Numerical approximation of the interaction between an incompressible pulsatile fluid and an elastic structure

Cornel Marius MUREA

Laboratoire de Mathématiques, Informatique et Applications, Université de Haute-Alsace, 4, rue des Frères Lumière, 68093 Mulhouse, France
cornel.murea@uha.fr
http://www.edp.uha.fr/murea/

ECCOMAS CFD 2006
Content

- Strong form of the fluid-structure equations
- Approximation of the structure. Natural frequencies and normal mode shapes. Newmark method
- Approximations of the unsteady Navier-Stokes equations in a moving domain. ALE and time discretization. Mixed Finite Element
- Numerical results
Example of an admissible domain
Strong equations of the structure

Find the transverse displacement $u : [0, L] \times [0, T] \rightarrow \mathbb{R}$ such that

$$
\rho^S h^S \frac{\partial^2 u}{\partial t^2}(x_1, t) + \frac{E(h^S)^3}{12(1 - \nu^2)} \frac{\partial^4 u}{\partial x_1^4}(x_1, t) = \eta(x_1, t),
$$

$$
u(0, t) = 0, \quad \frac{\partial u}{\partial x_1}(0, t) = 0, \quad t \in (0, T)
$$

$$
u(L, t) = 0, \quad \frac{\partial u}{\partial x_1}(L, t) = 0, \quad t \in (0, T)
$$

$$
u(x_1, 0) = u^0(x_1), \quad x_1 \in (0, L)
$$

$$
u \frac{\partial u}{\partial t}(x_1, 0) = \dot{u}^0(x_1), \quad x_1 \in (0, L)
$$
Strong form of the unsteady Navier-Stokes equations

\[
\rho^F \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} \right) - \mu \Delta \mathbf{v} + \nabla p = f^F, \quad \forall t \in (0, T), \forall \mathbf{x} \in \Omega_t^F
\]

\[
\nabla \cdot \mathbf{v} = 0, \quad \forall t \in (0, T), \forall \mathbf{x} \in \Omega_t^F
\]

\[
\mathbf{v} \times \mathbf{n} = 0, \quad \text{on } \Sigma_1 \times (0, T)
\]

\[
p = P_{in}, \quad \text{on } \Sigma_1 \times (0, T)
\]

\[
\mathbf{v} = \mathbf{g}, \quad \text{on } \Sigma_2 \times (0, T)
\]

\[
\mathbf{v} \times \mathbf{n} = 0, \quad \text{on } \Sigma_3 \times (0, T)
\]

\[
p = P_{out}, \quad \text{on } \Sigma_3 \times (0, T)
\]

\[
\mathbf{v}(x_1, H + u(x_1, t), t) = \left(0, \frac{\partial u}{\partial t}(x_1, t) \right)^T, \quad \forall (x_1, t) \in (0, L) \times (0, T)
\]

\[
\mathbf{v}(\mathbf{x}, 0) = \mathbf{v}^0(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega_0^F
\]
Strong form of the coupled equations

Find the transverse displacement u of the structure, the velocity v and the pressure p of the fluid such that

$$\eta(x_1, t) = - \left(\sigma^F n \cdot e_2 \right) \left(x_1, H+u(x_1, t)\right) \sqrt{1 + \left(\frac{\partial u}{\partial x_1}(x_1, t) \right)^2}$$

where $\sigma^F = -p I + \mu \left(\nabla v + \nabla v^T \right)$ is the stress tensor of the fluid, $e_2 = (0, 1)^T$ is the unit vector in the x_2 direction.

The displacement of the structure depends on the vertical component of the stresses exerted by the fluid on the interface. The movement of the structure changes the domain where the fluid equations must be solved. Also, on the interface we have to impose the equality between the fluid and structure velocity.
For each $i \in \mathbb{N}$ there exists an unique normal mode shape $\phi_i \in C^4([0, L])$ such that

\[
\phi_i'''(x_1) = (a_i)^4 \phi_i(x_1), \quad x_1 \in (0, L)
\]

\[
\phi_i(0) = \frac{\partial \phi_i}{\partial x_1}(0) = 0,
\]

\[
\phi_i(L) = \frac{\partial \phi_i}{\partial x_1}(L) = 0,
\]

\[
\int_0^L \phi_i^2(x_1) \, dx_1 = 1.
\]
The normal mode shapes ϕ_i for $i \in \mathbb{N}$ form an orthogonal basis of $L^2(0, L)$.

$$\eta(x_1, t) = \sum_{i \geq 0} \alpha_i(t) \phi_i(x_1), \quad u(x_1, t) = \sum_{i \geq 0} q_i(t) \phi_i(x_1)$$

where q_i is the solution of the second order differential equation

$$q_i''(t) + \omega_i^2 q_i(t) = \frac{1}{\rho s h s} \alpha_i(t), \quad t \in (0, T)$$

$$q_i(0) = \int_0^L u^0(x_1) \phi_i(x_1) \, dx_1$$

$$q_i'(0) = \int_0^L \dot{u}^0(x_1) \phi_i(x_1) \, dx_1.$$
Newmark method

Knowing q_i^n, \dot{q}_i^n, \ddot{q}_i^n and α_i^{n+1}, find q_i^{n+1}, \dot{q}_i^{n+1}, \ddot{q}_i^{n+1} such that:

\[
\ddot{q}_i^{n+1} + \omega_i^2 q_i^{n+1} = \frac{1}{\rho \sigma h \sigma} \alpha_i^{n+1},
\]

\[
\dot{q}_i^{n+1} = \dot{q}_i^n + \Delta t \left[(1 - \delta) \ddot{q}_i^n + \delta \ddot{q}_i^{n+1} \right],
\]

\[
q_i^{n+1} = q_i^n + \Delta t \dot{q}_i^n + (\Delta t)^2 \left[\left(\frac{1}{2} - \theta \right) \ddot{q}_i^n + \theta \ddot{q}_i^{n+1} \right]
\]

where δ and θ are two real parameters.

This method is unconditional stable for $2\theta \geq \delta \geq 1/2$. It is first order accuracy if $\delta \neq 1/2$. If $\delta = 1/2$, it is second order accuracy in the case $\theta \neq 1/12$ and forth order accuracy is achieved if $\theta = 1/12$.
\[
\rho^F \left(\frac{\mathbf{v}^{n+1}}{\Delta t} + ((\mathbf{V}^n - \mathbf{v}^{n+1}) \cdot \nabla) \mathbf{v}^{n+1} \right) \\
- \mu \Delta \mathbf{v}^{n+1} + \nabla \rho^{n+1} = \frac{\rho^F \mathbf{V}^n}{\Delta t} + \mathbf{f}^F \\
in \Omega^F_{t_{n+1}}
\]

\[
\nabla \cdot \mathbf{v}^{n+1} = 0 \text{ in } \Omega^F_{t_{n+1}}
\]

\[
\mathbf{v}^{n+1} \times \mathbf{n} = 0 \text{ on } \Sigma_1
\]

\[
\rho^{n+1} = P_{in}(\cdot, t_{n+1}) \text{ on } \Sigma_1
\]

\[
\mathbf{v}^{n+1} = \mathbf{g}(\cdot, t_{n+1}) \text{ on } \Sigma_2
\]

\[
\mathbf{v}^{n+1} \times \mathbf{n} = 0 \text{ on } \Sigma_3
\]

\[
\rho^{n+1} = P_{out}(\cdot, t_{n+1}) \text{ on } \Sigma_3
\]

\[
\mathbf{v}^{n+1}(x_1, H + u(x_1, t_{n+1}), t) = \left(0, \frac{\partial u}{\partial t}(x_1, t_{n+1}) \right)^T
\]

\[
0 < x_1 < L.
\]
Mixed Finite Element

\[W^{n+1} = \left\{ w \in \left(H^1 \left(\Omega^F_{t_{n+1}} \right) \right)^2 ; \right. \]
\[w \times n = 0 \text{ on } \Sigma_1 \cup \Sigma_3, \ w = 0 \text{ on } \Sigma_2 \cup \Gamma_{t_{n+1}} \left\} , \]
\[Q^{n+1} = L^2 \left(\Omega^F_{t_{n+1}} \right) . \]

Find the velocity \(v^{n+1} \) and the pressure \(p^{n+1} \) such that

\[\begin{cases} a_F^{n+1} (v^{n+1}, w) + d_F^{n+1} (v^{n+1}, w) + b_F^{n+1} (w, p^{n+1}) & = \ell^{n+1} (w), \forall w \\
 b_F^{n+1} (v^{n+1}, q) & = 0, \forall q \end{cases} \]
\[
\begin{align*}
 a_{F}^{n+1} (v^{n+1}, w) &= \frac{\rho^{F}}{\Delta t} (v^{n+1}, w) \\
 &\quad + \mu (\nabla \times v^{n+1}, \nabla \times w) + \mu (\nabla \cdot v^{n+1}, \nabla \cdot w) \\
 d_{F}^{n+1} (v^{n+1}, w) &= \rho^{F} (((v^{n} - \varrho^{n+1}) \cdot \nabla) v^{n+1}, w) \\
 b_{F}^{n+1} (w, q) &= - (\nabla \cdot w, q) \\
 \ell^{n+1} (w) &= \frac{\rho^{F}}{\Delta t} (V^{n}, w) + (f^{F}, w) \\
 &\quad - \int_{\Sigma_{1}} P_{in}(\cdot, t_{n+1}) n \cdot w \, d\gamma \\
 &\quad - \int_{\Sigma_{3}} P_{out}(\cdot, t_{n+1}) n \cdot w \, d\gamma
\end{align*}
\]
Strategies for solving at each time step the coupled problem. The optimization approach

The fixed point and the root finding frameworks:

\[\mathcal{F} \circ S(\alpha) = \alpha, \quad \mathcal{F} \circ S(\alpha) - \alpha = 0. \]

If the starting point is not chosen “sufficiently close” to the solution, fixed point or Newton like methods diverge.

The continuity of the stresses on the interface will be treated by the Least Square Method and at each time step we have to solve an optimization problem which is less sensitive to the choice of the starting point. This is the main advantage of this approach. Our approach is to minimize

\[J^{n+1}(\alpha) = \frac{1}{2} \| \alpha - \beta \|^2 = \frac{1}{2} \| \alpha - \mathcal{F} \circ S(\alpha) \|^2 \]
Numerical results

- The computation has been made in a domain of length $L = 6 \text{ cm}$ and height $H = 1 \text{ cm}$.
- The viscosity of the blood was taken to be $\mu = 0.035 \frac{g}{\text{cm} \cdot \text{s}}$, its density $\rho^F = 1 \frac{g}{\text{cm}^3}$.
- The thickness of the vessel is $h = 0.1 \text{ cm}$, the Poisson ratio $\nu = 0.5$, the density $\rho^S = 1.1 \frac{g}{\text{cm}^3}$.
- The number of the normal mode shapes is $m = 5$.
- The gradient of the cost function was approached by the Finite Difference Method with the grid spacing $\Delta \alpha_k = 0.001$.

The numerical tests have been produced using FreeFem++.
1) Young modulus \(E = 0.75 \cdot 10^6 \ \frac{g}{cm\cdot s^2} \), Final time \(T = 0.25 \ s \)
2) Young modulus \(E = 3 \cdot 10^6 \ \frac{g}{cm\cdot s^2} \), Final time \(T = 0.1 \ s \)
Case of an impulsive pressure wave in a higher compliant channel

For the boundary conditions we have used:

\[P_{in}(x, t) = \begin{cases}
10^3(1 - \cos(2\pi t/0.005)), & x \in \Sigma_1, 0 \leq t \leq 0.005 \\
0, & x \in \Sigma_1, 0.005 \leq t \leq T
\end{cases} \]

\[g(x, t) = 0, \quad x \in \Sigma_2, 0 \leq t \leq T \]

\[P_{out}(x, t) = 0, \quad x \in \Sigma_3, 0 \leq t \leq T \]

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>mesh size (h)</th>
<th>no. triangles</th>
<th>no. vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0005</td>
<td>(h_1 = 0.25)</td>
<td>196</td>
<td>127</td>
</tr>
<tr>
<td>0.0005</td>
<td>(h_2 = 0.17)</td>
<td>226</td>
<td>448</td>
</tr>
<tr>
<td>0.0005</td>
<td>(h_3 = 0.10)</td>
<td>1250</td>
<td>696</td>
</tr>
</tbody>
</table>

We have performed the simulation for \(N = 500 \) time steps. At each time step, we have performed 8 iterations of the BFGS algorithm and 4 iterations in the method for the line search.
Starting values of the cost function during the pressure impulse (at the left) and after (at the right)
Displacements of the top wall and fluid velocity

t= 0.0150

t= 0.0300

t= 0.0450
Case of a sine wave of the pressure input in a less compliant vessel

The Young modulus: \(E = 3 \cdot 10^6 \ \frac{g}{cm \cdot s^2} \).

The pressure at the inflow:

\[
P_{in}(x, t) = \begin{cases}
10^3(1 - \cos(2\pi t/0.025)), & x \in \Sigma_1, 0 \leq t \leq 0.025 \\
0, & x \in \Sigma_1, 0.025 \leq t \leq T
\end{cases}
\]

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>(h)</th>
<th>(N)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0005</td>
<td>0.17</td>
<td>200</td>
<td>0.1</td>
</tr>
<tr>
<td>0.0010</td>
<td>0.17</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>0.0025</td>
<td>0.17</td>
<td>40</td>
<td>0.1</td>
</tr>
</tbody>
</table>

We have performed 10 iterations of the BFGS algorithm and 5 iterations in the method for the line search.
Starting (left) and final (right) values of the cost function for $\Delta t = 0.0005$.
Starting (left) and final (right) values of the cost function for $\Delta t = 0.0010$
Starting (left) and final (right) values of the cost function for $\Delta t = 0.0025$
Displacements of the top wall and fluid velocity
Conclusions

- The continuity of the stresses at the interface was treated by the Least Squares Method and at each time step we have to solve an optimization problem which is less sensitive to the choice of the starting point and it permits us to use moderate time step. This is the main advantage of this approach.

- In order to solve the optimization problem, we have employed the BFGS method which is successful from farther starting point. The gradient of the cost function was approached by the Finite Difference Method.

- The coupled fluid-structure algorithm has good stability properties.