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Université de Haute Alsace, France
3 Department of Power Engineering,

University Politehnica of Bucharest, Romania

Abstract

We use the boundary feedback control introduced in the paper [V. Barbu,
Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans.
Automat. Control, (2013)], in order to stabilize an unstable heat equation in two
dimensions. We propose two numerical algorithms. The feedback boundary con-
dition is treated explicitly in the first algorithm. At each time step, only one
linear system is solved. The second algorithm performs at each time step some
sub iterations, in order to treat the feedback boundary condition implicitly. The
second algorithm can stabilize some problems where the first algorithm fails.

keywords. boundary feedback control, unstable heat equation in 2D, numerical
method, auto-ignition, ignition control

1 Introduction

In [1] a new technique was developed for the construction of stabilizable feedback bound-
ary controllers for parabolic equations.

The stabilizing control is expressed using the system of eigenfunctions corresponding
to unstable eigenvalues of the linear system associated to the original one by linearization
with respect to the steady-state.

∗The first author was supported by the Grant 145/2011 CNCS, Romania, the second and the third
authors were supported by the grant “PHC-Brâncuşi” no. 25413NK.
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The present paper aims to illustrate through numerical simulations the effectiveness
of the method introduced in [1]. We will follow closely [1] in the presentation of the
problem.

Consider the mixed problem for the parabolic equation

∂y

∂t
= ∆y + f(x, y), in (0,∞) × Ω (1)

y = u, on (0,∞) × Γ1 (2)

∂y

∂n
= 0, on (0,∞) × Γ2 (3)

y(0, x) = y0(x), in Ω, (4)

Ω an open and bounded domain in R
d with smooth boundary ∂Ω = Γ1 ∪ Γ2, Γ1 and Γ2

non overlapping connected parts of ∂Ω. The solution y depends on (t, x) ∈ [0,∞) × Ω,
x = (x1, . . . , xd).

Let ye be a solution for

∆ye + f(x, ye) = 0, in Ω,
∂ye

∂n
= 0 on Γ2.

With ỹ = y − ye a translation to zero, the system (1)-(4) becomes

∂ỹ

∂t
= ∆ỹ + f(x, ỹ + ye) − f(x, ye), in (0,∞) × Ω (5)

ỹ = u − ye, on (0,∞) × Γ1 (6)

∂ỹ

∂n
= 0, on (0,∞) × Γ2 (7)

ỹ(0, x) = y0(x) − ye = ỹ0(x), in Ω. (8)

The problem is now to synthesize a feedback controller u = F (ỹ) such that, for all ỹ0 in
a neighborhood of the origin in L2(Ω), the solution to the closed loop system satisfies

∫

Ω

|ỹ(t, x)|2 dx ≤ Ce−γt

∫

Ω

|ỹ0(x)|2 dx, t ≥ 0. (9)

The strategy proposed in [1] is to first find a stabilizing controller v = F (y) for the
linearization of (5)-(8) in zero and to use it afterwards to stabilize the zero solution of
(1)-(4) thus the solution ye.

The linearization of (5)-(8) in zero gives the problem

∂y

∂t
= ∆y +

∂f

∂y
(x, ye)y, in (0,∞) × Ω (10)

y = v, on (0,∞) × Γ1 (11)

∂y

∂n
= 0, on (0,∞) × Γ2 (12)

y(0, x) = ỹ0(x), in Ω. (13)
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It will be assumed that

f,
∂f

∂y
∈ C

(

Ω × R
)

.

Consider L : D(L) → L2(Ω),

Ly = ∆y +
∂f

∂y
(x, ye)y, y ∈ D(L)

D(L) =

{

y ∈ H2(Ω); y = 0 on Γ1,
∂y

∂n
= 0 on Γ2

}

.

Then the resolvent of L is compact and

〈L y, y〉 ≤ −‖∇y‖2
L2(Ω) − C ‖y‖2

L2(Ω) .

It follows that −L has a countable set of real eigenvalues λj of finite multiplicity with
the corresponding eigenfunctions ϕj, −Lϕj = λjϕj. We assume that λ1 ≤ λ2 ≤ . . . .

There exits a finite number N ∈ N such that λj < 0 for j = 1, . . . , N and λj > 0 for

j = N + 1, . . . . Then
∂ϕj

∂n
= 0 on Γ2 and the following standard hypothesis is assumed

to hold true:

∂ϕj

∂n
: Γ1 → R, j = 1, . . . , N are linearly independent. (14)

The following controller is defined in [1]

v(t, x) = η
N

∑

j=1

µj

(
∫

Ω

y(t, x)ϕj(x) dx

)

φj(x), on (0,∞) × Γ1 (15)

where

µj =
k + λj

k + λj − η
, j = 1, . . . , N,

φj(x) =

N
∑

ℓ=1

ajℓ

∂ϕℓ

∂n
(x), ∀x ∈ Γ1,

η, k > 0 are chosen sufficiently large such that

λj + η +
2η2

λj + k − 2η
≥ γ0 > 0, j = 1, . . . , N (16)

and (aij)1≤i,j≤N
is given by

(aij)1≤i,j≤N
= M−1 and M =

(
∫

Γ1

∂ϕi

∂n

∂ϕj

∂n
ds

)

1≤i,j≤N

.
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In the present paper, the parameters η and k are chosen as follows: η > −λ1 and
k = 4η. Then, the inequality (16) is verified.

It is proved in [1], that, if the condition (16) holds, then the feedback controller (15)
stabilizes exponentially (10)-(13), more precisely,

‖y(t)‖L2(Ω) ≤ Ce−γt ‖y0‖L2(Ω) .

where γ = min{γ0, λN+1} > 0.
The backstepping approach is an efficient method for boundary stabilization of one-

dimensional (d = 1) unstable heat equations (17)-(20). The stabilization is obtained
under the condition λ < 3π2/4 in [2]. In [3], [4] the stabilization holds with an arbitrary
level of instability λ(x) and for any exponentially decay rate γ. The case with time
dependent coefficient λ(t) is studied in [5].

The boundary feedback stabilization for parabolic equation for d ≥ 1 was established
in [6]. The advantage of the boundary feedback controller proposed in [1] is that the
construction of the controller is explicit and it is easily implementable.

We use the boundary feedback control, introduced in [1], in order to stabilize an
unstable heat equation in two dimensions. We propose two numerical algorithms. The
feedback boundary condition is treated explicitly in the first algorithm. At each time
step, only one linear system is solved. The second algorithm performs at each time step
some sub iterations, in order to treat the feedback boundary condition implicitly. The
second algorithm can stabilize some problems where the first algorithm fails.

The results can be applied in the control of thermal systems in which the conduc-
tive, convective and advective phenomena are studied. Commonly, heat equation in
one-dimension is used as mathematical model for components as fins, long tubes and
heat exchangers, [7]. Two-dimensional heat equation will describe thermal processes on
bodies with axial symmetry or on surface with small thickness. The temperature in a
solid body is a three-dimensional heat equation problem.

The theoretical and numerical results are useful in many engineering applications,
including the electric power industry, the automotive industry, the heating, ventilation
and air conditioning industry, metallurgical processes of solidification and quenching to
improve and optimize thermal processes. Some practical problems are experiencing with
process optimization of combustion in order to control and monitories the pollutant
emissions and efficiency. For example, controlling the auto-ignition process in petrol
engines reduce the exhaust emissions and fuel consumption [8].

The direct measurements of the temperature at the inside surface of combustion
chamber or at the surface of a reentry vehicle or the inside surface under fire are difficult
and not accurate. For this reason the practical problems regarding thermal processes
need to predict the temperature distribution and to have information on boundaries.
From this point of view to control the atmospheric reentry and maintain the thermal
shield of a space vehicle at a suitable temperature is a big challenge [9].
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2 Presentation of unstable heat equation and algo-

rithms

Using the feedback Dirichlet boundary control introduced in [1], we want to stabilize
the following parabolic problem:

∂y

∂t
(t, x) − ∆y(t, x) − λy(t, x) = 0, in (0,∞) × Ω (17)

y(t, x) = u(t, x), on (0,∞) × Γ1 (18)

∂y

∂n
(t, x) = 0, on (0,∞) × Γ2 (19)

y(0, x) = y0(x), in Ω (20)

where λ is a given real number, y0 the initial condition and u the Dirichlet boundary
control.

The eigenvalues problem

−∆ϕj(x) − λϕj(x) = λjϕj(x), in Ω (21)

ϕj(x) = 0, on Γ1 (22)

∂ϕj

∂n
(x) = 0, on Γ2 (23)

has real eigenvalues λj and the eigenfunction ϕj, j = 1, 2, . . .
We solve the uncontrolled problem, i.e. (17)-(20) with u = 0, using implicit (back-

ward) Euler method. Find yn+1 such that

yn+1 − yn

∆t
− ∆yn+1 − λyn+1 = 0, in Ω (24)

yn+1 = 0, on Γ1 (25)

∂yn+1

∂n
= 0, on Γ2 (26)

y0 = y0, in Ω (27)

where yn(x) approaches y(n∆t, x) and ∆t is the time step.

Algorithm 1. Explicit treatment of the Dirichlet boundary control

Find yn+1 verifying (24), (26), (27) with the boundary condition

yn+1 = un, on Γ1 (28)

where un(x) is obtained by replacing y(t, x) by yn(x) in the expression (15).
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Other possibility is to replace the boundary condition (28) by

yn+1 = 2un − un−1, on Γ1. (29)

Algorithm 2. Implicit treatment of the Dirichlet boundary control

At each time step, we have to do:
Step 1. Put yn+1

0 = yn, k = 0.
Step 2. Find yn+1

k+1 such that

yn+1
k+1 − yn

∆t
− ∆yn+1

k+1 − λyn+1
k+1 = 0, in Ω (30)

yn+1
k+1 = η

N
∑

j=1

µj

(
∫

Ω

yn+1
k ϕj(x) dx

)

φj(x), on Γ1 (31)

∂yn+1
k+1

∂n
= 0, on Γ2 (32)

Step 3. If
∥

∥yn+1
k+1 − yn+1

k

∥

∥

L2(Ω)
≤ tol then yn+1 = yn+1

k+1 and stop else k = k + 1 and

go to Step 2.

Remark 1 At each time step, we have to perform some sub iterations k = 0, 1, . . . . If

we have convergence for k → ∞, then the Dirichlet boundary control is treated implicitly

yn+1 = η

N
∑

j=1

µj

(
∫

Ω

yn+1ϕj(x) dx

)

φj(x), on Γ1.

3 Test 1. Explicit treatment of the control

We set Ω = (0, 1) × (0, 1), Γ1 = {1} × (0, 1) and ΓN = ∂Ω \ Γ2.
We use the finite element P2 with a mesh of 594 triangles and 330 vertices.
The eigenvalues problem (21)-(23) has real eigenvalues: λ1 = 2.46−λ, λ2 = 12.33−λ,

λ3 = 22.20 − λ, λ4 = 32.07 − λ, λ5 = 41.94 − λ, etc.
We have used Algorithm 1, with explicit treatment of the Dirichlet boundary control

(28). The time step is ∆t = 0.005 and the number of time steps is NN = 200.

Case 1. λ = 5
In this case λ1 = −2.54 < 0 and λj > 0 for j = 2, 3, . . . We set η = 3 and k = 12.

Case 2. λ = 15
In this case λ1 = −12.54 < 0, λ2 = −2.67 < 0 and λj > 0 for j = 3, 4, . . . We set

η = 13 and k = 52.
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Figure 1: Case 1. The time history of ‖yn‖L2(Ω) for initial condition y0(x1, x2) = 0.2(1−

x2
1). Uncontrolled (left) and controlled (right) cases.
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Figure 2: Case 2. The time history of ‖yn‖L2(Ω) for initial condition y0(x1, x2) = 0.5(1−

x2
1). Uncontrolled (left) and controlled (right) cases.
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Figure 3: Case 2. The time history of ‖yn‖L2(Ω) for initial condition y0(x1, x2) =
0.2 cos(π

2
x1). Uncontrolled (left) and controlled (right) cases.
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4 Test 2. Implicit treatment of the control

We use the Example 2 from [1]. In this case Ω = (0, π) × (0, π), Γ1 = ∂Ω and ΓN = ∅,
so the boundary control is defined on the entire border of the domain.

The eigenvalues problem

−∆ϕj(x) − λϕj(x) = λjϕj(x), in Ω (33)

ϕj(x) = 0, on ∂Ω (34)

has the exact eigenvalues: λ1 = 2− λ, λ2 = 5− λ, λ3 = 5− λ, λ4 = 8− λ, λ5 = 10− λ,
λ6 = 10 − λ, etc.

We have tryed to solve the problem with Algorithm 1, but if the Dirichlet boundary
condition is treated explicitly, we are not able to stabilize the problem. We have solved
the problem using Algorithm 2 and at the Step 3, we use tol = 10−3 for the stopping
test.

For η = 50 and k = 200 the inequality (16) is verified.

Case 1. λ = 3
In this case λ1 = −1 < 0 and λj > 0 for j = 2, 3, . . . The exact eigenfunction is

ϕ1(x1, x2) = α1 sin x1 sin x2. We take α1 = 2
π

such that ‖ϕ1‖L2(Ω) = 1.
We obtain that:

∂ϕ1

∂n
(x1, x2) =















− 2
π

sin x2, on {0} × (0, π)
− 2

π
sin x1, on (0, π) × {0}

− 2
π

sin x2, on {π} × (0, π)
− 2

π
sin x1, on (0, π) × {π}

We can compute

m11 =

∫

∂Ω

(

∂ϕ1

∂n

)2

ds = 4 ×

(

2

π

)2 ∫ π

0

sin2 x1 dx1 =
8

π

then we put a11 = 1/m11 = π
8

and finally we set φ1 : ∂Ω → R, φ1 = a11
∂ϕ1

∂n
.

We use the finite element P2 with a mesh of 242 triangles and 142 vertices. The
initial condition is y0(x1, x2) = 0.2x1(π − x1)x2(π − x2)

16
π4 . The time step is ∆t = 0.01

and the number of time steps is NN = 50.
If the Dirichlet boundary condition is treated implicitly, the feedback control (15)

stabilizes the problem, see Figure 4.

Case 2. λ = 7
In this case λ1 = −5, λ2 = −2, λ3 = −2 and λj > 0 for j = 4, 5, . . . We use the

finite element P2 with a mesh of 242 triangles and 142 vertices. The initial condition is
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Figure 4: Case 1. Implicit treatment of the control. The time history of ‖yn‖L2(Ω).
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Figure 5: Case 2. Implicit treatment of the control. The time history of ‖yn‖L2(Ω).

y0(x1, x2) = 0.2x1(π − x1)x2(π − x2)
16
π4 . The time step is ∆t = 0.01 and the number of

time steps is NN = 50.
The time history of ‖yn‖L2(Ω) is shown in Figure 5.

Case 3. λ = 12
In this case λ1 = −10, λ2 = −7, λ3 = −7, λ4 = −4, λ5 = −2, λ6 = −2 and λj > 0 for

j = 7, 8, . . . We use the finite element P2 with a mesh of 594 triangles and 330 vertices.
The initial condition is y0(x1, x2) = x1(π − x1)x2(π − x2)

16
π4 . The time step is ∆t = 0.01

and the number of time steps is NN = 100.
The controlled solution at different time instants is presented in Figure 6. In Figure

7, the time history of ‖yn‖L2(Ω) is presented.
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Figure 6: Case 3. The controlled solution at different time instants.
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Figure 7: Case 3. Implicit treatment of the control. The time history of ‖yn‖L2(Ω).
Uncontrolled (left) and controlled (right) cases.

In order to achieve
∥

∥yn+1
k+1 − yn+1

k

∥

∥

L2(Ω)
≤ 10−3 at the first time step, 39 iterations

are required. This number decreases until the time instant t = 0.24. Starting from the
time instant t = 0.25, only 2 iterations are required in order to achieve the stopping test
at the Step 3 of Algorithm 2.

5 Conclusions

Two numerical algorithms are proposed for stabilization of a heat like equation in two
dimensions. The treatment of the feedback Dirichlet boundary control is either explicit
or implicit. Numerical tests are presented.
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