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Geometrical model and notations




Notations from thin shell theory

L>0, ¢t,¢?:[0,[] =R

Fo = {(a,e) €R% xa = 6'(8), %2 = ¢°(€), £ €[0,L]}
The covariant basis (a1, a3) is given by

T 1

a1=((0),()) s as= (6~ ()



Weak formulation of the arch problem

U = {4 = (¢1,¢3) € H (10, L]) x H (10, L])}

L e e2
sww) = [ 120z (@t @)+ etk @) vade

Find the displacement u = (u1, u3) € U of the arch such that for
all ¢ € U, we have

L L
as (u, ) = /0 (N + Ay3) va de+ /O (F5ren + F505) Va d

Fu={(a.0)T = ¢(6) + wa(€)a'(€) + us(€)a*(€). € € [0. L] |



Strong form of the fluid equations

Find the velocity v : Qf — R? and the pressure p : QF — R such
that:

—uAv+Vp = fF inQf

Vv = 0, inQf
vxn = 0, onXx;
n- (JFn) = —Pj,, onXx;
v = 0, onks
vxn = 0, onZXs3
n- (aFn) = —Pyu, on s
vxn = 0, onl,
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n- (aFn) = )Xo (¢+ umal + U3a3> , only,



Week formulation of the fluid problem. Notations

W = {WG(H1<QE))2;w:00n):2, W2:00n21U):3},
Q = L2 (Qﬁ), Z=HY2(r,).

ar(v,w) = 2u Z /QF eij(v)eji(w) dx

ij=1

be(w,q) = —/QF(V'W)qu
crw¢) = ~ [ wr)dy

-1
e (w) = /QFfF-wdx—/r (w-n))\3o<¢+ula1—i—U3a3) dy

_/Zl(w.n)P,-ndy—/ (w - n) Pyt dy
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Week formulation of the fluid problem

Findve W, pe Q and n € Z such that

ar (v,w) + br (w,p) +cr(w,n) = Lle(w), Y'WeW
v,q) = 0, VgeQ
v.() = 0, ¥ eZ

The physical meaning of 7 is that of the tangential stresses on the
interface, ie. n=7-0n.



Continuity of the stresses and of the velocity on the
interface

The surface forces acting to the arch in a point ¢(&) of Iy are
given by
May + \ags,

while the surface forces acting to the fluid in the point
B(€) + w(€)al(€) + us(€)a’ (&) of T, are given by

oFn=(r- (")) 7+ (n- (oFn))m.

1
—aj=a'a~T, az=a’~n

Va
\VarT- (an) =n -X=xn-: (aFn)

v.n=0, vxn=0,onl,



Coupling fluid and arch equations

For a given A, we obtain the displacement u by solving the arch
problem.

From the fluid problem, we get the velocity v, the pressure p of the
fluid and the tangential stresses on the interface 7.

The fluid-arch interaction problem is to find A such that

v.n = 0,only,

-\Mva = no (¢+ ual + U3a3) , on [0,L].



Optimal control problem

We assume in the following that the displacement of the arch
depends only on \3.

1
inf—/ (v-n)? dv
2 u
subject to

A e L2(jo, L))
u solution of the arch problem

v, p, n solution of the fluid problem



Geometry
Let L=6 cm.

o = {(Xth)eRz: xi=E xo=-5+/45—((£—3), £€ [O,L]}.

Physical parameters

The inflow X1 and outflow X3 sections are segments of length 0.8.
The thickness of wall e = 0.1 cm, the Young's modulus

E =0.75-10° Cnfs2, the Poisson’s ratio v = 0.49 and the mass
density p°> = 1.1 25

The viscosity of the fluid ¢ = 0.035 Cnf.s, the volume force in fluid
is ff = (0,0)7 and the outflow pressure Po,; = 0.




Finite Element approximation

The normal displacement of the arch is approached by the finite
element P3 Hermite, while the tangential displacement is
approached by P; on segments.

For the approximation of the fluid velocity and pressure we have
employed the triangular finite elements P1+bubble and Py
respectively. The tangential stresses on the interface is approached
by the finite element P; on segments.
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Construction of fluid meshes

All the fluid meshes are obtained by moving a fixed mesh with a
displacement which is the solution of a Laplace problem with
Dirichlet boundary conditions.

On the fixed boundaries X1, X5, X3 the mesh displacement
vanishes, while on the interface I',, it is equal to the arch
displacement.



Solving the optimal control problem

In order to solve numerically the optimal control problem, we have
used the Broyden, Fletcher, Goldforb, Shano (BFGS) method
where the gradient of the cost function was approached by the first
order Finite Difference Method with the grid spacing 0.01.

We can use the stopping criteria |J| < €1 or ||[VJ||, < e2.



Fluid mesh with 20 segments on the interface

Iteration J Iteration J

0 2547.091786 8 1.023813629
1 1211.782266 9 0.541353106
2 725.6283591 10 0.196142907
3 510.1113951 11 0.074620024
4 55.08303685 12 0.061075290
5 14.69322181 13 0.059283206
6 2.761055109 14 0.059257208
7 1.355973240

IVJ|, =1.9-10°




Fluid mesh with 50 segments on the interface

Iteration J Iteration J
0 2961.338390 7 8.851579284
1 2160.756802 8 2.369258721
2 1392.917188 9 1.271752295
3 879.6830449 10 0.382701032
4 206.9249346 11 0.179680309
5 28.11455274 12 0.124469558
6 18.81352198 13 0.123437472

IVJ|, =1.0-10°




Fluid mesh with 80 segments on the interface

[teration J Iteration J
0 3619.097215 6 29.86861359
1 1503.175625 7 13.36326171
2 258.7993032 8 10.33965940
3 91.91149097 9 0.753294422
4 61.75894998 10 0.095747979
5 42.29953564 11 0.092956444

IVJ|, =3.3-10




Results obtained by BFGS method for different inflow
pressure

The arch mesh has 10 segments. All the fluid meshes have 516
triangles, 304 vertices and 30 segments on the elastic boundary I,,.
We have solved numerically the fluid-structure problem for
following inflow pressure P;, = 50, 100, 200, 400 dyn/cm?.

The stopping criteria was: |J] < 0.5 or [|[VJ||, < 0.1.

P;, | initial J | final J | no. BFGS iterations

50 | 2928.63 0.23 9
100 | 356.86 0.26 13
200 | 1378.34 0.56 17

400 | 5257.25 2.08 20




Arch deformations for different inflow pressures

05 -

undeformed
Pin=50 -------

Pin=400 -—--




Fluid velocities scaled by a factor 0.008 in the case
P;, = 50

Vec Value

W7.91244
M9.89056
M11.8687
138468
M15.8249
M17.803
M19.781
W21.7592
W23.7373
W25.7154
W27.6936
W29.6717
W31.6498
W33.6279
W35.606

W37.5841




Fluid pressure in the case P;, = 50

IsoValue

M11.2567
M13.7671
M16.2774
M18.7877
W21.2981

23.8084
M26.3188
M28.8291
M31.3395
M33.8498
M36.3601
W38.8705
M41.3808
M43.8912
M46.4015
M48.9119




Fluid velocities scaled by a factor 0.001 in the case
P;, = 400

Vec Value

MW64.4185
M80.5231
W96.6277

W161.046
W177.151
W193.255
M209.36

W225.465
W241.569
W257.674
W273.779
M289.883
M305.988




Fluid pressure in the case P;, = 400

IsoValue

M90.0543
L]

W210.574
M230.66

W250.747
M270.833
M290.92

W311.006
M331.093
W351.179
W371.266
W391.352




Conclusions

We have formulated a fluid-structure interaction as an optimal
control problem. The control is the normal force acting on the
interface and the observation is the normal velocity of the fluid on
the interface.

The BFGS method finds numerically small residual function even
for a reduced number of controls.



