 8bw 2 WbbF (�; bv; bq) = 0; 8bq 2 bQ (21)has a unique solution.The problem (21) is obtained from (15) and onversely by using the one-to-one transfor-mations Tu and T�1u . The equivalene of (21) and (15) follows from the transport theoremsin ontinuum mehanis (see [23℄), the hain rule and basi results for Sobolev spaes (see[24℄). The onlusion of this proposition is a onsequene of the existene and uniqueness of(15).Let bv, bw be given in �H1 �
F0 ��2 and bq in bQ. Then funtions from Rm to R de�ned by� 7�! baF (�; bv; bw)� 7�! bbF (�; bw; bq)� 7�! DbfF (�) ; bwEare di�erentiable and the partial derivatives have the forms:�baF��k (�; bv; bw) = 2Xi=1 Z
F0 �uk (bx1)H �bvi�bx1 � bwi�bx1 � u0k (bx1) bx2H �bvi�bx2 � bwi�bx1� dbx+ 2Xi=1 Z
F0 ��u0k (bx1) bx2H �bvi�bx1 � bwi�bx2� dbx+ 2Xi=1 Z
F0  2u0k (bx1)u0 (bx1) (bx2)2H (H + u (bx1)) �bvi�bx2 � bwi�bx2! dbx+ 2Xi=1 Z
F0 0��uk (bx1)�H2 + (u0 (bx1) bx2)2�H (H + u (bx1))2 �bvi�bx2 � bwi�bx21A dbx�bbF��k (�; bw; bq) = � Z
F0 �uk (bx1)H � bw1�bx1 � u0k (bx1) bx2H � bw1�bx2 � bq dbx���k DbfF (�) ; bwE = 2Xi=1 Z
F0 uk (bx1)H fFi bwi dbx:9



This above result is a onsequene of the di�erentiability of integrals with respet toparameters. In our ase the parameter is �. Applying the Impliit Funtion Theorem, weobtain the following result.The appliations � 2 Rm 7! bv 2 �H1 �
F0 ��2 and � 2 Rm 7! bp 2 bQ are di�erentiablesand the partial derivatives �bv��k 2 W and �bp��k 2 bQ verify8<: baF ��; �bv��k ; bw�+bbF ��; bw; �bp��k � = ���k DbfF (�) ; bwE� �baF��k (�; bv; bw)� �bbF��k (�; bw; bp) ;bbF ��; �bv��k ; bq� = � �bbF��k (�; bv; bq) (22)for all bw in W and for all bq in bQ.7.3 Sensitivity of the ost funtionIf p0 2 H1 �
Fu � suh that R L0 p0 (x1; H + u(x1)) dx1 = 0, then R L0 bp0 (x1; H) dx1 = 0, wherebp0 = p0 Æ Tu. Also, we have R L0 �bp0��k (x1; H) dx1 = 0.The appliation � 2 Rm 7! J(�) is di�erentiable and the partial derivatives �J��k (�) havethe forms:2 Z L0  �k(x1)� Z L0 �kL dx1 � �bp0��k (x1; H)! mXi=1 �i �i(x1)� Z L0 �iL dx1!� bp0 (x1; H)! dx1(23)8 Numerial resultsWe are interested in simulating the blood ow through medium vessels (arteries). The om-putation has been made in a domain of length L = 3 m and height H = 0:5 m whihrepresents a half width of the vessel. In this ase, the uid is the blood and the struture isthe wall of the vessel.The numerial values of the following physial parameters have been taken from [1℄. Thevisosity of the blood was taken to be � = 0:035 gm�s , its density �F = 1 gm3 . The thiknessof the vessel is h = 0:1 m, the Young modulus E = 0:75 �106 gm�s2 , the density �S = 1:1 gm3 .The gravitational aeleration is g0 = 981 ms2 and the averaged volume fore of thestruture is fS(x1) = �g0�Sh.On the rigid boundary, we impose the following boundary onditions:v1(x1; x2) = ( �1� x22H2 �V0; (x1; x2) 2 �1 [ �3V0; (x1; x2) 2 �2v2(x1; x2) = 0; (x1; x2) 2 �where V0 = 30 ms (see [25℄). The volume fore in uid is fF = (0;�g0�F )T .The numerial tests have been produed using freefem++ v1.27 (see [26℄).For the uid we have used the Mixed Finite Element Method, P2 Lagrange triangles forthe veloity and P1 for the pressure. 10



8.1 Optimization without using the derivativeNumerial test 1.We use the same notations as in the previous setions, in partiular m and �i refer to theequation (16). We set m = 1 and �1(x1) = x1 �L=2. In this ase 0 = g0�Sh, u0 = 0, 1 = 0and u1(x1) = x21 (L� x1)2 (x1 � L=2)240D ; u(x1) = �1u1(x1):We remark that the displaement of the interfae is omputed exatly.We have evaluated the ost funtion for equidistant points of step length 0:5 in the interval[�20; 5℄. For eah �1, we generate a mesh for 
Fu , where the displaement u depends on �1.A typial mesh of 198 triangles and 128 verties is shown below.
Figure 2: A typial meshThe ondition (4) was not violated. Then, we solve the Stokes equations (15) on thismesh.
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Figure 3: The ost funtionThe graph �1 ! J(�1) seems to be stritly onvex, onsequently the optimal ontrol isunique (see Figure 3). The ost funtion has the value J = 158:76 for �1 = 0. The minimalvalue of the ost funtion J = 3:04 was obtained for �1 = �7.
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The displaement of the vessel is very small, so the behavior of the blood ow is like thePoiseuille ow.
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Figure 5: The optimal ontrol �1�1(x1) and the optimal observation p0(x1; H + u(x1))The optimal ontrol is �7 and the pressure on the interfae an be approahed by �7(x1�L=2) + g0�Sh. The pressure di�erene between the outow (right) and inow (left) is �7L.If we take the averaged volume fores in the vessel of the form fS(x1) = 2�V0H2 x1 � �Sg0 hwe obtain the Poiseuille ow for the blood. The pressure on the interfae in this ase isp(x1; H) = � 2�V0H2 x1 + g0�Sh where � 2�V0H2 = �8:4 and the pressure di�erene between theoutow and inow is �8:4L, so there is a lose of the pressure. The displaement of theinterfae is onsequent: the shape of the vessel is inow at the left and outow at the right(see Figure 4). In Figure 5 we observe the di�erene between the optimal ontrol and theoptimal observation. In the �xed point approah, the two graphs must be idential.If the ondition (4) is violated, we haveinfx12[0;L℄ fH + u (x1)g = 0and we say that the vessel is ollapsed. Numerial results for this ase are presented in [27℄.8.2 The BFGS algorithmThe BFGS algorithm is a quasi-Newton iterative method for solving unonstrained optimiza-tion problem inf fJ(�); � 2 Rmg.Step 0 Choose a starting point �0 2 Rm , an m�m symmetri positive matrix H0 and apositive salar �. Set k = 0.Step 1 Compute rJ(�k).Step 2 If rJ(�k) < � stop.Step 3 Set dk = �HkrJ(�k).Step 4 Determine �k+1 = �k + �kdk, �k > 0 by means of an approximate minimizationJ(�k+1) � min��0 J(�k + �dk):Step 5 Compute Æk = �k+1 � �k.Step 6 Compute rJ(�k+1) and k = rJ(�k+1)�rJ(�k).Step 7 ComputeHk+1 = Hk +�1 + Tk HkkÆTk k � ÆkÆTkÆTk k � ÆkTk Hk +HkkÆTkÆTk kStep 8 Update k = k + 1 and go to the Step 2.12



For the inaurate line searh at the Step 4, the methods of Goldstein and Armijo wereused. If we denote by g : [0;1)! R the funtion g(�) = J(�k + �dk), we determine �k > 0suh that g(0) + (1� �) �kg0(0) � g(�k) � g(0) + ��kg0(0) (24)where � 2 (0; 1=2).In the BGSF algorithm, we have used (21) whih is the ALE version of the Stokes equationsin the referene domain in order to ompute the ost funtion and we have used (22) and (23)in order to ompute rJ(�).Remark 2 In order to ompute rJ(�) by (22) and (23), we have to solve m linear systemswhih have the same matrix. The linear systems were solved by LU deomposition. We observethat (21) and (22) have the same left-hand side, so when we ompute rJ(�) we an use thesame LU deomposition obtained omputing J(�) by (21).We ould ompute rJ(�) by the Finite Di�erenes Method�J��k (�) � J(�+��kek)� J(�)��k (25)where ek is the k-th vetor of the anonial base of Rm and ��k > 0 is the grid spaing. Inthis ase, the ost funtion J need to be evaluated in eah � + ��kek, k = 1; : : : ;m. Wehave to solve m linear systems obtained from (21), but the matries are di�erent, so usingthe analyti formula of the gradient (22) is more advantageous.Numerial test 2.We have performed the numerial test in the ase m = 1 and �1(x1) = x1 � L=2.In the table below, we show the gradient of the ost funtion omputed by (22) and (23),respetively by the Finite Di�erenes Method (25) with ��1 = 0:5, whih proves the validityof the analyti formula.�1 rJ(�1) using (22) and (23) rJ(�1) using Finite Di�erenes (25)-20 -77.88 -76.50-15 -47.55 -46.09-10 -17.22 -15.70-5 13.13 14.630 43.49 45.035 73.87 72.40The starting point for the BFGS algorithm is �1 = 0 and the stopping riteria is krJ k1 �10�6. Iterations �1 J(�1) krJ(�1)k10 0 158.70 43.491 -43.49 4003.66 -220.032 -7.17907 2.95985 -0.1005823 -7.16247 2.95899 0.0002327244 -7.1625 2.95899 -2.53259e-10The ondition (4) was not violated. The minimal value of the ost funtion J = 2:95899was obtained for �1 = �7:1625, after 5 iterations. The line searh algorithm for the ap-proximate minimization at the Step 4 was not ativated, we take �K = 1. The omputeddisplaements of the vessel are almost the same as in the Figure 4. If we ativate the linesearh algorithm and we set to 3 the maximal number of evaluation of the ost funtion atthe Step 4, we obtain �01 = 0, �11 = �7:17207, �21 = �7:16251, �31 = �7:16249, �41 = �7:1625.13



Numerial test 3.We take m = 4. Let �i = (i � 1)L=(m � 1) for 1 � i � m be an uniform grid of [0; L℄.For eah i = 1; : : : ;m, there exists a unique �i polynomial funtion of degree 3, suh that�i(�j) = Æij , where Æij is the Kroneker's symbol. The funtions �i are not neessary thesame as the trae on the interfae of the pressure �nite element funtions. Other hoie for�i ould be the vibration modes of the beam equations.Let ui, i be the solutions of (20). We have omputed ui, i exatly, using the softwareMathematia. The displaements ui are polynomial funtions of degree 7.The uid equations were solved in the referene mesh shown in Figure 2.The starting point for the BFGS algorithm is � = 0 and the stopping riteria is krJ k1 �10�6. The analyti formula of the gradient was employed.Iterations J krJk10 158.70 21.291 42.88 3.512 20.39 2.383 0.168155 0.304 0.165842 0.0085 0.165653 2.5e-7Five iterations are required to ahieve krJ k1 � 10�6 and the obtained disrete optimalontrol is(�1; �2; �3; �4) = (13:2723413; 2:89419278; �2:704038443; �13:46249563):The optimal value of the ost funtion for m = 4 is J = 0:165653 whih is less thanJ = 2:95899 in the ase m = 1.
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Figure 6: The optimal ontrol funtion Pmi=1 �i ��i(x1)� 1L R L0 �i(x1)dx1� and the optimalobservation p0(x1; H + u(x1))
Figure 7: The displaement [m℄ of the vessel magni�ed by a fator 20 and the veloity [m=s℄redued by a fator 100The displaement of the vessel is very small, it is less than 0:04 m. The omputed veloitydistribution is similar to a Poiseuille ow (see Figure 7).14
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