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Abstract

The formulation of a particular fluid-structure interaction as an opti-
mal control problem is the departure point of this work. The control is the
vertical component of the force acting on the interface and the observation
is the vertical component of the velocity of the fluid on the interface. This
approach permits to solve the coupled fluid-structure problem by parti-
tioned procedures. The analytic expression for the gradient of the cost
function is obtained in order to devise accurate numerical methods for
the minimization problem. Numerical results arising from blood flow in
arteries are presented. To solve numerically the optimal control problem,
we use a quasi Newton method which employs the analytic gradient of the
cost function and the approximation of the inverse Hessian is updated by
the Broyden, Fletcher, Goldforb, Shano (BFGS) scheme. This algorithm
is faster than fixed point with relaxation or block Newton methods.

Key Words. fluid-structure interaction; virtual control; mixed for-
mulations; optimization algorithms; sensitivity analysis.
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1 Introduction

In this paper we consider a variable bounded domain which is occupied by a
steady newtonian incompressible creeping fluid. The boundary can be decom-



2 C.M. Murea and C. Vazquez

posed into a rigid part and an elastic part.

The mathematical model which governs the fluid is based on a steady Stokes
equation while the deformation of the elastic part of the boundary verifies a
particular beam equation without shearing stress. Therefore the solution of the
model consists of the determination of the elastic boundary displacement and
the computation of the velocity and the pressure in the fluid domain.

In a first sense, the physical problem is related with those treated in fluid-
structure interaction literature but the vibration approach is not considered
here.[30] In other sense, the asymptotic limit when the fluid domain width tends
to zero can be modeled by a one-dimensional approach of Stokes equation, i.e.
Reynolds equation, widely used in lubrication theory.[3]

On the other hand, if we think about the elastic boundary as part of the
boundary of a two-dimensional domain which is unknown a priori, then the
problem can be framed as a free boundary like problem. The free boundary
aspect of the model motivates the need of two coupling boundary conditions:
continuity of the velocity and of the stresses across the interface fluid-structure.

This kind of problem is of considerable interest in biomechanics (the simula-
tion of blood flow in large arteries, [29], [17], [33], [8], [18], [38]), in aeroelasticity
(fluttering of wings, [13], [14], [35], [36]), in cars industry (design of hydraulic
shock absorber, [26]).

The existence results for the fluid-structure interaction can be found in [21],
[23], [2] for the steady case and in [22], [12], [4] for the unsteady case.

Sensitivity analysis of a coupled fluid-structure system was investigated in
[15].

The most frequently, the fluid-structure interaction problems are solved nu-
merically by partitioned procedures, i.e. the fluid and the structure equations
are solved separately, which allows to use the existing solvers for each sub-
problem.

There are different strategies to discretise in time the unsteady fluid-structure
interaction problem. A family of explicit algorithms known also as staggered
was successfully employed for the aeroelastic applications.[13] Their stability
properties were studied in [35] and [36]. For the stability reason, a very small
time step is necessary.

As it shown in [26] and [33], the staggered algorithms are unstable when the
structure is light and its density is comparable to that of its fluid. In order to
obtain unconditionally stable algorithms, at each time step we have to solve a
non-linear fluid-structure coupled system. This can be done using fixed point
strategies with eventually a relaxation parameter, but it has slow convergence
rate [26], [33], [L7]. The convergence can be accelerated using Aitken’s method
[18] or transpiration condition [11].

Other way to accelerate the convergence is to use methods which employ the
derivative. In [40] a block Newton algorithm was used where the derivative of
the operators are approached by finite differences. Good convergence rate was
obtained in [18] where the derivative of the operator was replaced by a much
simpler operator. The block Schur-Newton method is proposed in [16] where
the derivatives of the fluid and structure operators with respect to the state
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variables were computed exactly, but this algorithm has not been implemented
yet.

In a previous work, a three-dimensional fluid-structure interaction was for-
mulated as an optimal control system, where the control is the force acting on
the interface and the observation is the velocity of the fluid on the interface.[32]
The fluid equations were solved taking into account a given surface force on the
interface. The existence of an optimal control was proved. We have to precise
that the fluid-structure interaction problem and its optimal control version are
not equivalent.

In this work, a two-dimensional steady state fluid-structure coupled problem
is approximated by an optimal control system, where the control is the vertical
component of the force acting on the interface and the observation is the vertical
component of the velocity of the fluid on the interface. The control approach
permits to solve the coupled fluid-structure problem by partitioned procedures.

The analytic computation of the gradient for the cost function is one of the
main goals of this work in order to apply accurate numerical methods. More-
over, from the theoretical viewpoint, the optimality conditions can be written in
terms of this analytic expression of the gradient. In fact, although the analytic
formula for the gradient involves the solution of several auxiliary problems, the
alternative use of finite difference approximations for the derivatives introduces
truncation errors and it is potentially much more sensitive to ill-conditioning of
the state equations.[27]

The aims of this paper are: to analyse the behavior of the fluid and structure
sub-problems under the variation of the force acting on the interface, to prove
the differentiability of the cost function and to present numerical results arising
from blood flow in arteries. To solve numerically the optimal control problem,
we use a quasi Newton method which employs the analytic gradient of the
cost function and the approximation of the inverse Hessian is updated by the
Broyden, Fletcher, Goldforb, Shano (BFGS) scheme. This algorithm is faster
than fixed point with relaxation or block Newton methods.

In Section 2 the particular fluid-structure problem is presented, related nota-
tions are introduced and the associated optimal control problem is briefly posed.
In Section 3 the weak formulation of the structure equations is analysed and
we precise the set of admissible controls. For a given structure displacement,
the mixed formulations governing the fluid velocity and pressure are posed in
the eulerian and arbitrary lagrangian eulerian coordinates in Sections 4 and
5, respectively. In these arbitrary lagrangian eulerian coordinates the optimal
control system is detailed in Section 6. Next, the continuity and the differentia-
bility of the cost function are proved in the Section 7 and 8. Moreover, the exact
expression of the cost function gradient is obtained. In Section 9 we present an
interesting application to blood flow simulation in medium vessels. For this,
particular methods to solve the structure and fluid equations as well as specific
algorithms for the discrete optimization problem are proposed. Some numerical
results for real data are presented and discussed. The last section is devoted to
some concluding remarks.
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2 Presentation of the problem

In order to pose the equations for the model let us introduce some mathematical
notations. Let L and H be two positive constants. We introduce the classical
Sobolev space U = HZ (0, L) and the sets (see the Figure 1):

OF =(0,L) x (0,H), Toy=(0,L)x{H}, ¥ =1{0}x(0,H),
ZQZ(O,L)X{O}, EgZ{L}X(O,H), 2221 UigUZg.

T2 FO -
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Figure 1: Sets appearing in the fluid-structure problem

As we have the continuous and compact inclusion of HZ (0,L) C C!(0,L)
then for each w € U we denote by u' its derivative (in fact it is a classical
derivative) and by u'’ its second (weak) derivative. For a given e € (0,H) we
define the set

Uyg = {uelU;u(0)=u(l)=u(0)=u'(L)=0,
fOL u(zy)dey =0, H+u(xy) > e, Vo, € [O,L]} .

Moreover, for each u € U,q, we introduce the notations (see the Figure 1)

oF = {(xl,xg)E]RQ;xlE(O,L),O<x2<H+u(x1)},
r, = {(xl,xg)E]RQ;xlE(O,L),x2:H+u(x1)}.
In view of the definition of the U,4, the two-dimensional domain occupied

by the fluid is QF, the elastic interface between fluid and structure is the free
boundary I';,, while ¥ represents the rigid boundary.
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We suppose that the fluid is governed by the steady Stokes equations, while
the deformation of the elastic part of the boundary verifies a particular beam
equation without shearing stress.[5] We consider that the structure is a beam of
axis parallel to Oz, with constant thickness h. We assume that the displacement
of the beam is normal to its axis.

The problem is to find:

e u:[0,L] — R the displacement of the structure,
e v =(vy,v9)" : QF — R? the velocity of the fluid and

e p: QL — R the pressure of the fluid,

such that
EIu" (z,) = - (UFn'eQ)(zl,H—i-u(m)) 1+ (U’(ZIH))Z +f5(:v1) (1)
U (0) = u (L) =u (O) = (L) =0 (2)

L
| unds = o ®)

0
< .
€ = w11€I[1§.7L] {H +u (1131)} (4)
dive = 0, inQf ©)
v = g, on Z (7)
v = 07 on Fu (8)
where

o EF = El—ga is rigidity to bending modulus of the structure, E is the Young

modulus, h is the thickness.

e f5:(0,L) — R are the averaged volume forces of the structure, in general
the gravity forces and in this case we have f%(z1) = —gop®h, where go is
the gravity, p° is the density of the structure,

e 1> 0 is the viscosity of the fluid,

o fE=(f, )T : QO — R? are the volume forces of the fluid, in general
the gravity forces,

e g=(g1,92)7 : ¥ — R? is the imposed velocity profile of the fluid on the
rigid boundary, such that

/Eg-ndazo (9)

e ol = —pl+p (VU + VUT) is the stress tensor of the fluid,
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e n = (n1,ns)T the unit outward normal vector to QL
e e; = (0,1)7 is the unit vector in the z» direction.

The incompressibility of the fluid (6) states that the volume of the fluid is
conserved or equivalently fOL u(xy) dz; is constant. Without loss of generality,
we assume that this constant is zero and we obtain the condition (3).

The inequality (4) implies that the fluid domain is connected. The constant
e has not a physical meaning.

The system (1)-(8) is a coupled fluid-structure problem.

The displacement of the structure depends on the vertical component of the
stresses exerced by the fluid on the interface (equation 1). This cames from the
continuity of the stresses across the interface.

The movement of the structure changes the domain where the fluid equations
must be solved (equations 5,6). Also, on the interface we have to impose the
equality between the fluid and structure velocity (equation 8).

We shall introduce the control approach.
Let A: (0,L) — R be the control function.
The displacement of the structure is computed by

EIu" (z,) = _X(xl) + fS(xl), Vi € (0,L1)

with boundary conditions (2), such that (3) and (4) hold.

We can compute the velocity and the pressure of the fluid as the solution
of the equations (5), (6) with boundary conditions on the rigid boundary (7)
together with boundary conditions on the interface: v; = 0 and

>)
—~~

8
—

F

(cFn- e =2 Vi, €(0,L).

)(z1,H+u(z1)) - 27

The control problem is to find X, such that vo = 0 on [',.

As we use the value —A\ for the applied stresses in the equations of the
structure and we take the value A in the equations of the fluid, the continuity
of the stresses across the interface is strongly accomplished.

In the following, the boundary condition vy, = 0 is treated by the Least
Square Method and we obtain the optimal control problem

.1
at o, |

The control A and the cost function are “virtual”. The idea of Virtual
Control which leads to Domain Decomposition Methods was presented in [28]
and in the references given there.

Next, we shall precise the regularity of the control which is linked to the
equivalence or not-equivalence between the fluid-structure equations (1)—(8) and
its optimal control version.
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If the system of fluid-structure equations (1)—(8) has a strong solution u €
H*(0,L), v € (H? (95))2 and p € H* (QL), then the control given by the
relation

~

A1) = (01 es) 1+ (u!(21))?

(z1,H+u(z1))

belongs to L?(0,L). In fact, the control is even smoother. In this case, the
system (1)—(8) is equivalent to the control problem. So, there exists A\ € L2(0, L)
such that vyp, = 0. In [4] the existence of a strong solution was proved for a
related problem.
If the system of fluid-structure equations (1)—(8) has only a week solution
u € H?*(0,L), v € (H* (95))2 and p € L* (QF), then X is well defined in a
space like the dual of H&g2(0, L), which is larger than L?(0,L). In this case, the
optimal control problem
1
inf

2
NEL2(0,L) 2 ||U2|F" H

has not solution, so it is not equivalent to the fluid-structure equations (1)—(8).
Using the density of L%(0,L) in the dual of H&éQ(O,L), we could prove that
inf% ||’U2‘[‘u ||Z =0for A € L?(0, L), but this aspect will not study here.

The existence of a weak solution was proved in [21] and [2] for a two-
dimensional steady state fluid-structure interaction problem, in [23] for a three-
dimensional steady state, in [22] and [12] for an unsteady state.

In the following, we shall take \in L?(0, L) because it is simpler to approx-
imate than the dual of H&gz(o, L).

3 Weak formulation for the structure equations

In this paragraph we present the weak formulation for the structure equations.
We have assumed that the structure is governed by a classical beam equations
without shearing stress.[5]

So, for a given EI € R’ which is the rigidity to bending modulus of the
structure, we define the bilinear form

as:UxU — R

L
6,0) o as(é,)=EI /0 O (2) ¥ (o) day . OO

The bilinear form ag is evidently symmetric and continuous. In addition,
applying the Poincaré inequality (see [10] vol. 3, chap. IV, p. 920), we obtain
that ag is U-elliptic. Moreover, let U’ be the dual of U. We denote by (-, Yoru
the duality pairing between U’ and U. A simple consequence of the Lax-Milgram
Theorem (see [10] vol. 4, chap. VII, p. 1217) leads to the following result:
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Proposition 1 Let f° € U' and n € L?(0,L). Then, the problem:
Find u € U such that

L
as (u,y)) = /0 n(z1) Y (z1)dzy + <f57¢>U’,U Yy eU (11)

has a wnique solution. Moreover the solution u € C([0,L]) and we have the
L*>(0, L) estimate:

el 0,2y < Crlllz2o,ny + C2 [1F5]] o
where C1 and Cy are constants.

When the data and the solution are smooth enough the solution u verifies
the strong formulation given by:

EIu"(z1) = n(z1)+ f%(z1), Vo1 € (0,L)
u(0) = 4/'(0)=0,
u(L) = u'(L)=0.

Remark 1 The physical meaning of f° is that of an external force applied to
the elastic structure. For example, the consideration of an harmonic expression
for £ would lead to an harmonic response of the fluid-structure device. Also,
the gravity forces are included in f°. In the coupled model, 1 is associated to
the fluid forces acting on the structure.

In order to obtain a fluid domain with constant volume, we have to impose
some condition to 7. We denote by L3(0,L) = {17 € L*(0,L); fOL n(zy)dz, = 0}.

Proposition 2 Let f € U' andn € L% (0,L).

i) Then there ezist an unique u € U, such that fOLu(arl) dr; = 0 and an
unique constant ¢ € R solutions of

os (w) = | )+ b ) e+ (F50),, Ve (12)
ii) Let ug € U, such that fOL ugdry =0 and ¢y € R are the solution of
as (1o, 1) = co /OL b ey des + (5 8)y W EU (13)
and u, € U, such that fOL uydzy =0 and £(n) € R are the solution of

L
as (i, 1)) = / (n (1) + €0n) ¥ (1) dey Vo) € U (14)

Then, u = ug + uy, ¢ = co + £(n) and the applications
neLy0,L)~ u, €U, ne€ L2(0,L)— L(n) €ER

are linear and continuous.
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Proof. i) Existence. From the Proposition 1, there exist u1, us, us € U solutions

of
as (Ulﬂ/J) = <f571/}>U’,U V’I/J eU
as (uz,¥) = [In(z)y(@)de, Y eU
as (us, ) = [ ¢ (z1)day VY e U

From the third equation and using that ag is elliptic, we obtain
L
0 < ag (us,us) = / usz (x1) dzy .
0

We search ¢ € R and v = u; + us + ¢ - ug such that fOLu(:cl) dr; = 0 or
equivalently

B fOL(ul + u2)day
fOL Ugdél?l '

Uniqueness. Let u;, ¢;, i = 1,2 be two solutions of (12), such that fOL uidr; =
0. By subtracting, we obtain

CcC =

L
Gs(ul—uzﬂ/)):(cl—cz)/ Y (21)dry, VY eU
0

and after the substitution ¥ = u; — uy it follows
L
as (ug —u2,u1 —us) = (¢1 — 02)/ (u1 — usz)dmy.
0

But fOL(ul — ug)dzy = 0, then ag (u; — u2,u; —uz) = 0 and consequently
U = us.
It follows that

L
0= (Cl - Cz)/ '(/)(2131)(1331, V’(/) S U
0

then ¢; = c¢s.
ii) From (13) and (14), we obtain that uo+u, € U such that fOL uo+u, dr, =
0 and ¢g + £(n) € R are solutions of

L
ag(u0+un,¢):/0 (1 (21) + co+ ) ¥ (1) dar + (£5, )y, V€U

From the uniqueness proved at the point i), it follows that v = ug + u, and
c=co+£(n).

It is easy to see that the applications n — u, and n — £(n) are linear. It
remains to prove the continuity.

We replace ¢ = u,, in (14) and using fOL uydr, = 0, we obtain

L L
as (g 1y) = / (0 (1) + €07)) ty (21) iy = / 0 (1) iy (1) doy.
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But ag is elliptic and using the Cauchy-Schwartz inequality, we have

2
luglly, <€ ||77||L2(0,L) ||U77||L2(07L) <C ||77||L2(07L) llully

which proves the continuity of n — u,,.
From (14), we have

L L
5(’7)/0 Ydri = as (un, ) —/0 npdry, Vi eU.

We take 19 € U such that fOL Podxr; > 0 in the above equality. From the
continuity of as, n — u, and using the Cauchy-Schwartz inequality, we obtain
that 1 — £(n) is continuous. O

Remark 2 We obtain a displacement u such that fOLudxl = 0 if and only if
the forces acting on the interface have the form n+co+£(n), wheren € L2(0, L).

In order to obtain a connected fluid domain, we must impose some condition
on f° and 7.
Let us denote by S : L? (0,L) — U the map

S(n) = u, (15)

where u is the unique solution of (11).
We define the admissible set for the forces induced by the fluid

Fad = St (Ua ) .

Let ug € U, such that fOL updr; = 0 and ¢g € R solutions of (13). We
assume that
C ||CU||L2(0,L) + Cs ||f5||U’ <H-e

consequently [[uo||pe o, z) < H —e.

Proposition 3 i) The set F,q is convex and closed in L? (0, L).
it) If [[uoll oo 0,1y < H — €, then Foq is non empty.

Proof. i) The set U, is convex and closed in U. The application S is continuous
and affine. Consequently, F,4 is convex and closed.

il) We use the same notations as in the Proposition 2 part 4i). From the
continuity at 7 = 0 of the linear function n — £(n), for small ||n[[,2( ) we
obtain ||u,7||Loo(0 p <H-e- lluoll s (o,1)- S0, if we set u = ug + uy, we have

||U||Loo(o7L) < ||u0||L°°(O,L) + ||U77||L°°(0,L)
< Muollpoqosy + H = € = lluoll ogoz) = H — e,

which implies that H +u(z1) > e, Ya; € [0, L]. From the Proposition 2 we have

that u = S(n + co + £(n)) verifies fOL u(z1)dry = 0. Consequently, for small
InllL2(0,1), We have n +co + £(n) € Faa. O
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4 Mixed formulation in variable fluid domain

For each 1 € F,q, let u be the solution of the equation (11) and let Qf be the
domain occupied by the fluid.

In view of the properties of the inclusion HZ (0,L) in C!(0,L) then the
elastic boundary T, is Lipschitz, so we can define the trace space H/? (T'y).
Moreover, from a classical result Theorem 2 in Vol. 6, p. 652 [10], the trace
function mapping H* (Q£) into H'/2 (T,) is continuous and onto.

In order to establish the variational formulation and the model for the w-
dependent problem in the u-dependent fluid domain let us consider the following
Hilbert spaces:

W, = {wE(Hl(ﬂf))2;w1:00n895,w2:00n§},
Qu = L*(9f).

We introduce in (H* (QF ))2 the divergence operator

8w1 8w2

divw = =—+ + ==
v (33131 (33132 ’

w = (wi,w) € (H' (95))2

Next straightforward lemma states an important property of this operator.
Lemma 1 For all u in U,q, the operator div mapping W, into @, is onto.

This result is standard for the homogenous Dirichlet boundary condition on
the 0QL [19]

For the mixed boundary condition (Dirichlet on ¥ and Neumann on I';,) and
for an exterior domain (the complement of a compact set), the proof of this kind
of result could be found in [32]. The proof remains valid in our case when the
domain is bounded.

We denote by pu > 0 the viscosity of the fluid and by €(v) = (€i;(v)), o, j<, the

symmetric part of the deformation rate tensor, where €;;(v) = 3 (% + %).
i i

Next, let us consider the maps

ap :UxW,xW, — R

2
(u,v,w) —  ar (u,v,w) =2u Z / €5 (v)ei; (w) dz (16)
ij=17%
and
by UXWyxQu — R
o o bwg=- [ @veg 00
of

The properties of the previous maps lead to the existence and uniqueness
result [19]:
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Proposition 4 For all u in U,q and X\ in L* (), the problem:
Find (v, p) € Wy x Q, such that

2
ap (u,v,w) + by (u,w,p) = Z/Ffipwida:+/ Aws do, Yw € Wy,
i=1 7% T

bie (u,0,) = 0,YgeQ,
(18)
has a unique solution.

Remark 3 The system (18) represents a mixed formulation for the Stokes equa-
tions:

—pAv+Vp = fF in QF
dive = 0 in QF

v = 0 on X
(aFn) ces = X on Iy
vu = 0 on Iy

where p is the viscosity of the fluid, v and p represent the velocity and the
pressure of the fluid, f¥' = (le, fZF)T € R? are the gravity forces, of = —pI +
2ue(v) is the stress tensor of the fluid, n is the unit outward normal vector to Ty,
ex = (0,1)7 is the unit vector in the xo direction, X is the vertical component of
the surface forces on the elastic boundary I',. We have a Dirichlet homogeneous
boundary condition on the rigid boundary ¥ and on the elastic boundary I',, we
have a Neumann and a Dirichlet boundary conditions.

The equilibrium of the physical situation, corresponding to a fluid which
occupies a two-dimensional region whose boundary contains an elastic part, is
based on the balance of velocity and normal forces in that boundary. In our
approach to this particular fluid-structure model both balances are obtained in
an optimal control problem setting. One of the first difficulties of this formula-
tion is the u-dependence of the fluid domain. To overcome this problem in next
section we propose an equivalent mixed formulation problem in a fixed domain
but with u-dependent coefficients.

5 Mixed formulation for the fluid equations in
a fixed domain

In order to obtain the mixed formulation for the fluid equations in a fixed
domain, the arbitrary lagrangian eulerian coordinates have been used. For this
formulation in a fixed domain we obtain the existence of the solution.

For each u € U be given, let us consider the following one-to-one continuous
differentiable transformation:

I _ H -~
Ty : QW = QF (Z1,T) = Ty (T1,72) = <551, ++($1)£2> (19)
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which admits the continuous differentiable inverse mapping

TU:QF = QF, (21,20) = T Y (21, 22) = <$1ﬂ)> (20)

o=1T,(0) foreachoc € ', and 7 € T.
Moreover, we denote by

1 0
VTU Z/B\ - ' T1) ~ u(T1
(@) ( ()5, Hius) )
1 0
\Y (Tu_l) (ZL“) = ( —u'(z1)Hzo H )
(H4u(z1))?  Htu(z1)

the jacobian matrices of the transformations T, and T, ! respectively. As usual
for a given square matrix A4, we denote by det (4), A=, AT cof (A) the de-
terminant, the inverse, the transpose and the cofactor matrix, respectively. We
have

(VT) ' (@) =V (T,") (2) = V (T, ") (Tu(@))
and
1 T
cof (VT,()) = det (VT (7)) ((VTu(a;))* ) .

Associated with the transformation T, we state the following useful lemma.
Lemma 2 We have:

1. A function ¢ belongs to L' (95) if and only if the function (E =¢oT,
belongs to L' (). Moreover, in this case we have

(z)de = [ ¢ (F)det (VT, (7)) dz. (21)
Qr 74

2. A function ¢ belongs to L' (Ty) if and only if the function 6 =¢oT,
belongs to L* (T'y). Moreover, in this case we have

/ b(0)do= | 3()0.(5)ds (22)
Iy I'o

where Wy, (T) is given by
Wy () = [|cof (VT (7)) 70 (9) |2 (23)

with 7 (0) being the unit outward normal vector to Ty in 7.
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3. A function ¢ belongs to H' (ij) if and only if the function (Z = ¢oT,
belongs to H' (7). Moreover, we have

99 (g 1 B—LZ’ T
( % o ) ~ (v (w))T( R ) (21)

8%2

The first and second assertions of the above lemma follow from the well-
known transport theorems in continuum mechanics.[20] The third part of the
lemma is a consequence of basic results for Sobolev spaces [1] and the chain
rule.

In our case, we have

H + u(zy)

S By @ H) = 1+ (@),

det (VT (7)) =

We denote by
- L 0 s11(@)  s12(3)
vT,) " (Z) = A (EE :<11A 12A>
W ( H‘i‘(u(lf)l)2 H+Iu{(51) > $21(7)  522(7)
and as a consequence of the above Lemma, we have

g—;’;i(m) gg;(x) — g_%@) gmz(f) <S11(§) 812(@)'
Quz () Jv2(g) v (7)) 2% (F) 501(Z)  522(2)

8$1 8$1 8$2

In order to pose the variational formulation in the reference configuration
let us consider the following Hilbert spaces:

o~

W= {@e@ ()5 @ =0o0n00f, b =0o0nT}
Q = L*(%)

equipped with their usual inner products.
We introduce the forms

F:uadx/WxW—)]R EF:uadexQ\—HR
defined by
ar (u, v, W) = 2MfQF [(85 511+ 8A 821) ( sos11 + 2%?21821)
%(g—%slg + gil S99 + aA s11 + 521) (8%)11 s12 + ‘Z“ 2 + 3 51 +

(g—%slz—l— 2”2 822) (g;sl + 5% 2322)] det (VT, (2))dz

zzu 22: / o (u,5) 200 0% g (25)
Q k.t 8xk al'g

o)
&)

Q3Q3

Bw 821)
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b (u,w,q) = —ng (22181 + 3 821 + 3 81 + 35 522) q det (VT (z)) dz
=~ for (G TR - GG 22 ) g, (26)

Let us consider f¥ (u) € W' defined for all @ in W by
2
FF D — F o~ PN
(Frw.e), o = z/m FE@: det (VT (7)) do
2 N
Z/ fi @'L *u(@) dz.
i=1 QOF H

Proposition 5 For all u in U,q and X in L2 (To), the problem:
Find (v, p) € W x Q such that

e 0. ) 4 e (0 05) = (FF0,8)+ [ 3oy o v e T
ar (u,0,0) + bp (u,w,p) <f (u)Aw>—|— . Wy do, Y (27)
0,VgeQ

bF (u,ﬁ, EI\)
has a unique solution.

The problem (27) is obtained from (18) and reversely by using the one-to-
one transformations T, and T, *. We have ¥ = voT,, p = po T, and N =
Wy (Ao T,,), where @, is given by the formula (23). Therefore, the Proposition
5 is a consequence of the Proposition 4.

6 Optimal control setting

Let us consider the space M=L? (T'o). Next, we introduce the two linear and
bounded operators
As:U—)U’ CsiM—>UI

defined by
(Aso. W)y = as(9:9) Vo, e U (28)
L
<05X,¢>UI L, = / X (L, H)pde, VA€M, VpeU
) 0

where ag is defined by (10).
In terms of the operators defined by (28), equation (11) is posed in the form

Asu(X) — Cs A+ fS
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which points out that the displacement of the structure u (X) depends on the

forces .
For each w in U,4, there exist three linear bounded operators

Ap (u): W > W', Bp (u): W = @', Cp:M— W
given by
(Arp (W0, D) 7 = ar (u,0,@), Y0,0€W
(Br (W®,9)g 5 = br(u,o,§), YoeW,\VieQ
<CFX’“’>W,W - /FO Nivs d5, VA e M,V eW. (29)

So, the system (27) can be rewritten with operator notation in the form:

For u € U,q and NeM given, find i}\(u,/)\\) € W and i)\(u,/):) € @ such
that

(u) + CpA in W'

in @’ (30)

I
- ®

A ()5 (u,X) + Bj ()5 (. 3)
A

or in an equivalent matrix notation as

ap) Bp@) Y ((T(wA) ) L Frw+an
By (u) 0 =~ N - 0 (31)
v p (u, /\)
where B}, (u) is the adjoint operator of B (u).
In the next paragraph the fluid-structure coupled problem will be modeled

by an optimal control system.
For each v € W we denote by vjr, the trace on I'g of ¥ and we denote by

|llp v, the usual norm in L? (Ty). We denote by J : W — R, the function
defined by

o1y
J (@) = 3 [ Bapro |y, -

Moreover, let j : Foq — R be the function defined by

i (3) =7 (5 (s(3).3)). )

We pose the following optimal control problem (P):

inf (X)

subject to the conditions:
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1. /)\\ € Faa

2. wu (X) € U,q such that

Agu (X) = —Cs A+ f5 (33)
3. v (U(X),/X) € /V[7, ﬁ(u (X),X) € Q such that

) () -

Therefore, the previous formulation corresponds to an optimal control prob-
lem with Neumann like boundary control (\) and Dirichlet like boundary ob-
servation (yr,). Moreover, the control appears also in the coefficients of the
fluid equations (34) as it happens in some optimal design problems.[37], [41] The

b
!
N
<
N
N——"
o)
oy %
N
/X
>)
N——"
<)

(34)

condition A\ € F,q represents the control constraint, while the state constraint
is given by the fact that u ()\) € Ugg-

This mathematical formulation provides an interesting tool for the numerical
approximation of the a priori fluid-structure coupled problem in an uncoupled
way. That is, the structure equations represented by the first two conditions
and the fluid equations (34) can be solved separately in an iterative process.

As we mentioned in the second section, on the interface we have two bound-
ary conditions: equality of the fluid and structure velocities (which is a Dirichlet
like boundary condition) and equality of the stresses (which is a Neumann like
boundary condition). In our approach we pursue both coupling conditions in
the iterative algorithm:

e Step 1: We start with a guess for the forces X on the interface.
e Step 2: The displacement u (X) of the structure can be computed by (33).

e Step 3: Once the coefficients of the equations (34) have been obtained, we
can compute the velocity and the pressure of the fluid as the solution of
the weak mixed formulation on the fixed domain (34).

e Step 4: Update X in order to minimize the cost function J-

Remark 4 As we use the value :X for the forces on Iy in the equations of the
structure and we take the value X in the equations of the fluid, the Neumann
like boundary condition is strongly accomplished. The Dirichlet like boundary
condition Uy, = 0 is approached by a Least Square formulation posed in terms
of the minimization problem

N TS
inf 2 [, 2,
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7 Continuity of the cost function

In this subsection, we shall prove that the cost function j is continuous.
The cost function is the composition of the following functions:

NEFuy — u(X) € U,
(U,X) € UadxM\ — ﬁ(u,X) EI//V\,
DeW — J(@)ER

The first and the third are continuous, evidently. Next, by using the Implicit
Function Theorem (see the Appendix), we shall prove that the second one is
continuous too.
We define
U = {uel;u(0)=u(L)=u(0)=1u'(L)
H+U(£L‘1) >0,Vr, € [O,L]},
so that U,q C U C U and U is an open set of U.

Let us consider the function h : (]\7 X L{) X (/VV X Q) - W' x @’ defined
by

=0, (35)

h (), (@,@) = (A () @+ Bf )3~ FF' () = Cul, By () 0)
Next we apply Theorem 4 (see the Appendix) for the case

X:M\XU,Y:Z:WXQ,G:]\/ZXZ/XWXQ\,

ro= (A (1)) wo= (0(u (3)4) 2 (x(1).4))
x=(u),y=(0,q)-
We have that h (zo,y0) = 0. According to the Proposition 5 and in view of
the identities (30) and (31), we have that
2w @ = gt P ) ec (<07 Q)
is invertible.

In view of the Remark 6 (see the Appendix), it remains to verify that h and
g—z are continuous in (zg,yo)-

Proposition 6 Let @ be in U,q. We have

im1Ar () = Ar @ ) =0 (36)
it 1B () = Br @l ) = 0 (37)
o dim 1B (0) - By (@)l g = (39)

where ||-||,; is the norm of the Sobolev space U = H§ (0, L).
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Proof. We have that

(Ap (w)v,w) = ar (v, v, w)

where ap is defined by (25).
Next, by using the elementary integral calculus results, we obtain

/ " (s)ds| < / " (o) ds

L L 1/2
/0 Ju <s>|dss(/0 ' (5)] ds> <lull,  (39)

|u (Z1)]

IN

and analogously

W' (20)] =

< / " (s)] ds
0

/ u' (s)ds
0
1/2

L L
/0 [u'" (s)]ds < (/0 |u” (s)|2 ds) <[l - (40)

Since the coefficients of the bilinear form ap (u,-,-) are continuous with
respect to u, u' and thanks to above inequalities, we obtain that there exists a
constant C (QOF) depending only upon the shape of the domain ", such that

for all ¥ and w in W, we have

IN

ar (u—7a,0,®) < C1 () llu —ally [[0ll5 1@l -

It was essential for obtaining the above estimation the fact that the domain
QF is bounded!
It follows that

[4F (w) = Ar @l L7 7y = sup ((Ar (v) = Ap (@) v, w)
7]l <1, @l & <1
= sup ay (u—u,0,®) < Cy () [Ju -7l

19l <L,l|@l & <1
which proves the relation (36).

Analogously, we obtain the two other relations which complete the proof.
d

Proposition 7 The function
u € Uz b—)fF(u)EW'

18 continuous.
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Proof. We have

2
| w-F@| = suw FE (w =) @) s do
ol <1 ;= /Qf
< lu—lly sup (Z/ >

< -l [ JF
i=1 79

and the conclusion holds. O

Corollary 1 The function g— from G to L (W X Q\,/VV’ X @’) is continuous
on G.

Corollary 2 The functions
(U, @) € Ugg x W — Ap (u) @ €
(u, @) € Upqg x W — Bp (u) @ €
(u,9) € Una x @ — B (u)G €
are continuous.

Proof. Let uw and v be given in U,4 and W respectively. We have

I4r ()@ - Ar @)l
|Ar ()& = Ap (@) © + Ar (1) @ - Ar (@) Dllg,
l4r () = Ar @, 7.5 18] + 145 @], 5,5 16 = Tl

ININ

From Proposition 6, we have

lim _{|Ap (u) = Ap @) (7 7) = 0-

llu—zll,—0

Next, since ||w
complete. O

=l — 0, we get that ||@]|| is bounded and the proof is

Corollary 3 The function h from G to W' x Q' is continuous on G.

All the hypotheses of the Theorem 4 (see the Appendix) hold, so the implicit
function 6 : M x U — W x @ given by

0 (i, u) = (v (u, 1) , p (u, 1))
is continuous in (X, u (X)) Moreover, this result holds for each Xe ]/\4\, such
that u (X) € U.

Therefore, we obtain that the cost function j defined in (32) is continuous
on F,q, since it is the composition of three continuous functions.
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8 Differentiability of the cost function

In this section we analyze the differentiability of the cost function as well as the
expression of its gradient. We use the method of deformation of domains.[31],

[71, [9]
In the four following lemmas, the differentiability of intermediate functions
is established. Moreover, the analytic formula for their derivatives is obtained.
We follow the notations introduced in the previous sections.

Lemma 3 The function J : W R defined by

. 1,2
T (@) =

is Fréchet differentiable and
J' (@)W = / Voo do.
I'o

Proof. The function @& — fFo U2Wo do is linear and continuous, evidently. We
shall use the definition of the Fréchet differentiability detailed in the Appendix.

oo+ @22, — 310213 1, — [, T2 45|

limﬁﬁo =
TaT, ar

= limg_0 : = limg_o 77 >

2l or
Since [|@2|lyp, < [l@]lyp, and from the continuity of the trace operator
defined on H* (Qf), we have

lwallor, _ ll@llor, <

— nst.
[l or = T8l o

so the above limit is 0. O

Lemma 4 Let v, w be given in W and @ in Q. Then the functions from Uyq to
R defined by

ur— ap (u, 0, W)

U — bF (u,@,q)

are Fréchet differentiable on Uyq and the derivatives have the forms:

oar o o 6(1167][ ov; a’LUJ
L v @) = 2 3 / )b S di (41)
i,j,k,0=1
8bp ~ _ w(.’l,'l)awl,\ w’( )xgawlA
(@)% = ade+ [ S (42)

8u Q[I; H 8 Iy Qg“
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Proof. In view of the identity (26), the function

u s b (u,@,9)
is affine. Using the inequalities (39) and (40), we get the continuity of this
function. Consequently, it is Fréchet differentiable.
But, for a linear and continuous function

ueUwr f(u)eR

the Fréchet derivative has the form

frflwy=,w), Vel

The above identity gives (42).
Using the same method, we can get the Fréchet differentiability and deriva-
tives for all the terms of ap (u,v,w) which are affine with respect to u.
The only remaining point concerns the differentiability of the function
J

U aH(u )6% 0w;

dz.
QF a:ltk 83:;;

where u € U — afg’j( (u,-) € L™= (') is nonlinear.
We apply the Theorem 7 concerning the differentiability of integrals with
. . A =F
parameter (see the Appendix) in the case Q =, and

0v; an @
a:Uk 83:;;

f (@) = ayy (u, @)

The uniform convergence is ensured due to the inequalities (39) and (40) and
. =F
to the compactness of the domain € .

The elementary rules for computing Fréchet derivative establish the identity
(41), which completes the proof. O
Lemma 5 The function

wE Uy — fF(u)eW'

is Fréchet differentiable and the derivative DfF (u) € L (U, /W’) has the form

(DFF (v, ) = Z w”“ P tF G dz, Ve W

Proof. The above function is affine and from the Proposition 7, it is continuous,
then it is Fréchet differentiable. O

Lemma 6 We have
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a) the function from Ugq X M into W x @ defined by

(3) = (2 () 7 (1))

is Fréchet differentiable on Uyq X ]\7,

b) the derivative of the function
XEI?»—)@(U(X),X) ew

has the form
5o (1 (3) ) agtes+ 2 (u(3) ).

Proof. a) Let \ be in Fad- We have that u (X) computed from (43) belongs
to uad.

Let v (u (X) ,X) and p (u (X) ,X) be computed from (44).

We recall that U defined by (35) is an open set in U.

We apply the result concerning the differentiability of the implicit function
(see the Theorem 7 in the Appendix) in the case

X=MxU Y= Q, G

) = G
(1 u), y

for the function h : (J/\l\ X U) X (W X @) S W' x @’ defined by

:M\xeWx@,
3) 2 ((4).3)).

’ ’
x = (w,9)

=

B (i w), (@,9) = (Ar ()@ + B (0§~ 7 (u) — Cuii, Br (0)®).

In Section 7, we have proved that all the hypotheses of the Theorem 4

hold for the previous choice. It remains to show that % exists on G and it is
continuous in (zo, yo).

In order to prove that, we apply the Theorem 2 (see the Appendix). We
have to prove that the functions g—g and % exist on G and they are continuous

in (zo,y0)-
But the function .
e M— h((i,u),(w,q))
is linear and continuous. Its Fréchet derivative is
oh PR
6_/7 ((N’:u) ) (w7 q)) = (_CFao) ’

which is evidently continuous on G (because it is constant).
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Next, we prove the similar result for 2%

We obtain from the identities (41) and (42) that there exist three operators
DAp(u) € £ (W c (U, W))
DBi(u) € L (@,,c (U, W'))
DBp(u) € L (I//V\,L‘ (U, @’))

such that
((DAF @D D = 2L (5, 0)
@B WD0D = 2 wa g
(DB @D HT = Dm0

forallu € U, 5, % € W, g€ Q and ¢ € U.
From the Lemma 4, we get that there exists a function w, such that

o o Oap o
ar (u+1,/1,v,w) —ar (U,’U,’LU) - W (U,’U,’LU)’I/J = ||1,/J||ULU(U,U,’LU,’I/J)

or equivalently
(Ap @+ )5, )0 7 — (Ar (@) 0, D)0 57 — (DAr (@) 0) 6, D)
= ||1/}||U w (E7 v, w, 1/})
and
li u,v,w,Y) = 0.
1/}11}1})(&)(”71}7“]71/)) 0
In fact, we have that w converges to 0 uniformly with respect to ||w|z < 1.
More precisely, we have: Ve > 0,30, > 0,V ||w]|i7 < 1,V |lu — 7|, < 6,
|w (u, 0, w,v) —w(u,v,w,y)| <e.
Then the function e
u— Ap (W) o e W'
is Fréchet differentiable and its derivative is
DAp (Ws €L (U, W) .
In a similar way, we obtain that the function
e b (@), (@,) € W' x Q'
is Fréchet differentiable and its derivative is

o (@), (@,0) = (DAr (0@ + DB} ()G~ DFF (u), DB (@)
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Following an analogous argument as in the Proposition 6 and Corollary 2,

we get that the function % is continuous on G.

Now, we can apply the Theorem 7 (see the Appendix) and we obtain that
the implicit function 6 : MxU— W x Q, given by

0 (i,u) = (v (u, 1), p(u, 1)),

is Fréchet differentiable, which states the first part of this Lemma.

b) Next, from the identity Asu (X) =—Cg X+fs, we have that the function
A u (X) is differentiable and v’ (X) = —Agl Cs.

By using the chain rule, the derivative of the function

305 (u (1),3)
has the form

2 (u(3) A (3)+2 (u(R)X) = =52 (u(3) 3) A5"Cs+2 (u (V) 2)
and the proof is complete. O

Now, we present the main result concerning the computation of the gradient
for the fluid-structure interaction problem.

<

Theorem 1 The cost function j defined by (32) is Fréchet differentiable. More-
over, we have forall X in Faa and forall i in M:

g () dap , .~ Obp . Obp, L\ 1 -
f _ 1
.7 (A) ll’ - ( au (U,,’U,Z) + au (U,,Z,p) + au (U,’U,’I")) AS CSII’

(Aglcsﬁ) (Z1) . p o Oy
— — - ’f -zd:c+/v u,\) pdo,
/QOF H To “ox o\ ( )
where the displacement u is computed from

Asu=—Cs\+ f5, (43)

the velocity U and the pressure D of the fluid are computed as solution of

~

ar (w,5,@) + b (u,@,p) = (FF(u),® Ny d5, Vi € W
fp (u, v, W) + bp (u,w,p) <f (w) wA> + . Wy do, YW (44)
br (u,0,q) = 0, VgeqQ,

the adjoint state z and T are computed as solution of

ar (u,@,2) + bp (u,@,7) = /@@2 do, Yo eWw
I'o

- (45)
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and %—% (u,X) 1 is computed from

ar <u, g—g (uX) ﬁ,@) +br <u,m,g—: (u,X) ﬁ) - / [iiy do, Y € W
oA o
by u, % (u,X) ﬁ,@) = 0,Vqe @
(46)

Proof. According to the Lemma 3, Lemma 6 and the chain rule, we obtain
that j is differentiable and

P05 = (00 (6) ) 2 (u(3) A

'(X)ﬁda
0 R ua R
+/Foﬁ2 (u (/\) ,)\) == (u (A) ,A)ﬁda.

Our next objective is to evaluate the first term of the above sum.
For this, let (z,7) be the solution of the adjoint system (45). Next, replacing

W by ‘g—z (u (X) ,X) u! (X) 1 in (45), we obtain:
0N G E6) 3) (%) adz
i (20 o 5). ) (3)52) 3 (128 (o 5).3)w (3) 7).
Next, if we derive the equations (27) with respect to u, we obtain
(15 (03) )+ 2 (1(03) ) 2 ()
+86L (u @ﬁ(u,X))¢+ aabA (u W p(u )\)) Z;( X)w

= wgl)fl’ ©dz, VoeEW, Vi eU (47)
QF

Il
S~
S

o
N
e
ey
>)
N——"
>
N——"
‘Qj
<)
o
G

and Vg € Q, Vo) € U we have

dbr [ abFAAAaaA_
%(u, ( ) )w-l- ( v(u,)\),q)%(u,)\)w—o. (48)
Now, replacing @ by Z in (47), g by 7 in (48) and ¢ by Ag' Csfi in (47) and
(48), we obtain

2 (0 (05) 2) 4510 B 0 (05).5) 2 () 4 059
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B (45 (02)) 5t s 2 (12 (13)) 2 () 45"
and
%if (u,i)\ (U:X) :7“\) A Csi+ ‘?9% (u,i)\ (u,X) ,?) g (U,X) AS'COsi = 0.

(50)
But the following functions

b ap (u,0,2), G bp(u,0,9), @® > by (u,d,7)
are linear and continuous. Consequently, they are differentiable and we have
( v( ) )i(u X) A—lcsﬁ—aF( g_;(u X)A—losﬁ 2)
( a( ) ) (u ,\)A LOsfi = b (uv(u A) (u A)Aglcsﬁ)
B (09 (17) 7) 8 (w3) 45"0m = (1 8 (1) ' 05761

So, the identity (49) could be rewritten as follows

A% (u,ﬁ(u,A) )A C'Su+ap< ( )
5 2

2, Qv‘

D
)|y

g
S
§>

Csu z>

?(u3) ' cs1)

(Aglcsﬁ) (53\ ) F >da

%(“ﬁc“i( T)AS CS“%%(W( )) 450
s “SH)\E

Now, replacing the third equality of (51) in (50), we get

A A N AR N P R,
P (u,v (u,/\) ,r) A" Csp = —bp <u, 0 (u,/\) Ag Cs,u,r>

o O [ N\ (N ~

= bp (u, 9 (u,)\) U ()\) u,r)

which completes the computation of the first term of the gradient, i.e.

Jry 7 (u(5).8) 5t (u (3) 3)w (3)
= (?—j (u,0,2) + %bj (u,z,p) + 8;5 (u,o r)) Ag'Cspi

A el >dz
_fQF 5”) fF
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Our next goal is to compute the second term of the gradient.
The function

Y B :(AF<u> B;<u>>1<cFX>
U, A 0

<)

=)

is linear and continuous, therefore it is differentiable. Moreover, we have

A (e ) (o)

E5N
compute numerically the second term of the gradient and the proof is complete.
O

So, we can compute (u, X) 1t by solving a Stokes problem which permits to

9 Approximation and numerical results

In this Section we present a practical application of the optimal control algo-
rithm presented in Section 6, having in view the computation of cost function
gradient. For this, we propose particular numerical approximation methods.

Let ¢; € L? (0, L) be some particular given functions and let a; € R be the
discret controls to be identified, 1 < i < m.

From the Proposition 2, ii) there exist ug € U such that fOL ugdxr; = 0 and
¢o € R solutions of (13) and u; € U such that fOL u; dx1 = 0 and ¢; € R solutions
of

L
as (s, ) = / (6 (1) + e (1) day Wb € U, (52)

It was not necessary to have fOL ¢; (1) dz; = 0.

We take X(azl, H)=—co+ Y 1", i (=i (z1) — ¢;) in the equation (43) and
we obtain the displacement u = ug + > ;- ; a;u; such that fOLud:cl =0. In
other words, A(z1, H) = —co + 3., a; (=i (z1) — ¢;) is an admissible control
if and only if the displacement u = ug + Y., a;u; verifies the condition (4).

With the notation

j(al,...,am) :j (-Co -I—Zai (_¢i (3131) — C,‘))

we have
oJ ~ 7
Bay (a1, 00m) = J' (A =—c¢+ ;0@ (=i (1) — Cz)) (—or —cx)
_ dap Obp , o Obr,
- _a—u(uava ) k_%(uazap)uk_a—( s Uy )U’k)
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uk (T1) g o 5,90 (5 G
+/Qg Tf de-l—/rovzﬁ (U:A) (—¢r — i) do,

where ¥ and p is the solution of (44), z and 7 is the solution of (45) and
88—@)\2 (u,/)\\) (—¢r — ci) is the solution of (46) for i = —¢p, — cy.

The problems (44), (45) and (46) represent weak forms of different Stokes
equations written in the reference domain 2)". We know that (44), for example,
is equivalent to (18) which represents a weak form of a Stokes equation written
in the real domain Q. For the approximation by Finite Elements Method,
it is better to use (18) instead of (44), because there exists a large literature
concerning mixed form of Stokes equations, see for example the standard works
[19] and [6].

The function J is not defined in whole R™, but only for a = (a1,...,a,)
such that the displacement u = ug + Y., oju; verifies the condition (4). If we
ignore for the moment this constraint, so that we can use quasi-Newton methods
like Broyden, Fletcher, Goldfarb, Shanno (BFGS) or Davidon, Fletcher, Powell
(DFP) algorithms for the minimization problem without constraints

inf J (a1,...,0m).

Constrained minimization algorithms like projected or penalization techniques
can also be used.

Among the wide variety of possible applications of the here presented control
approach of fluid-structure problems, we are interested in simulating the blood
flow through medium vessels (arteries). The computation has been made in a
domain of length L = 3 ¢m and height H = 0.5 ¢m which represents a half
width of the vessel. In this case, the fluid is the blood and the structure is the
wall of the vessel.

The numerical values of the following physical parameters have been taken
from [17]. The viscosity of the blood was taken to be u = 0.035 —£— its density
p¥ =1 —£;. The thickness of the vessel is h = 0.1 ¢m, the Young modulus

cm3
E =0.75-10% L, the density p° = 1.1 —L5.
The gravitational acceleration is go = 981 <3 and the averaged volume force
of the structure is (1) = —gop°h.

On the rigid boundary, we impose the following boundary conditions:

2
_ 23
’Ul(xl;xZ) == { (1 H2)V07 (331,332) 621U23
Vb’ (331,332) S 22
va(w1,m3) = 0, (21,m2) €X

where Vo = 30 <2.[39] The volume force in fluid is ££ = (0,—gop™)”. Im-
posing non-homogeneous Dirichlet boundary conditions for the velocity on the
rigid boundary do not change the formula to compute the gradient of the cost
function, excepting the space where we search the velocity v in the problem
(44).

Using the notations from the beginning of this section, we have ¢y = gop°h
and ug = 0.
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We take m = 4. Let & = (i — 1)L/(m — 1) for 1
¢; polynomial functions of degree 3, such that ¢;(&;)
Kronecker’s symbol.

< m. There exist

<i
= 5ij: where (Sij is the

12

T
phit ——
phi2 -

phi3 -

. phi4

1
08 -
06

04t /

02t/

0F

02f

-0.4 L 1
0 05 1 15 2 25 3

Figure 2: The shape functions ¢; for the approximation of the control

Let u;, ¢; be the solutions of (52). From the regularity of ¢;, we can use the
following strong formulation in order to compute u;, ¢;:

EIu"(x

1) = ¢i(x1) +ci, Yo € (0,L)
w(®) = ul(0)=0,
3 w;(L) = wui(L)=0
Jo wi(z1)dey = 0.

We have computed w;, ¢; exactly, using the software Mathematica. The dis-
placements u; are polynomial functions of degree 7. We could use alternatively
finite elements shape functions for ¢;, but in this case we should handle the
weak formulation in order to compute u; and c;.

For the fluid we have used a Mixed Finite Elements Method, P2 Lagrange
triangles for the velocity and P1 for the pressure [19], [6].

The numerical tests have been produced using freefem++ v1.27.[24] We have
used the BFGS algorithm for the minimization problem with the starting point
a = 0 so that in the first five iterations the cost function takes the values
presented in Table 1.

After 5 iterations we have obtained

(a1, a0,as,a4) = (13.81347223, 2.81316723, —2.64008687, —13.98655258)
and the gradient of the cost function was
VJ = (0.000255, 0.004768, —0.020800, 0.009256)".

More iterations do not quantitatively change the values of «, the cost function
and the solution. The relative change in successive values of a evaluated in the
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Iterations J

0 8.369704278
7.705856075
0.152977642
0.147957298
0.145206068
0.144683623

Y[ W N =

Table 1: The cost function history

norm |||, is less than 0.02. The first four digits to the right of the decimal
point of the cost function don’t change after the fifth iteration. Ten iterations
are required to achieve ||V, <1076,

Notice that the condition (4) was not violated.

In order to compute V.7 («), we have to solve the adjoint state problem
(45) and m linear systems (46) which have the same matrix. The linear sys-
tems were solved by LU decomposition. We observe that (44) and (45) have
the same left side, so when we compute V.J(a) we can use the same LU de-
composition obtained computing J(«). If we compute V.J () by the Finite
Differences Method, we have to solve m linear systems, but the matrices are
different because u changes, so using the analytic formula of the gradient is
more advantageous.

125

Figure 3: The applied stresses —\ = ¢y + St i (¢ + i) [dyn/em?] on the
interface

~ 2
We have obtained H)\ + ﬁHO o= 0.002878, in other words, the vertical com-
L 0

ponent of the stresses exerced by the fluid on the interface depends on the
pressure only, —\ =~ pyr,. This is justified by the following result [34]: if
v € (H? (95))2, p € H' (QF), v is constant on I'y, div v = 0 in QF, then
—(¢"n) -n=pon T, Inour case — (c7'n) -es = =X and n ~ e».

As we see in Figure 4, the velocity on the boundary T'g is not null, but the
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Figure 4: The velocity [cm/s] on the boundary Tg

maximum of the absolute value is less than 0.6 cm/s.

H+|20*u(x)
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Figure 5: The displacement [cm] of the vessel magnified by a factor 20

The displacement of the vessel is very small, it is less than 0.04 cm (see
Figure 5). The pressure on the interface p is almost the same as —X, so it
decreases from the inflow (left) to the outflow (right). The displacement of the
interface is consequent with the pressure: the displacement of the vessel wall is
outwards at the left and inwards at the right.

The computed velocity distribution is similar to a Poiseuille flow (see Figure
6).

10 Conclusions

In this work, a particular fluid-structure interaction model is formulated as an
optimal control problem.
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Figure 6: The velocity [em/s] reduced by a factor 100

The optimal control setting allows to solve numerically the fluid-structure
interaction problem (which is a priori a coupled problem) by an iterative algo-
rithm such that the fluid and the structure equations are solved separately at
each iteration. Thus, existing software packages could be adapted to approxi-
mate the solution of all the intermediate problems appearing in the algorithm.

The differentiability of the cost function and the analytical expression for its
gradient are obtained.

In order to perform a numerical method, the analytic expression for the gra-
dient reveals very useful and accurate to apply classical descent methods. To
solve numerically a problem arising from blood flow in arteries, we have used
a quasi Newton method which employs the analytic gradient of the cost func-
tion and the approximation of the inverse Hessian is updated by the Broyden,
Fletcher, Goldforb, Shano (BFGS) scheme. This algorithm is faster than fixed
point with relaxation or block Newton methods.

We can adapt this technique to the unsteady coupled fluid-structure prob-
lems.

A Appendices

A.1 Fréchet differentiability
Let (X,|llx), (Y,|I'lly) and (Z,]|-]| ;) be three normed spaces.

Definition 1 We say that the function f : X — Y is Fréchet differentiable
at © € X, if there exists f' (z) € L(X,Y) such that

o 1 @+ 1) = 1 @) = £ &) Bl

=0
h—0 17/l x

The linear operator f'(x) is called the Fréchet derivative of f at x.

In the case when X = []" | X;, we denote by g—i () € L(X;,Y) the

Fréchet partial derivative of f with respect to z; at x € X.
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Theorem 2 Let f: X =[], X; = Y be a function and let z° be an element

of X. We assume that there exists V a neighborhood of 2°, such that g_{i erists

on 'V and its are continuous in z°.

Then f is Fréchet differentiable in z° and

7@ =32 @) n,
i=1 ¢

for all h = (hy,...,h,) € X.

Theorem 3 Let h : X — Z be the composition of two mappings f : X = Y
and g:Y = Z

h:gof

Assume that f is Fréchet Differentiable in x and g in f (x), then h is Fréchet
differentiable in x and

A.2 Implicit Function Theorem

We begin by recalling the Implicit Function Theorem. The proof of this result
could be found in [25] for example.

Theorem 4 (The Implicit Function Theorem) Let (X, ||||x), (Y, |]ly)
and (Z,||-|| ;) be normed spaces. We suppose that h is a mapping from an open
subset G of X XY into Z.

Suppose (xo,yo) s a point in G and h is continuous in (zo,yo) such that:

i) h(fCanO) = 07

ii) g—z exists on G and it is continuous in (xg,Yo),
dh h -
iii) 5, (zo,y0) is invertible and (6—y (:Uo,yo)) is continuous.

Then there exists a neighborhood V' of xo and a function 6 : V. — Z such
that:

iV) 0 (ZE()) = Yo,
v) h(z,0(z)) =0 forallz inV,
vi) 6 is continuous in xo.

Remark 5 If h is continuous on G, then 6 is continuous in a neighborhood of
Zo.
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Remark 6 In the case when X, Y and Z are Banach spaces, if g—;‘ (zo,y0) €
L (Y, Z) is invertible, from the Open Mapping Theorem we have that

—1
(gy (:co,yo)) is continuous.
Theorem 5 (The differentiability of the implicit funtion) Moreover, if

there ezxists 8— on G continuous in (zo,yYo), then the implicit function 0 is
Fréchet differentiable in xy and

6 (z0) = — <g—z (xO,y0)> B % (o, o) -

A.3 Integrals with parameter

Let U be a Hilbert space and let Q be a compact set of R2.

Theorem 6 (continuity of integrals with parameter) Let f be a function
from U x Q to R such that for all uw € U the function
zeQ— f(u,3)

1s Lebesgue integrable.

Let w be an element of U such that f (u,T) converges to f (u,T) uniformly
with respect to T, when u converges to u.

Then

lim fu:vdx—/fu:n
Q

u—u

Theorem 7 (differentiability of integrals with parameter) Moreover, we
assume that:

a) for allu € U and for all T € ﬁ, the Fréchet derivative

0 ~
a—i (u,z) € U’
exists,
b) the functions
~_a 0 ~
xEQb—)a—i(u,x)welR
are Lebesgue integrable for all v € U,

c) % (u,T) converges in U' to % (W, ) uniformly with respect to T, when u

converges to u.

Then, the function F from U to R, defined by

:éf@ﬁwf
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is Fréchet differentiable inw and

F (@) = / o (w2 pai

forallyy e U.
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