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Abstract: An implicit scheme by partitioned procedures is proposed to solve a dynamic fluid–structure
interaction problem in the case when the structure displacements are limited by a rigid obstacle. For the
fluid equations (Sokes or Navier–Stokes), the fictitious domain method with penalization was used.
The equality of the fluid and structure velocities at the interface was obtained using the penalization
technique. The surface forces at the fluid–structure interface were computed using the fluid solution
in the structure domain. A quadratic optimization problem with linear inequalities constraints was
solved to obtain the structure displacements. Numerical results are presented.

Keywords: fluid-structure interaction; contact mechanics; fictitious domain with penalization

1. Introduction

The Arbitrary Lagrangian Eulerian (ALE) method was successfully employed for
solving fluid–structure interaction problems, see [1]. The fluid equations were written in
the moving mesh which matches the structure displacement. This method was not adapted
for a structure–rigid obstacle contact when the topology of the fluid domain changed from
double to simply connected. Some authors have introduced a gap between the elastic
structure and the rigid obstacle as in [2].

Some methods exist for solving fluid–structure interaction problems using a fixed mesh
for the fluid domain. We recall some of them. The immersed boundary method, see the survey
paper [3], was designed originally for a thin structure. It was extended to a thick, viscous
hyper-elastic structure in [4], where it was assumed that the fluid and structure densities and
viscosities were the same. The fictitious domain with distributed Lagrange multiplier [5]
was employed for the simulation of flow around moving rigid bodies. The extension to
a visco-elastic structure was proposed in [6]. The densities, respectively, the viscosities of
fluid and visco-elastic materials were not the same. For a rigid thick body immersed in an
incompressible fluid, the convergence of a penalization method was presented in [7] and the
extended finite element method (XFEM) was used in [8]. Nitsche-XFEM was used in [9] for a
thin elastic structure immersed in an incompressible fluid.

Concerning the fluid–structure interaction with a structure–rigid obstacle contact, we
can cite some works. In [10], for a 1D elastic structure, the Lagrange multiplier was em-
ployed to compute the interface forces. The Uzawa algorithm was used to handle the contact.
An extension to a 3D nonlinear shell was presented in [11]. An approach using the extended
finite element method (XFEM) and a mortar contact formulation was proposed in [12].
In [13], an immersogeometric variational framework for fluid–structure interactions with
application to a 3D heart valve was presented. In recent papers, a monolithic Eulerian
framework with remeshig was used in [14], a stabilised immersed methodology on hierar-
chical b-spline grids was employed in [15], the cut finite element method was used in [16],
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a Nitsche-based formulation with artificial fluid in the gap between structure and obstacle
was presented in [17].

In [18], the fictitious domain method with penalization presented in [19,20] was used
in order to handle the contact between a linear elastic structure and a rigid obstacle in a
fluid–structure interaction problem. The surface forces at the fluid–structure interface were
computed using the fluid solution in the structure domain. The equality of the fluid and
structure velocities at the interface was obtained using the penalization technique. In the
present paper, we present a dynamic fluid–structure interaction problem when the elastic
structure is in contact with a rigid obstacle. The fluid was modeled by the Stokes as well as
by the Navier–Stokes equations.

2. Fluid–Structure Interaction with Contact: The Mathematical System

The undeformed structure domain ΩS
0 ⊂ R2 has Lipschitz boundary ∂ΩS

0 = ΓD ∪
ΓN ∪ ΓC. On ΓD the displacement is zero, on ΓN surface loads are imposed and a subset
of ΓC will touch a rigid obstacle, after deformation. In Figure 1, we have ΓD =]MN[,

ΓC =
_

NP, ΓN =
_

PM.

Figure 1. The undeformed structure domain (continuous line) and deformed structure domain
(pointed line) in contact with the obstacle.

The structure displacement will be denoted by u = (u1, u2) : ΩS
0 × [0, T] → R2.

A point X = (X1, X2) in the undeformed structure domain will occupy the position
x = ϕt(X) = X + u(X, t) in the deformed structure domain ΩS

t = ϕt
(
ΩS

0
)
. We set

Γ0 = ∂ΩS
0 \ ΓD and Γt = ϕt(Γ0) = ϕt(ΓN) ∪ ϕt(ΓC).

The bounded domain of boundary Σ5 is the rigid obstacle. In the case of an elastic
structure–rigid obstacle contact, we have ϕt(ΓC) ∩ Σ5 6= ∅. To simplify, we assume that
_
RS = ϕt(ΓC)∩Σ5 is a connected Lipschitz curve. We have ϕt(ΓC) =

_
NR∪

_
RS∪

_
SPt, where

Pt = ϕt(P), see Figure 1. The conclusions are the same if we replace
_
RS by a finite union of

Lipschitz arches.
The fluid domain D ⊂ R2 has the boundary ∂D = ∪5

i=1Σi and ΓD ⊂ Σ1. In Figure 1,
D is a rectangle with a hole of boundary Σ5. The top side Σ4 is the inflow, the bottom side
Σ2 is the outflow, the left side Σ1 and the right side Σ2 represent the wall.
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We suppose that ΩS
t ⊂ D and the fluid occupies ΩF

t = D \ΩS
t . The set ΩF

t is not
necessary a Lipschitz domain when the structure touches the rigid obstacle.

The system to be solved is to find the structure displacement u : ΩS
0 × [0, T] → R2,

the fluid velocity v(·, t) : ΩF
t → R2 and the fluid pressure p(·, t) : ΩF

t → R such that:

ρS ∂2u
∂t2 −∇X · σS(u) = fS, in ΩS

0×]0, T[ (1)

u = 0, on ΓD×]0, T[ (2)

ρF ∂v
∂t
−∇ · σF(v, p) = fF, in ΩF

t , t ∈]0, T[ (3)

∇ · v = 0, in ΩF
t , t ∈]0, T[ (4)

v = g, on Σ4×]0, T[ (5)

v = 0, on ((Σ1 \ ΓD) ∪ Σ3)×]0, T[ (6)

σF(v, p)nF = 0, on Σ2×]0, T[ (7)

Γt = ϕt(Γ0) ⊂ D, t ∈]0, T[ (8)

v = 0, on Σ5 \ {x ∈ Σ5; ∃X ∈ ΓC, x = ϕt(X)}, t ∈]0, T[ (9)
∂u
∂t

(X, t) = v(ϕt(X), t), on ΓN ∪ {X ∈ ΓC; ϕt(X) /∈ Σ5}, t ∈]0, T[ (10)

σS(u)(X, t)nS(X) = −
(

σF(v, p)nF
)
(ϕt(X), t),

on ΓN ∪ {X ∈ ΓC; ϕt(X) /∈ Σ5}, t ∈]0, T[ (11)

σS(u)(X, t) nS(X) = −α(X, t) n(ϕt(X)), α(X, t) ≥ 0,

on {X ∈ ΓC; ϕt(X) ∈ Σ5}, t ∈]0, T[ (12)

u(X, 0) = u0(X), X ∈ ΩS
0 (13)

∂u
∂t

(X, 0) = u1(X), X ∈ ΩS
0 (14)

v(x, 0) = v0(x), x ∈ ΩF
0 (15)

where fS : ΩS
0 × [0, T] → R2 are the applied volume forces and nS is the unit outward

vector normal to ∂ΩS
0 . Additionally, we define fF(·, t) : ΩF

t → R2 and nF(·, t) the unit
outward vector normal to ∂ΩF

t . The Equations (13)–(15) represent the initial conditions, u0,
u1, v0 are given.

In (5), g : Σ4 × [0, T] → R2 is the imposed velocity. If no-slip boundary conditions
are prescribed at ∂D, since the fluid is incompressible, then the volume of the structure is
constant, too. In our case, it is not necessary to add the same restriction on the volume of
the structure, even when g = 0 because we use (7) at the outflow boundary Σ2.

For (12), we followed [21] (Theorem 5.3-1, p. 210), n(ϕt(X)) is the unit vector normal
to Σ5 at the point ϕt(X) ∈ Σ5, oriented to the exterior of D. We point out that the value
of α(X, t) is not given. The meaning of (12) is that the force acting on the structure on
the contact zone is parallel to n(ϕt(X)) and it has opposite direction. In the case of linear
elasticity, (12) could be approached by

nS · σS nS ≤ 0, tS · σS nS = 0

where tS is the unit tangential vector to ∂ΩS
0 .

If the elastic structure is not in contact with the obstacle Σ5, the Equations (9)–(12) are
replaced by
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v = 0, on Σ5,×]0, T[
∂u
∂t

(X, t) = v(ϕt(X), t), on (ΓN ∪ ΓC)×]0, T[

σS(u)(X, t)nS(X) = −
(

σF(v, p)nF
)
(ϕt(X), t), on (ΓN ∪ ΓC)×]0, T[.

We have denoted by σS(u) : ΩS
0 → R4 and σF(v, p) : ΩF

t → R4 the Cauchy stress
tensors of the structure and fluid, respectively. The structure equations are written using
Lagrangian coordinates σS(u) = λS(∇X · u)I + 2µSεX(u), λS, µS > 0 are the Lamé coef-
ficients, εX(u) = 1

2
(
∇Xu + (∇Xu)T) and I is the unit matrix. The Eulerian coordinates

have been used for fluid equations σF(v, p) = −p I + 2µFε(v), µF > 0 is the viscosity and
ε(v) = 1

2
(
∇v + (∇v)T). The mass densities are denoted by ρS > 0 and ρF > 0.

To the best of our knowledge, there are no reported results for fluid–structure inter-
action with a contact. However, without a structure–obstacle contact, there are reported
results for fluid–structure interactions. In general, in the literature, the domain of the
fluid is assumed to be Lipschitz. However, when the structure touches the rigid obstacle,
the fluid domain is not necessary a Lipschitz domain. Existing results for fluid–structure
interactions are presented in [19,20,22,23] and the references are given there. In [19,20,22],
the fictitious domain method was used and this technique could be more appropriate to
handle the structure–obstacle contact in the fluid–structure interaction framework.

3. Approximation of the Elastodynamics Frictionless Contact Problem

We analyze, in this section, the linear dynamic elasticity equations with a frictionless
contact. In ΩS

0 , volume forces fS are imposed and onΓN surface loads hS are prescribed.
The structure is fixed along ΓD. We recall that ∂ΩS

0 = ΓD ∪ ΓN ∪ ΓC.
Let ψ ∈ C1(R) be a function describing a part of the top boundary of the obstacle.

We set its graph by

graph(ψ) =
{
(X1, X2) ∈ R2, X2 = ψ(X1)

}
and its epigraph by

epi(ψ) =
{
(X1, X2) ∈ R2, X2 ≥ ψ(X1)

}
.

The non-penetration condition of the elastic structure into the obstacle gives

ϕt(ΓC) ⊂ epi(ψ), ∀t ∈]0, T[. (16)

A point X ∈ ΓC belongs to the coincidence set at time instant t if ϕt(X) ∈ graph(ψ). In the
case of linear elasticity, see [24], the condition (16) can be replaced by

ψ(X1) + ψ′(X1) u1(X1, X2, t) ≤ X2 + u2(X1, X2, t), ∀(X1, X2) ∈ ΓC, ∀t ∈]0, T[. (17)

Denoting by H1(ΩS
0 ) the first-order Sobolev space, let us introduce the Hilbert space

WS =

{
wS ∈

(
H1
(

ΩS
0

))2
; wS = 0 on ΓD

}
,

the bi-linear form aS : WS ×WS → R,

aS

(
u, wS

)
=
∫

ΩS
0

(
λS(∇X · u)

(
∇X ·wS

)
+ 2µSεX(u) : εX

(
wS
))

dX
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and the closed, convex and non-empty set

K =
{

wS = (wS
1 , wS

2 ) ∈WS;

ψ′(X1)wS
1 (X1, X2)− wS

2 (X1, X2) ≤ X2 − ψ(X1), ∀(X1, X2) ∈ ΓC

}
. (18)

We assume fS ∈ L2
(

0, T;
(

L2(ΩS
0 )
)2
)

, hS ∈ L2
(

0, T;
(

L2(ΓN)
)2
)

, u0 ∈ K, u1 ∈(
L2(ΩS

0 )
)2. We can write the linear elastodynamics frictionless contact problem as a

variational inequality: find u ∈ C([0, T]; K) ∩ C1
(
[0, T];

(
L2(ΩS

0 )
)2
)

such that

ρS
∫

ΩS
0

d2u(t)
dt2 ·

(
wS − u(t)

)
dX + aS

(
u(t), wS − u(t)

)
≥
∫

ΩS
0

fS(t) ·
(

wS − u(t)
)

dX

+
∫

ΓN
hS(t) ·

(
wS − u(t)

)
ds, ∀wS ∈ K, almost everywhere t ∈]0, T[ (19)

u(0) = u0 (20)
du
dt

(0) = u1. (21)

The existence for dynamic linear elasticity with frictionless contact in an arbitrary domain
is still open, see the monograph ([25] Section 4.1). Existence and uniqueness results for
an elastodynamics contact problem were obtained: in [26] for linear and visco-elastic
models with Coulomb friction, in [27] for wave problem in a half-space, in [28] for visco-
elastic body with frictionless adhesion and in [29] for elastic-visco-plastic equations with
Coulomb friction.

Several discretization schemes for elastodynamics contact problems have been de-
veloped, see the survey papers [30,31]. Let ∆t > 0 be the time step and we note by un,
fS,n, hS,n approximations of u(tn), fS(tn), hS(tn), respectively, for tn = n∆t. In this paper,
we use the following implicit time-integration scheme: find un+1 ∈ K such that

ρS
∫

ΩS
0

un+1 − 2un + un−1

∆t2 · (wS − un+1)dX + aS(un+1, wS − un+1)

≥
∫

ΩS
0

fS,n+1 ·
(

wS − un+1
)

dX +
∫

ΓN

hS,n+1 ·
(

wS − un+1
)

ds, ∀wS ∈ K (22)

with initial conditions u0 = u0 and u1 = u0 + ∆t u1.
With the notation

Ln+1
S (wS) =

∫
ΩS

0

fS,n+1 ·wS dX +
∫

ΓN

hS,n+1 ·wS ds,

the variational inequality (22) is equivalent to the optimization problem

un+1 = arg inf
wS∈K

ρS

2

∫
ΩS

0

wS ·wS

∆t2 dX + ρS
∫

ΩS
0

−2un + un−1

∆t2 ·wSdX

+
1
2

aS(wS, wS)− Ln+1
S (wS). (23)

We follow the notations from [18]. Let T S
h be a mesh of ΩS

0 of size h, with nvS vertices
and ntS triangles. The shape functions φi : T S

h → R associated to vertex Ai are obtained by
using the finite element P1. We set the basis φi = (φi

1, φi
2) : T S

h → R2 for i = 1, . . . , 2 nvS
defined by

φi = (φi, 0), for i = 1, . . . , nvS and φnvS+i = (0, φi), for i = 1, . . . , nvS.
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We define the matrix ÃS ∈ R2 nvS×2 nvS and the vector bn+1
S ∈ R2 nvS by

ÃS = (ãS
ij), ãS

ij = aS(φ
j, φi) +

ρS

∆t2

∫
ΩS

0

φj ·φi dX, i, j = 1, . . . , 2 nvS (24)

and

(bn+1
S )i = Ln+1

S (φi) +
ρS

∆t2

∫
ΩS

0

(2un − un−1) ·φi dX, i = 1, . . . , 2 nvS.

The constraint wS ∈ K will be treated weakly. We set the matrix CS ∈ RngC×2 nvS,
where ngC is the number of vertices Ai ∈ ΓC and the vector clb

S ∈ RngC by

CS = (cS
ij), cS

ij =
∫

ΓC

(−ψ′(X1)φ
j
1(X1, X2) + φ

j
2(X1, X2))φi(X1, X2) ds

for j = 1, . . . , 2 nvS and Ai ∈ ΓC and

(clb
S )i =

∫
ΓC

(ψ(X1)− X2)φi(X1, X2) ds

for Ai ∈ ΓC.
In order to impose (2), we set ξub, ξlb ∈ R2 nvS

ξub
i = ξub

nvS+i = ξ lb
i = ξ lb

nvS+i = 0, if Ai ∈ ΓD

otherwise ξub
i = ∞ and ξ lb

i = −∞. The discrete form of (23) is un+1
h = ∑2 nvS

i=1 ξiφ
i where

ξ = arg inf
ξ∈R2 nvS

1
2
〈ÃSξ, ξ〉 − 〈bn+1

S , ξ〉 (25)

CSξ ≥ clb
S (26)

ξub ≥ ξ ≥ ξlb. (27)

The optimization problem (25)–(27) has a unique solution, because the cost function is
strictly convex and the constraints define a convex set. We set

WS
h =

{
wS

h =
2 nvS

∑
i=1

ξiφ
i; such that ξ verify ξub ≥ ξ ≥ ξlb

}
, (28)

Kh =

{
wS

h =
2 nvS

∑
i=1

ξiφ
i ∈WS

h ; such that ξ verify CSξ ≥ clb
S

}
. (29)

4. Approximation of Fluid Equations by Fictitious Domain Method with Penalization

The fluid domain ΩF
t can change the topology from double, when no contact occurs,

to simply connected, when the structure touches the obstacle. The ALE technique can
not by applied in this case. We use the fictitious domain approach and we write the fluid
equations in the fixed domain D including ΩF

t . The mesh of D is independent on the
displacement of the structure.

Let us set the Hilbert spaces

W =

{
w ∈

(
H1(D)

)2
, w = 0 on ∂D \ Σ2

}
Q = L2(D)
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and the notations

aF :
(

H1(D)
)2
×
(

H1(D)
)2
→ R, aF(v, w) =

∫
D

2µFε(v) : ε(w) dx

bF :
(

H1(D)
)2
×Q→ R, bF(w, p) = −

∫
D
(∇ ·w)p dx.

We assume that fF ∈ L2
(

0, T;
(

L2(D)
)2
)

, g ∈ L2
(

0, T;
(

H1/2
00 (Σ4)

)2
)

and ε > 0 is a

penalization parameter. Let χS
n+1 : D → R be the characteristic function

χS
n+1(x) =

{
1, x ∈ ΩS

n+1
0, x ∈ D \ΩS

n+1

where ΩS
n+1 is the image of ΩS

0 by the map ϕn+1(X) = X + un+1(X). We denote ΩF
n+1 =

D \ΩS
n+1 and we have D = ΩS

n+1 ∪ΩF
n+1.

The time-integration scheme for the fluid is: for given un+1, un, find the velocity
vn+1

ε ∈
(

H1(D)
)2, vn+1

ε = gn+1 on Σ4, vn+1
ε = 0 on Σ1 ∪ Σ3 ∪ Σ5 and the pressure

pn+1
ε ∈ Q, such that

ρF
∫

D

vn+1
ε − vn

ε

∆t
·w dx + aF

(
vn+1

ε , w
)
+ bF

(
w, pn+1

ε

)
+

1
ε

∫
D

χS
n+1

(
vn+1

ε −
(un+1 − un) ◦ ϕ−1

n+1
∆t

)
·wdx =

∫
D

fF,n+1 ·wdx, ∀w ∈W (30)

bF

(
vn+1

ε , q
)

= 0, ∀q ∈ Q. (31)

The problem has a unique solution, see [19,20] for example in the steady case. As a
consequence of the penalization term in (30), we get the weak equality of fluid velocity and
structure velocity over the whole structure domain ΩS

n+1 and it implies the condition (10)
on the fluid–structure interface. In addition, the boundary condition at the outflow (7) is
weakly verified.

We employ the stable finite elements P1 + bubble (we write just P1 + b) for the velocity
and P1 for the pressure. Let T F

h be a mesh of D of size h, with nvF vertices and ntF triangles.
We introduce

Wh =

{
wh ∈

(
C0(D)

)2
; ∀T ∈ T F

h , wh|T ∈ ((P1 + b)(T))2, wh = 0 on ∂D \ Σ2

}
(32)

Qh =
{

qh ∈ C0(D); ∀T ∈ T F
h , qh|T ∈ P1(T)

}
. (33)

5. Computing the Forces at the Fluid–Structure Interface Using the Fictitious Domain

We recall the notations: ϕn+1(X) = X + un+1(X), ΩS
n+1 = ϕn+1(ΩS

0 ), ΩF
n+1 = D \

ΩS
n+1. We assume in this section that ΩS

n+1 and ΩF
n+1 are Lipschitz domains. If no contact

occurs, this assumtion is true if the displacement is Lipschitz, see [23].
The fluid–structure interface is defined by ΓFS

n+1 = ΩS
n+1 ∩ΩF

n+1. In the case when
no contact occurs, the interface is ΓFS

n+1 = Γn+1, where Γn+1 = ϕn+1(Γ0), but when the

structure touches the rigid obstacle, the interface is ΓFS
n+1 = ϕn+1(Γ0) \

_
RS. For a related

problem, called a thin obstacle problem, it is proved in [32] that the coincidence set is a
finite union of closed disjoint intervals. The conclusions of this section are the same if we

replace
_
RS by a finite union of Lipschitz arches. In the case of a thick obstacle problem, we

can find results on the topology of the coincidence set in [33,34]. For example, let u : Ω→ R
be an elastic membrane. If Ω ⊂ R2 is strictly convex and the obstacle ψ : Ω→ R is strictly
concave, it is possible to prove that the coincidence set is a simply connected domain
(without holes), see [33] (Theorem 6.2, p. 176).
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We employ the notations vn+1,F
ε for the restriction of vn+1

ε to ΩF
n+1, respectively vn+1,S

ε

for the restriction of vn+1
ε to ΩS

n+1 if vn+1
ε ∈

(
H1(D)

)2 and similarly for pn+1,F
ε and pn+1,S

ε

if pn+1
ε ∈ Q, wn+1,F and wn+1,S if w ∈W.

Using w with compact support in ΩF
n+1 in (30), we get

ρF vn+1,F
ε − vn,F

ε

∆t
−∇ · σF

(
vn+1,F

ε , pn+1,F
ε

)
= fF,n+1, in

(
L2(ΩF

n+1)
)2

.

If vn+1,F
ε ∈

(
H2(ΩF

n+1)
)2 and pn+1,F

ε ∈ H1(ΩF
n+1), by the Green formula we get

∫
ΓFS

n+1

σF
(

vn+1,F
ε , pn+1,F

ε

)
nF ·wn+1,Fds = ρF

∫
ΩF

n+1

vn+1,F
ε − vn,F

ε

∆t
·wn+1,F dx

+
∫

ΩF
n+1

2µFε
(

vn+1,F
ε

)
: ε
(

wn+1,F
)

dx−
∫

ΩF
n+1

(
∇ ·wn+1,F

)
pn+1,F

ε dx

−
∫

ΩF
n+1

fF,n+1 ·wn+1,F dx

for all wn+1,F ∈
(

H1(ΩF
n+1)

)2 such that wn+1,F = 0 on ∂ΩF
n+1 ∩ ∂D.

Even if vn+1,F
ε ∈

(
H1(ΩF

n+1)
)2 and pn+1,F

ε ∈ L2(ΩF
n+1), we can give a sense of

σF
(

vn+1,F
ε , pn+1,F

ε

)
nF on ΓFS

n+1 by the element jF ∈
((

H1/2
00
(
ΓFS

n+1
))2
)′

, see [35] (Chap-

ter VII, p. 1241) and [36] (p. 325), defined by

〈
jF, γΓFS

n+1
(wn+1,F)

〉
ΓFS

n+1

= ρF
∫

ΩF
n+1

vn+1,F
ε − vn,F

ε

∆t
·wn+1,F dx

+
∫

ΩF
n+1

2µFε
(

vn+1,F
ε

)
: ε
(

wn+1,F
)

dx−
∫

ΩF
n+1

(
∇ ·wn+1,F

)
pn+1,F

ε dx

−
∫

ΩF
n+1

fF,n+1 ·wn+1,F dx (34)

for all wn+1,F ∈
(

H1(ΩF
n+1)

)2 such that wn+1,F = 0 on ∂ΩF
n+1 ∩ ∂D, where 〈·, ·〉ΓFS

n+1
is the

duality between
((

H1/2
00
(
ΓFS

n+1
))2
)′

and
(

H1/2
00
(
ΓFS

n+1
))2

and γΓFS
n+1

is the trace operator

on ΓFS
n+1. We denote by H1/2

00 (ΓFS
n+1), the space of the trace on ΓFS

n+1 of functions of {v ∈
H1(ΩF

n+1); v = 0 on ∂ΩF
n+1 \ ΓFS

n+1} and we have that H1/2
00 (ΓFS

n+1) ⊂ H1/2(ΓFS
n+1).

Using w with a compact support in ΩS
n+1 in (30), we get

ρF vn+1,S
ε − vn,S

ε

∆t
−∇ · σF

(
vn+1,S

ε , pn+1,S
ε

)
+

1
ε

(
vn+1,S

ε −
(un+1 − un) ◦ ϕ−1

n+1
∆t

)
= fF,n+1, in

(
L2(ΩS

n+1)
)2

.

Similary, we define jS ∈
((

H1/2
00
(
ΓFS

n+1
))2
)′

by
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〈
jS, γΓFS

n+1
(wn+1,S)

〉
ΓFS

n+1

= ρF
∫

ΩS
n+1

vn+1,S
ε − vn,S

ε

∆t
·wn+1,S dx

+
∫

ΩS
n+1

2µFε
(

vn+1,S
ε

)
: ε
(

wn+1,S
)

dx−
∫

ΩS
n+1

(
∇ ·wn+1,S

)
pn+1,S

ε dx

+
1
ε

∫
ΩS

n+1

(
vn+1,S

ε −
(un+1 − un) ◦ ϕ−1

n+1
∆t

)
·wn+1,S dx

−
∫

ΩS
n+1

fF,n+1 ·wn+1,S dx (35)

for all wn+1,S ∈
(

H1(ΩS
n+1)

)2 such that wn+1,S = 0 on ∂ΩS
n+1 ∩ ∂D.

From (30), we get

jS = −jF, in
((

H1/2
00

(
ΓFS

n+1

))2
)′

. (36)

We have (11) at the fluid–structure interface, or equivalently

σSnS(X, t) = −(σFnF)(ϕt(X), t).

Then, the surface forces from the fluid acting on the structure are computed by using
the right-hand side of (35). As in [19,20], by using the change of variable formula, we get

ρF
∫

ΩS
n+1

vn+1,S
ε − vn,S

ε

∆t
·wn+1,S dx

+
∫

ΩS
n+1

2µFε
(

vn+1,S
ε

)
: ε
(

wn+1,S
)

dx−
∫

ΩS
n+1

(
∇ ·wn+1,S

)
pn+1,S

ε dx

+
1
ε

∫
ΩS

n+1

(
vn+1,S

ε −
(un+1 − un) ◦ ϕ−1

n+1
∆t

)
·wn+1,S dx

−
∫

ΩS
n+1

fF,n+1 ·wn+1,S dx

= ρF
∫

ΩS
0

Jn+1 (v
n+1,S
ε − vn,S

ε ) ◦ ϕn+1

∆t
·wS dX

+
∫

ΩS
0

Jn+1
(

σF
(

vn+1,S
ε , pn+1,S

ε

)
◦ ϕn+1

)
(Fn+1)−T : ∇XwS dX

+
1
ε

∫
ΩS

0

Jn+1
(

vn+1,S
ε ◦ ϕn+1 −

(un+1 − un)

∆t

)
·wS dX

−
∫

ΩS
0

Jn+1
(

fF,n+1 ◦ ϕn+1

)
·wS dX

where Fn+1(X) = I +∇Xun+1(X), Jn+1(X) = det Fn+1(X), wS = wn+1,S ◦ ϕn+1 ∈WS.
The right-hand side of the above equality, in the case of linear elasticity, could be

approached by

ρF
∫

ΩS
0

v̂n+1
ε − v̂n

ε

∆t
·wS dx

+
∫

ΩS
0

2µFεX

(
v̂n+1

ε

)
: εX

(
wS
)

dX−
∫

ΩS
0

(
∇X ·wS

)
p̂n+1

ε dX

+
1
ε

∫
ΩS

0

(
v̂n+1

ε − (un+1 − un)

∆t

)
·wSdX−

∫
ΩS

0

f̂F,n+1 ·wSdX (37)
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where v̂n+1
ε = vn+1,S

ε ◦ ϕn+1, p̂n+1
ε = pn+1,S

ε ◦ ϕn+1 and f̂F,n+1 = fF,n+1 ◦ ϕn+1.

Remark 1. The five terms of (37) represent the surface forces from the fluid acting on the structure.
This formula holds in the case of contact as well as if no contact occurs.

6. Time Integration Scheme by Fixed Point Iterations

The fixed point algorithm is a well known method for solving a fluid–structure
interaction without contact. Additionally, it was successfully used in [18] when the structure
comes into contact with a rigid obstacle, in the steady case.

Algorithm from Time Instant n to n + 1

We assume that the structure displacements un
h , un−1

h ∈ Kh as well as the fluid velocity
vn

ε,h ∈Wh are given. We look for un+1
h ∈ Kh, vn+1

ε,h ∈Wh and pn+1
ε,h ∈ Qh iteratively, as limits

of uk,n+1
h , vk,n+1

ε,h and pk,n+1
ε,h , respectively, for k ∈ N.

For the stopping test, we use the parameter tol > 0 and let ω ∈ (0, 1) be the relax-
ation parameter.

Step 1. Set the initial displacement of the structure u0,n+1
h = un

h and put k = 0.

Step 2. Find the velocity vk+1,n+1
ε,h ∈ gn+1

h + Wh and the pressure pk+1,n+1
ε,h ∈ Qh by solving

the discrete fluid problem

ρF
∫

D

vk+1,n+1
ε,h − vn

ε,h

∆t
·wh dx + aF

(
vk+1,n+1

ε,h , wh

)
+ bF

(
wh, pk+1,n+1

ε,h

)
+

1
ε

∫
D

χS
k,n+1

(
vk+1,n+1

ε,h −
(uk,n+1

h − un
h) ◦ ϕ−1

k,n+1

∆t

)
·wh dx

=
∫

D
fF,n+1

h ·wh dx, ∀wh ∈Wh (38)

bF

(
vk+1,n+1

ε,h , qh

)
= 0, ∀qh ∈ Qh (39)

where χS
k,n+1 is the characteristic function of the set ΩS

k,n+1 = ϕk,n+1(ΩS
0 ) and ϕk,n+1(X) =

X + uk,n+1
h (X).

Step 3. Set v̂k+1,n+1
ε,h = vk+1,n+1

ε,h ◦ ϕk,n+1, p̂k+1,n+1
ε,h = pk+1,n+1

ε,h ◦ ϕk,n+1 and f̂F,n+1
h = fF,n+1

h ◦
ϕk,n+1, then compute

(b̃k+1,n+1
S )i = L̃k+1,n+1

S (φi), i = 1, . . . , 2 nvS

where

L̃k+1,n+1
S

(
wS

h

)
=

∫
ΩS

0

fS,n+1
h ·wS

h dX +
ρS

∆t2

∫
ΩS

0

(2un
h − un−1

h ) ·wS
h dX

+ρF
∫

ΩS
0

v̂k+1,n+1
ε,h − v̂n

ε,h

∆t
·wS

h dx

+
∫

ΩS
0

2µFεX

(
v̂k+1,n+1

ε,h

)
: εX

(
wS

h

)
dX−

∫
ΩS

0

(
∇X ·wS

h

)
p̂k+1,n+1

ε,h dX

+
1
ε

∫
ΩS

0

(
v̂k+1,n+1

ε,h −
(uk,n+1

h − un
h)

∆t

)
·wS

h dX−
∫

ΩS
0

f̂F,n+1
h ·wS

h dX.

The last five integrals represent the surface forces from the fluid acting on the structure
as in the end of Section 5.
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Step 4. Solve the convex constrained optimization problem

ξ = arg inf
ξ∈R2 nvS

1
2
〈ÃSξ, ξ〉 − 〈b̃k+1,n+1

S , ξ〉, (40)

subject to (26) and (27), where ÃS is the constant matrix given by (24). Put

uk+1,n+1
ε,h =

2 nvS

∑
i=1

ξiφ
i.

Step 5. If
∥∥∥uk+1,n+1

ε,h − uk,n+1
h

∥∥∥
0,ΩS

0

< tol

then un+1
h = uk+1,n+1

ε,h , vn+1
ε,h = vk+1,n+1

ε,h , pn+1
ε,h = pk+1,n+1

ε,h and STOP,

else uk+1,n+1
h = uk,n+1

h + ω(uk+1,n+1
ε,h − uk,n+1

h ), put k := k + 1 and go to Step 2.

Remark 2. All the results can be extended to the Navier–Stokes equation for the fluid:

• on the left-hand side of (3), add ρF(v · ∇)v,
• on the left-hand side of (30) and Section 5, add cF(vn+1

ε , vn
ε , w) where

cF(u, v, w) = ρF
∫

D
[(u · ∇)v] ·w dx,

• on the left-hand side of (38), add cF(v
k+1,n+1
ε,h , vn

ε,h, wh)

• on the right-hand side of L̃k+1,n+1
S

(
wS

h
)

at the Step 3, add ρF ∫
ΩS

0
[(v̂k+1,n+1

ε,h · ∇)v̂n
ε,h] ·w

S
h dx.

7. Numerical Results

We use the software FreeFem++ [37] for the numerical tests. The linear system at the
Step 2 will be solved by the library “MUltifrontal Massively Parallel sparse direct Solver”
(MUMPS) and the constrained optimization problem at the Step 4 will be solved by the
library “Interior Point OPTimizer” (IPOPT) implemented in FreeFem++.

7.1. Dynamic Fluid–Structure Interaction when the Displacements Are Limited by a Rigid Disk

We use a dynamic version of the example from [18]. The geometrical configuration is:
ΩS

0 =]0, 0.3[×]0, 0.03[, D =]0, 0.41[×]− 0.5, 0.5[ \B(0.2,−0.07; 0.05) where B(0.2,−0.07; 0.05)
is the open disk of radius 0.05 m and center (0.2,−0.07). We set for the structure: ρS =
1100 Kg/m3, ES = 3× 105 N/m2, νS = 0.3, the mass density, Young’s modulus, Poisson’s
ratio, respectively and the applied volume forces on the structure fS : ΩS

0 × [0, T] → R2,
fS = (0, 0) N/m3.

For the fluid, we use: ρF = 1000 Kg/m3, µF = 0.0035 N · s/m2, the mass den-
sity, dynamic viscosity, respectively, and the applied volume forces on the fluid fF :
D× [0, T]→ R2, fF = (0, 0) N/m3.

In the fluid domain, we denote by Σ1, Σ2, Σ3, Σ4 the left, bottom, right, top boundaries,
respectively, and by Σ5 the boundary of the circular obstacle B(0.2,−0.07; 0.05).

We impose at the inflow boundary Σ4, the nonhomogenuous Dirichlet condition
v = g = (g1, g2) where g1 = 0 and

g2(x1, x2, t) =

{
4Vmax x1(x1−L1)

L2
1

(1−cos(2πt/T1))
2 if t ≤ T1

0 if T1 < t ≤ T

where L1 = 0.41 m, Vmax = 1 m/s, T1 = 50 s and T = 65 s. On (Σ1 ∪ Σ3 ∪ Σ5), a non-
slip boundary contition is imposed and σFnF = 0 on Σ2, the outflow boundary. Initially,
the structure displasement is zero and the fluid is at rest.
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The triangular finite elements P1+bubble and P1 have been used for the approximation
of the fluid velocity and pressure and the finite element P1 was used for the structure prob-
lem. We use a fluid mesh of 37,124 triangles and 18,885 vertices, fluid mesh size hF = 0.005,
a structure mesh of 768 triangles and 451 vertices, structure mesh size hS = 0.005, the time
step ∆t = 0.1 s and the number of time steps N = 650.

The penalization parameter is ε = 10−5, the relaxation parameter is set to ω = 0.1
and for the stopping test tol = 10−3 × area(ΩS

0 ) = 9× 10−6. At Step 2, we solve a linear
system of dimension 93,749 and at Step 4, we solve a constrained optimization problem
of dimension 902, subject to 59 inequalities corresponding to (26) and 14 components are
fixed to zero corresponding to (27).

In Figure 2, it can be seen that the slope of the curves was zero when the structure was
in contact with the obstacle. The structure traveled down and made contact with the rigid
disk from 9 s to 23 s, then it ascended. At 32 s, the position was similar to the undeformed
shape, it continued to ascend up to maximal position at 43 s and then descended.

Figure 2. Time history of the vertical displacement of two points at ΓC for X1 = 0.15 (left) and
X1 = 0.20 (right).

At each time step, we solve the fluid–structure interaction problem iteratively using
the fixed point method. At each fixed point iteration, one fluid sub-problem and one
structure sub-problem are solved. The number of iterations at each time step gives an
indicator of the computational effort. In this simulation, the number of fixed point iterations
was less than 5, except for five time steps, where the number was 7, 10 and for three time
steps it was 50. Slow convergence of the fixed point method can be explained when the
contraction constant of the map was close to 1. Other methods for implicitly solving the
fluid–structure interaction problem are Newton or quasi-Newton methods, see [38] for a
comparative study.

In Figure 3, we show the computed solution at time instant t = 20 s when the structure
starts to touch the obstacle. The fluid velocity was maximal near the right end of the
structure. In the zone limited by the left side of the fluid domain, the bottom side of the
structure and the obstacle, the fluid velocity was very small.

Figure 3. Computed solution at time instant t = 20 s: pressure (left) and zoom of velocity (right).
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7.2. Numerical Simulation of Valve Dynamics

The undeformed structure domain ΩS
0 is a quarter of a ring with interior radius

R = 1 cm, thickness H = 0.03 cm and center (R + H, H1), where H1 = 0.95 cm, see
Figure 4. Its boundaries are as follows: ΓD =]0, H[×{H1},

ΓC =
{
(X1(t), X2(t)) ∈ R2; X1(t) = R + H + R cos(t), X2(t) = H1 + R sin(t),

t ∈
[
π +

π

4
, π +

π

2

]}
and ΓN = ∂ΩS

0 \ (ΓD ∪ ΓC). Let ψ : R→ R, ψ(X1) = 0 be the rigid fondation.

H1

X1

ΓD

2X

ΓN

ΓC

H

R

Figure 4. Undeformed structure domain does not satisfy the non-penetration constraint.

The fluid domain is D =] − L1, L2[×]0, H1[. For the numerical tests, we used the
values: L1 = 0.5 cm, L2 = 2 cm, H1 = 0.95 cm, see Figure 5.

L1 L2

H1

X1

ΓD

Σ1

Σ3

Σ2

2X

Σ4

H

Figure 5. The geometrical configuration of fluid–structure.

The mechanical properties of the elastic structure are the following: mass density
ρS = 1.1 g/cm3, Young’s modulus ES = 4 × 105 dyne/cm2, Poisson’s ratio νS = 0.4,
applied volume forces on the structure fS : ΩS

0 × [0, T]→ R2, fS = (0, 0) dyne/cm3.
The parameters for the fluid are: mass density ρF = 1 g/cm3, dynamic viscosity

µF = 0.035 dyne · s/cm2, applied volume forces on the fluid fF : D × [0, T] → R2,
fF = (0, 0) dyne/cm3. The inflow velocity profile is g = (g1, g2) : Σ1 × [0, T]→ R2 where
g2 = 0 and

g1(X1, X2, t) =

{
Vmax(H2

1−X2
2)

2H2
1

(1−cos(2πt/T1))
2 if t ≤ T1

0 if T1 < t ≤ T
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with Vmax = 10 cm/s or 50 cm/s, T1 = 0.2 s and T = 0.5 s. The boundary conditions for
the fluid are as follows: v = g on Σ1 × [0, T], v = 0 on Σ4 × [0, T], σFnF = 0 on Σ3 × [0, T],
σFnF · e1 = 0 and v2 = 0 on Σ2× [0, T] with e1 = (1, 0)T , see Figure 5. The initial conditions
are as follows: u1 = 0, v0 = 0. Since, the undeformed structure domain does not satisfy
the non-penetration constraint, we solved a steady elasticity contact problem to obtain u0.

We used a fluid mesh of 13,090 triangles and 6718 vertices, fluid mesh size hF = 0.02,
a structure mesh of 40 triangles and 42 vertices, structure mesh size hS = 0.078, the time
step ∆t = 0.005 s and the number of time steps N = 100. The penalization parameter was
ε = 10−3, the relaxation parameter was set to ω = 0.1 and for the stopping test tol = 10−6.
At Step 2, we solved a linear system of dimension 33,244 and at Step 4, we solved a
constrained optimization problem of dimension 84, subject to 9 inequalities corresponding
to (26) and 4 components were fixed to zero corresponding to (27).

We observe in Figure 6, the number of fixed point iterations at each time step,
which proves the efficiency of the method. The structure velocity was near to zero, when
the opening of the valve was maximal or when the valve was closed, then only 1–2 itera-
tions were necessary to achieve the convergence. The total computational time was 323 s
for Vmax = 10 and 584 s for Vmax = 50.

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80  90  100

ite
ra

tio
ns

time step

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100

ite
ra

tio
ns

time step

Figure 6. Time history of iterations number to obtain the convergence at each time step for Vmax = 10
(left) and Vmax = 50 (right).

In Figure 7, we plot the horizontal and vertical displacement of the structure tail.
We observe in this figure that the valve was closed after about t = 0.230 for Vmax = 10 and
after about t = 0.370 for Vmax = 50.

Figure 7. The relatively displacement by rapport of the initial configuration of the bottom corner of
the tail segment of the structure: horizontal (left) and vertical (right).

At the initial time, the valve was closed and prestressed, since the undeformed
structure domain did not satisfy the non-penetration constraint. It ascended to its highest
opening position, see Figure 8 the top images, then the valve descended and made contact
with the rigid foundation, see Figure 8 the bottom images, for Vmax = 10.

In Figure 9, Von Mises stress distribution in the structure is shown for Vmax = 10.
We observe that Von Mises stress was larger near to the top fixed boundary even when the
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valve was in contact with the bottom wall. The reason for this is that the structure was
prestressed when the valve was closed. Similar behavior we observe for Vmax = 50, in
Figures 10 and 11.

We also observe a vortex downstream of the closed valve, see also Figure 12, where
the vorticity is plotted.

Figure 8. Computed solution for Vmax = 10, pressure (left) and velocity (right): when the valve
was at the highest position t = 0.125 s (top) and when the valve made contact with the foundation
t = 0.230 s (bottom).

Figure 9. Von Mises stress distribution in the structure for Vmax = 10.
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Figure 10. Computed solution for Vmax = 50, pressure (left) and velocity (right): when the valve
was at the highest position t = 0.120 s (top) and when the valve made contact with the foundation
t = 0.370 s (bottom).

Figure 11. Von Mises stress distribution in the structure Vmax = 50.

Figure 12. Vorticity distribution when the valve starts to be in contact with the foundation for
Vmax = 10 (left) and Vmax = 50 (right).

The structure deformations are important when Vmax = 50 and a non-linear model for
the elasticity equations could be used.
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7.3. Check Valve Interacting with Navier–Stokes Flow

As we seen in Remark 2, the extension from Stokes to Navier–Stokes equations for the
fluid is straightforward. Now, we present the numerical results for the check valve problem
adapted from [15]. In our case, the fluid is governed by the Navier–Stokes equations but
the structure is still governed by the linear elasticity equations.

All the units are derived from centimeter (cm), gram (g), millisecond (ms). The fixed
computational fluid domain D was the union of three rectangles: ]0, 2[×]0, 1.4[ (bottom),
]0.7, 1[×]1.4, 2.6[ (middle) and ]0, 2[×]2.6, 4[ (top). The mass density of the fluid was
ρF = 0.8 g/cm3, the dynamic viscosity was µF = 0.005 g/(cm ·ms) and the boundary
conditions were as follows:

pin(t) = 10 sin
(

2πt
100

)
g/(cm · (ms)2) (41)

prescribed surface stress at the bottom boundary, do-nothing at the top boundary and
non-slip boundary condition otherwise. There were no applied volume forces in fluid.

The undeformed structure domain was a rectangle of thickness H = 0.05 cm and
length L = 0.9 cm and the coordinates of the left bottom corner were (0.3, 2.6). The mass
density, Young’s modulus, Poisson’s ratio of the structure were as follows: ρS = 8 g/cm3,
ES = 1× 105 g/(cm · (ms)2), νS = 0.3, respectively. There were no applied volume forces
in structure.

In the paper [15], the structure is modeled with Neo-Hookean material of thickness
H = 0.025 cm and ES = 1× 104 g/(cm · (ms)2). Our technique to compute the forces at
the fluid–structure interface using integral over the structure domain requires a structure
that is not too thin. For this reason, we used a structure of thickness H = 0.05 cm. A linear
model for the structure with ES = 1× 104 g/(cm · (ms)2) gives important displacements,
for this reason we worked with ES = 1× 105 g/(cm · (ms)2).

The fluid mesh had 34,432 triangles and 17,602 vertices, the structure mesh had
156 triangles and 121 vertices, the time step was ∆ t = 0.05 ms. The penalization parameter
ε, the relaxation parameter ω, the parameter for the stopping test was tol and the finite
elements were the same as in the previous simulations.

The contour plots of the velocity and pressure in Figure 13 are very similar to [15]. The
maximal velocity magnitude 4.8 cm/ms is comparable with 42.75 mm/ms = 4.275 cm/ms
in [15] and the minimal pressure was obtained in the right top corner of the middle
rectangle of the fluid domain: −4.4 g/(cm · (ms)2) in our test and −0.5 g/(mm · (ms)2) =
−5 g/(cm · (ms)2) in [15].

Figure 13. Velocity magnitude (left) and pressure (right) of the fluid at t = 25 ms, when the structure
is at the highest position.
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The vertical displacement of the structure tail in Figure 14 is correlated to the surface
stress at the inflow (41): the valve ascended to its highest position t = 25 ms, then de-
scended and made contact with the rigid obstacle after t = 51 ms. The valve was closed in
the time interval t ∈ [51, 100] ms. One difference from the report of [15], was that in our
test, the shape of the vertical displacement of the structure tail did not have two humps in
the time interval t ∈ [0, 50] ms.

Figure 14. Vertical displacement of the right bottom corner of the structure.

8. Conclusions

We have presented a numerical method for solving by partitioned procedures the
dynamic behavior of an elastic thick structure immersed in an incompressible fluid.
This method handles the contact between a linear elastic structure and a rigid obstacle.
For the fluid flow, the fictitious domain method with penalization was used. The sur-
face forces at the fluid–structure interface were computed using the fluid solution in the
structure domain. Numerical tests were presented.
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