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Geometrical model and notations
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Notations from thin shell theory

L > 0, φ1, φ2 : [0, L] → R

Γ0 =
{

(x1, x2) ∈ R
2; x1 = φ1(ξ), x2 = φ2(ξ), ξ ∈ [0, L]

}

The covariant basis (a1, a3) is given by

a1 =
(

(

φ1
)

′

,
(

φ2
)

′
)T

, a3 =
1√
a

(

(

φ2
)

′

,−
(

φ1
)

′
)T

and the associated contravariant basis
(

a1, a3
)

is

a1 =
1√
a
a1, a3 = a3

where a =
(

(

φ1
)

′

)2

+
(

(

φ2
)

′

)2

.



Weak formulation of the arch problem

U =
{

ψ = (ψ1, ψ3) ∈ H1
0 (]0, L[) × H2

0 (]0, L[)
}

aS (u,ψ) =

∫ L

0

Ee

1 − ν2

(

γ1
1 (u) γ1

1 (ψ) +
e2

12
ρ1
1 (u) ρ1

1 (ψ)

)√
a dξ

Find the displacement u = (u1, u3) ∈ U of the arch such that for
all ψ ∈ U, we have

aS (u,ψ) =

∫ L

0

(

λ1ψ1 + λ3ψ3

)√
a dξ+

∫ L

0

(

f S ,1ψ1 + f S ,3ψ3

)√
a dξ

Γu =
{

(x1, x2)
T = φ(ξ) + u1(ξ)a

1(ξ) + u3(ξ)a
3(ξ), ξ ∈ [0, L]

}



Strong form of the fluid equations

Find the velocity v : ΩF
u → R

2 and the pressure p : ΩF
u → R such

that:

−µ∆v + ∇p = fF , in ΩF
u

∇ · v = 0, in ΩF
u

v × n = 0, on Σ1

n ·
(

σFn
)

= −Pin, on Σ1

v = 0, on Σ2

v × n = 0, on Σ3

n ·
(

σFn
)

= −Pout , on Σ3

v × n = 0, on Γu

n ·
(

σFn
)

= −λ3 ◦
(

φ+ u1a
1 + u3a

3
)

−1

, on Γu



Week formulation of the fluid problem. Notations

W =

{

w ∈
(

H1
(

ΩF
u

))2

; w = 0 on Σ2, w2 = 0 on Σ1 ∪ Σ3

}

,

Q = L2
(

ΩF
u

)

, Z = H1/2 (Γu) .

aF (v,w) = 2µ
2

∑

i ,j=1

∫

ΩF
u

εij(v)εij (w) dx

bF (w, q) = −
∫

ΩF
u

(∇ · w) q dx

cF (w, ζ) = −
∫

Γu

(w · τ ) ζ dγ

`F (w) =

∫

ΩF
u

fF · w dx −
∫

Γu

(w · n)λ3 ◦
(

φ+ u1a
1 + u3a

3
)

−1

dγ

−
∫

Σ1

(w · n)Pin dγ −
∫

Σ3

(w · n) Pout dγ



Week formulation of the fluid problem

Find v ∈ W, p ∈ Q and η ∈ Z such that

aF (v,w) + bF (w, p) + cF (w, η) = `F (w) , ∀w ∈ W

bF (v, q) = 0, ∀q ∈ Q

cF (v, ζ) = 0, ∀ζ ∈ Z

The physical meaning of η is that of the tangential stresses on the
interface, i.e. η = τ · σFn.



Continuity of the stresses and of the velocity on the

interface

The surface forces acting to the arch in a point φ(ξ) of Γ0 are
given by

λ1a1 + λ3a3,

while the surface forces acting to the fluid in the point
φ(ξ) + u1(ξ)a

1(ξ) + u3(ξ)a
3(ξ) of Γu are given by

σFn =
(

τ ·
(

σFn
))

τ +
(

n ·
(

σFn
))

n.

1√
a
a1 = a1 ≈ τ , a3 = a3 ≈ n

−λ1
√

a ≈ τ ·
(

σFn
)

= η, −λ3 ≈ n ·
(

σFn
)

v · n = 0, v × n = 0, on Γu



Coupling fluid and arch equations

For a given λ, we obtain the displacement u by solving the arch
problem.
From the fluid problem, we get the velocity v, the pressure p of the
fluid and the tangential stresses on the interface η.
The fluid-arch interaction problem is to find λ such that

v · n = 0, on Γu

−λ1
√

a = η ◦
(

φ+ u1a
1 + u3a

3
)

, on [0, L] .



Optimal control problem

We assume in the following that the displacement of the arch
depends only on λ3.

inf
1

2

∫

Γu

(v · n)2 dγ

subject to

λ3 ∈ L2 (]0, L[)

u solution of the arch problem

v, p, η solution of the fluid problem



Geometry

Let L = 6 cm.

Γ0 =

{

(x1, x2) ∈ R
2; x1 = ξ, x2 = −5 +

√

45 − (ξ − 3)2, ξ ∈ [0, L]

}

.

Physical parameters

The inflow Σ1 and outflow Σ3 sections are segments of length 0.8.
The thickness of wall e = 0.1 cm, the Young’s modulus
E = 0.75 · 106 g

cm·s2 , the Poisson’s ratio ν = 0.49 and the mass

density ρS = 1.1 g
cm3 .

The viscosity of the fluid µ = 0.035 g
cm·s

, the volume force in fluid
is fF = (0, 0)T and the outflow pressure Pout = 0.



Finite Element approximation

The normal displacement of the arch is approached by the finite
element P3 Hermite, while the tangential displacement is
approached by P1 on segments.
For the approximation of the fluid velocity and pressure we have
employed the triangular finite elements P1+bubble and P1

respectively. The tangential stresses on the interface is approached
by the finite element P1 on segments.



Construction of fluid meshes

All the fluid meshes are obtained by moving a fixed mesh with a
displacement which is the solution of a Laplace problem with
Dirichlet boundary conditions.
On the fixed boundaries Σ1, Σ2, Σ3 the mesh displacement
vanishes, while on the interface Γu , it is equal to the arch
displacement.



Solving the optimal control problem

In order to solve numerically the optimal control problem, we have
used the Broyden, Fletcher, Goldforb, Shano (BFGS) method
where the gradient of the cost function was approached by the first
order Finite Difference Method with the grid spacing 0.01.
We can use the stopping criteria |J| < ε1 or ‖∇J‖

∞
< ε2.



Fluid mesh with 20 segments on the interface

Iteration J

0 2547.091786

1 1211.782266

2 725.6283591

3 510.1113951

4 55.08303685

5 14.69322181

6 2.761055109

7 1.355973240

Iteration J

8 1.023813629

9 0.541353106

10 0.196142907

11 0.074620024

12 0.061075290

13 0.059283206

14 0.059257208

‖∇J‖
∞

= 1.9 · 102



Fluid mesh with 50 segments on the interface

Iteration J

0 2961.338390

1 2160.756802

2 1392.917188

3 879.6830449

4 206.9249346

5 28.11455274

6 18.81352198

Iteration J

7 8.851579284

8 2.369258721

9 1.271752295

10 0.382701032

11 0.179680309

12 0.124469558

13 0.123437472

‖∇J‖
∞

= 1.0 · 102



Fluid mesh with 80 segments on the interface

Iteration J

0 3619.097215

1 1503.175625

2 258.7993032

3 91.91149097

4 61.75894998

5 42.29953564

Iteration J

6 29.86861359

7 13.36326171

8 10.33965940

9 0.753294422

10 0.095747979

11 0.092956444

‖∇J‖
∞

= 3.3 · 102



Results obtained by BFGS method for different inflow

pressure

The arch mesh has 10 segments. All the fluid meshes have 516
triangles, 304 vertices and 30 segments on the elastic boundary Γu.
We have solved numerically the fluid-structure problem for
following inflow pressure Pin = 50, 100, 200, 400 dyn/cm2.
The stopping criteria was: |J| < 0.5 or ‖∇J‖

∞
< 0.1.

Pin initial J final J no. BFGS iterations

50 2928.63 0.23 9

100 356.86 0.26 13

200 1378.34 0.56 17

400 5257.25 2.08 20



Arch deformations for different inflow pressures
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Fluid velocities scaled by a factor 0.008 in the case

Pin = 50

Vec Value
0
1.97811
3.95622
5.93433
7.91244
9.89056
11.8687
13.8468
15.8249
17.803
19.7811
21.7592
23.7373
25.7154
27.6936
29.6717
31.6498
33.6279
35.606
37.5841



Fluid pressure in the case Pin = 50

IsoValue
1.21534
3.72569
6.23603
8.74637
11.2567
13.7671
16.2774
18.7877
21.2981
23.8084
26.3188
28.8291
31.3395
33.8498
36.3601
38.8705
41.3808
43.8912
46.4015
48.9119



Fluid velocities scaled by a factor 0.001 in the case

Pin = 400

Vec Value
0
16.1046
32.2092
48.3139
64.4185
80.5231
96.6277
112.732
128.837
144.942
161.046
177.151
193.255
209.36
225.465
241.569
257.674
273.779
289.883
305.988



Fluid pressure in the case Pin = 400

IsoValue
9.70817
29.7947
49.8812
69.9678
90.0543
110.141
130.227
150.314
170.4
190.487
210.574
230.66
250.747
270.833
290.92
311.006
331.093
351.179
371.266
391.352



Conclusions

We have formulated a fluid-structure interaction as an optimal
control problem. The control is the normal force acting on the
interface and the observation is the normal velocity of the fluid on
the interface.
The BFGS method finds numerically small residual function even
for a reduced number of controls.


