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2 C.M. Murea and C. V�azquezposed into a rigid part and an elasti part.The mathematial model whih governs the uid is based on a steady Stokesequation while the deformation of the elasti part of the boundary veri�es apartiular beam equation without shearing stress. Therefore the solution of themodel onsists of the determination of the elasti boundary displaement andthe omputation of the veloity and the pressure in the uid domain.In a �rst sense, the physial problem is related with those treated in uid-struture interation literature but the vibration approah is not onsideredhere.[30℄ In other sense, the asymptoti limit when the uid domain width tendsto zero an be modeled by a one-dimensional approah of Stokes equation, i.e.Reynolds equation, widely used in lubriation theory.[3℄On the other hand, if we think about the elasti boundary as part of theboundary of a two-dimensional domain whih is unknown a priori, then theproblem an be framed as a free boundary like problem. The free boundaryaspet of the model motivates the need of two oupling boundary onditions:ontinuity of the veloity and of the stresses aross the interfae uid-struture.This kind of problem is of onsiderable interest in biomehanis (the simula-tion of blood ow in large arteries, [29℄, [17℄, [33℄, [8℄, [18℄, [38℄), in aeroelastiity(uttering of wings, [13℄, [14℄, [35℄, [36℄), in ars industry (design of hydraulishok absorber, [26℄).The existene results for the uid-struture interation an be found in [21℄,[23℄, [2℄ for the steady ase and in [22℄, [12℄, [4℄ for the unsteady ase.Sensitivity analysis of a oupled uid-struture system was investigated in[15℄.The most frequently, the uid-struture interation problems are solved nu-merially by partitioned proedures, i.e. the uid and the struture equationsare solved separately, whih allows to use the existing solvers for eah sub-problem.There are di�erent strategies to disretise in time the unsteady uid-strutureinteration problem. A family of expliit algorithms known also as staggeredwas suessfully employed for the aeroelasti appliations.[13℄ Their stabilityproperties were studied in [35℄ and [36℄. For the stability reason, a very smalltime step is neessary.As it shown in [26℄ and [33℄, the staggered algorithms are unstable when thestruture is light and its density is omparable to that of its uid. In order toobtain unonditionally stable algorithms, at eah time step we have to solve anon-linear uid-struture oupled system. This an be done using �xed pointstrategies with eventually a relaxation parameter, but it has slow onvergenerate [26℄, [33℄, [17℄. The onvergene an be aelerated using Aitken's method[18℄ or transpiration ondition [11℄.Other way to aelerate the onvergene is to use methods whih employ thederivative. In [40℄ a blok Newton algorithm was used where the derivative ofthe operators are approahed by �nite di�erenes. Good onvergene rate wasobtained in [18℄ where the derivative of the operator was replaed by a muhsimpler operator. The blok Shur-Newton method is proposed in [16℄ wherethe derivatives of the uid and struture operators with respet to the state



Sensitivity and approximation of oupled uid-struture problem 3variables were omputed exatly, but this algorithm has not been implementedyet.In a previous work, a three-dimensional uid-struture interation was for-mulated as an optimal ontrol system, where the ontrol is the fore ating onthe interfae and the observation is the veloity of the uid on the interfae.[32℄The uid equations were solved taking into aount a given surfae fore on theinterfae. The existene of an optimal ontrol was proved. We have to preisethat the uid-struture interation problem and its optimal ontrol version arenot equivalent.In this work, a two-dimensional steady state uid-struture oupled problemis approximated by an optimal ontrol system, where the ontrol is the vertialomponent of the fore ating on the interfae and the observation is the vertialomponent of the veloity of the uid on the interfae. The ontrol approahpermits to solve the oupled uid-struture problem by partitioned proedures.The analyti omputation of the gradient for the ost funtion is one of themain goals of this work in order to apply aurate numerial methods. More-over, from the theoretial viewpoint, the optimality onditions an be written interms of this analyti expression of the gradient. In fat, although the analytiformula for the gradient involves the solution of several auxiliary problems, thealternative use of �nite di�erene approximations for the derivatives introduestrunation errors and it is potentially muh more sensitive to ill-onditioning ofthe state equations.[27℄The aims of this paper are: to analyse the behavior of the uid and struturesub-problems under the variation of the fore ating on the interfae, to provethe di�erentiability of the ost funtion and to present numerial results arisingfrom blood ow in arteries. To solve numerially the optimal ontrol problem,we use a quasi Newton method whih employs the analyti gradient of theost funtion and the approximation of the inverse Hessian is updated by theBroyden, Flether, Goldforb, Shano (BFGS) sheme. This algorithm is fasterthan �xed point with relaxation or blok Newton methods.In Setion 2 the partiular uid-struture problem is presented, related nota-tions are introdued and the assoiated optimal ontrol problem is briey posed.In Setion 3 the weak formulation of the struture equations is analysed andwe preise the set of admissible ontrols. For a given struture displaement,the mixed formulations governing the uid veloity and pressure are posed inthe eulerian and arbitrary lagrangian eulerian oordinates in Setions 4 and5, respetively. In these arbitrary lagrangian eulerian oordinates the optimalontrol system is detailed in Setion 6. Next, the ontinuity and the di�erentia-bility of the ost funtion are proved in the Setion 7 and 8. Moreover, the exatexpression of the ost funtion gradient is obtained. In Setion 9 we present aninteresting appliation to blood ow simulation in medium vessels. For this,partiular methods to solve the struture and uid equations as well as spei�algorithms for the disrete optimization problem are proposed. Some numerialresults for real data are presented and disussed. The last setion is devoted tosome onluding remarks.



4 C.M. Murea and C. V�azquez2 Presentation of the problemIn order to pose the equations for the model let us introdue some mathematialnotations. Let L and H be two positive onstants. We introdue the lassialSobolev spae U = H20 (0; L) and the sets (see the Figure 1):
F0 = (0; L)� (0; H); �0 = (0; L)� fHg; �1 = f0g � (0; H);�2 = (0; L)� f0g; �3 = fLg � (0; H); � = �1 [ �2 [ �3:6
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Figure 1: Sets appearing in the uid-struture problemAs we have the ontinuous and ompat inlusion of H20 (0; L) � C1 (0; L)then for eah u 2 U we denote by u0 its derivative (in fat it is a lassialderivative) and by u0 0 its seond (weak) derivative. For a given e 2 (0; H) wede�ne the setUad = fu 2 U ; u (0) = u (L) = u0 (0) = u0 (L) = 0;R L0 u(x1) dx1 = 0; H + u (x1) � e; 8x1 2 [0; L℄o :Moreover, for eah u 2 Uad, we introdue the notations (see the Figure 1)
Fu = �(x1; x2) 2 R2 ; x1 2 (0; L); 0 < x2 < H + u (x1)	 ;�u = �(x1; x2) 2 R2 ; x1 2 (0; L); x2 = H + u (x1)	 :In view of the de�nition of the Uad, the two-dimensional domain oupiedby the uid is 
Fu , the elasti interfae between uid and struture is the freeboundary �u, while � represents the rigid boundary.



Sensitivity and approximation of oupled uid-struture problem 5We suppose that the uid is governed by the steady Stokes equations, whilethe deformation of the elasti part of the boundary veri�es a partiular beamequation without shearing stress.[5℄ We onsider that the struture is a beam ofaxis parallel to Ox1 with onstant thikness h. We assume that the displaementof the beam is normal to its axis.The problem is to �nd:� u : [0; L℄! R the displaement of the struture,� v = (v1; v2)T : 
Fu ! R2 the veloity of the uid and� p : 
Fu ! R the pressure of the uid,suh thatEI u0000(x1) = � ��Fn � e2�(x1;H+u(x1))q1 + (u0(x1))2 + fS(x1) (1)u (0) = u (L) = u0 (0) = u0 (L) = 0 (2)Z L0 u(x1) dx1 = 0 (3)e � infx12[0;L℄ fH + u (x1)g (4)���v +rp = fF ; in 
Fu (5)div v = 0; in 
Fu (6)v = g; on � (7)v = 0; on �u (8)where� EI = Eh312 is rigidity to bending modulus of the struture, E is the Youngmodulus, h is the thikness.� fS : (0; L)! R are the averaged volume fores of the struture, in generalthe gravity fores and in this ase we have fS(x1) = �g0�Sh, where g0 isthe gravity, �S is the density of the struture,� � > 0 is the visosity of the uid,� fF = (fF1 ; fF2 )T : 
Fu ! R2 are the volume fores of the uid, in generalthe gravity fores,� g = (g1; g2)T : � ! R2 is the imposed veloity pro�le of the uid on therigid boundary, suh that Z� g � n d� = 0 (9)� �F = �p I + � �rv +rvT � is the stress tensor of the uid,



6 C.M. Murea and C. V�azquez� n = (n1; n2)T the unit outward normal vetor to �
Fu ,� e2 = (0; 1)T is the unit vetor in the x2 diretion.The inompressibility of the uid (6) states that the volume of the uid isonserved or equivalently R L0 u(x1) dx1 is onstant. Without loss of generality,we assume that this onstant is zero and we obtain the ondition (3).The inequality (4) implies that the uid domain is onneted. The onstante has not a physial meaning.The system (1)-(8) is a oupled uid-struture problem.The displaement of the struture depends on the vertial omponent of thestresses exered by the uid on the interfae (equation 1). This ames from theontinuity of the stresses aross the interfae.The movement of the struture hanges the domain where the uid equationsmust be solved (equations 5,6). Also, on the interfae we have to impose theequality between the uid and struture veloity (equation 8).We shall introdue the ontrol approah.Let b� : (0; L)! R be the ontrol funtion.The displaement of the struture is omputed byEI u0000(x1) = �b�(x1) + fS(x1); 8x1 2 (0; L)with boundary onditions (2), suh that (3) and (4) hold.We an ompute the veloity and the pressure of the uid as the solutionof the equations (5), (6) with boundary onditions on the rigid boundary (7)together with boundary onditions on the interfae: v1 = 0 and��Fn � e2�(x1;H+u(x1)) = b�(x1)q1 + (u0(x1))2 ; 8x1 2 (0; L):The ontrol problem is to �nd b�, suh that v2 = 0 on �u.As we use the value �b� for the applied stresses in the equations of thestruture and we take the value b� in the equations of the uid, the ontinuityof the stresses aross the interfae is strongly aomplished.In the following, the boundary ondition v2j�u = 0 is treated by the LeastSquare Method and we obtain the optimal ontrol probleminfb� 12 v2j�u2 :The ontrol b� and the ost funtion are \virtual". The idea of VirtualControl whih leads to Domain Deomposition Methods was presented in [28℄and in the referenes given there.Next, we shall preise the regularity of the ontrol whih is linked to theequivalene or not-equivalene between the uid-struture equations (1){(8) andits optimal ontrol version.



Sensitivity and approximation of oupled uid-struture problem 7If the system of uid-struture equations (1){(8) has a strong solution u 2H4(0; L), v 2 �H2 �
Fu ��2 and p 2 H1 �
Fu �, then the ontrol given by therelation b�(x1) = ��Fn � e2�(x1;H+u(x1))q1 + (u0(x1))2belongs to L2(0; L). In fat, the ontrol is even smoother. In this ase, thesystem (1){(8) is equivalent to the ontrol problem. So, there exists b� 2 L2(0; L)suh that v2j�u = 0. In [4℄ the existene of a strong solution was proved for arelated problem.If the system of uid-struture equations (1){(8) has only a week solutionu 2 H2(0; L), v 2 �H1 �
Fu ��2 and p 2 L2 �
Fu �, then b� is well de�ned in aspae like the dual of H1=200 (0; L), whih is larger than L2(0; L). In this ase, theoptimal ontrol problem infb�2L2(0;L) 12 v2j�u2has not solution, so it is not equivalent to the uid-struture equations (1){(8).Using the density of L2(0; L) in the dual of H1=200 (0; L), we ould prove thatinf 12 v2j�u2 = 0 for b� 2 L2(0; L), but this aspet will not study here.The existene of a weak solution was proved in [21℄ and [2℄ for a two-dimensional steady state uid-struture interation problem, in [23℄ for a three-dimensional steady state, in [22℄ and [12℄ for an unsteady state.In the following, we shall take b� in L2(0; L) beause it is simpler to approx-imate than the dual of H1=200 (0; L).3 Weak formulation for the struture equationsIn this paragraph we present the weak formulation for the struture equations.We have assumed that the struture is governed by a lassial beam equationswithout shearing stress.[5℄So, for a given EI 2 R�+ whih is the rigidity to bending modulus of thestruture, we de�ne the bilinear form8<: aS : U � U ! R(�;  ) 7! aS (�;  ) = EI Z L0 �0 0(x1)  0 0(x1) dx1 : (10)The bilinear form aS is evidently symmetri and ontinuous. In addition,applying the Poinar�e inequality (see [10℄ vol. 3, hap. IV, p. 920), we obtainthat aS is U -ellipti. Moreover, let U 0 be the dual of U . We denote by h�; �iU 0;Uthe duality pairing between U 0 and U . A simple onsequene of the Lax-MilgramTheorem (see [10℄ vol. 4, hap. VII, p. 1217) leads to the following result:



8 C.M. Murea and C. V�azquezProposition 1 Let fS 2 U 0 and � 2 L2 (0; L). Then, the problem:Find u 2 U suh thataS (u;  ) = Z L0 � (x1) (x1) dx1 + 
fS ;  �U 0;U 8 2 U (11)has a unique solution. Moreover the solution u 2 C1([0; L℄) and we have theL1(0; L) estimate:kukL1(0;L) � C1 k�kL2(0;L) + C2 fSU 0where C1 and C2 are onstants.When the data and the solution are smooth enough the solution u veri�esthe strong formulation given by:EI u0000(x1) = �(x1) + fS(x1); 8x1 2 (0; L)u(0) = u0(0) = 0;u(L) = u0(L) = 0:Remark 1 The physial meaning of fS is that of an external fore applied tothe elasti struture. For example, the onsideration of an harmoni expressionfor fS would lead to an harmoni response of the uid-struture devie. Also,the gravity fores are inluded in fS. In the oupled model, � is assoiated tothe uid fores ating on the struture.In order to obtain a uid domain with onstant volume, we have to imposesome ondition to �. We denote by L20(0; L) = n� 2 L2(0; L); R L0 �(x1) dx1 = 0o.Proposition 2 Let fS 2 U 0 and � 2 L20 (0; L).i) Then there exist an unique u 2 U , suh that R L0 u (x1) dx1 = 0 and anunique onstant  2 R solutions ofaS (u;  ) = Z L0 (� (x1) + ) (x1) dx1 + 
fS ;  �U 0;U 8 2 U (12)ii) Let u0 2 U , suh that R L0 u0 dx1 = 0 and 0 2 R are the solution ofaS (u0;  ) = 0 Z L0  (x1) dx1 + 
fS;  �U 0;U 8 2 U (13)and u� 2 U , suh that R L0 u� dx1 = 0 and `(�) 2 R are the solution ofaS (u�;  ) = Z L0 (� (x1) + `(�)) (x1) dx1 8 2 U: (14)Then, u = u0 + u�,  = 0 + `(�) and the appliations� 2 L20 (0; L) 7! u� 2 U; � 2 L20 (0; L) 7! `(�) 2 Rare linear and ontinuous.



Sensitivity and approximation of oupled uid-struture problem 9Proof. i) Existene. From the Proposition 1, there exist u1; u2; u3 2 U solutionsof aS (u1;  ) = 
fS;  �U 0;U 8 2 UaS (u2;  ) = R L0 � (x1) (x1) dx1 8 2 UaS (u3;  ) = R L0  (x1) dx1 8 2 UFrom the third equation and using that aS is ellipti, we obtain0 < aS (u3; u3) = Z L0 u3 (x1) dx1:We searh  2 R and u = u1 + u2 +  � u3 suh that R L0 u (x1) dx1 = 0 orequivalently  = �R L0 (u1 + u2)dx1R L0 u3dx1 :Uniqueness. Let ui, i, i = 1; 2 be two solutions of (12), suh that R L0 ui dx1 =0. By subtrating, we obtainaS (u1 � u2;  ) = (1 � 2) Z L0  (x1) dx1; 8 2 Uand after the substitution  = u1 � u2 it followsaS (u1 � u2; u1 � u2) = (1 � 2) Z L0 (u1 � u2)dx1:But R L0 (u1 � u2)dx1 = 0, then aS (u1 � u2; u1 � u2) = 0 and onsequentlyu1 = u2.It follows that 0 = (1 � 2) Z L0  (x1) dx1; 8 2 Uthen 1 = 2.ii) From (13) and (14), we obtain that u0+u� 2 U suh that R L0 u0+u� dx1 =0 and 0 + `(�) 2 R are solutions ofaS (u0 + u�;  ) = Z L0 (� (x1) + 0 + `(�)) (x1) dx1 + 
fS ;  �U 0;U 8 2 U:From the uniqueness proved at the point i), it follows that u = u0 + u� and = 0 + `(�).It is easy to see that the appliations � 7! u� and � 7! `(�) are linear. Itremains to prove the ontinuity.We replae  = u� in (14) and using R L0 u�dx1 = 0, we obtainaS (u�; u�) = Z L0 (� (x1) + `(�))u� (x1) dx1 = Z L0 � (x1)u� (x1) dx1:



10 C.M. Murea and C. V�azquezBut aS is ellipti and using the Cauhy-Shwartz inequality, we haveku�k2U � C k�kL2(0;L) ku�kL2(0;L) � C k�kL2(0;L) ku�kUwhih proves the ontinuity of � 7! u�.From (14), we have`(�) Z L0  dx1 = aS (u�;  )� Z L0 � dx1; 8 2 U:We take  0 2 U suh that R L0  0dx1 > 0 in the above equality. From theontinuity of aS , � 7! u� and using the Cauhy-Shwartz inequality, we obtainthat � 7! `(�) is ontinuous. �Remark 2 We obtain a displaement u suh that R L0 u dx1 = 0 if and only ifthe fores ating on the interfae have the form �+0+`(�), where � 2 L20(0; L).In order to obtain a onneted uid domain, we must impose some onditionon fS and �.Let us denote by S : L2 (0; L)! U the mapS(�) = u; (15)where u is the unique solution of (11).We de�ne the admissible set for the fores indued by the uidFad = S�1 (Uad) :Let u0 2 U , suh that R L0 u0 dx1 = 0 and 0 2 R solutions of (13). Weassume that C1 k0kL2(0;L) + C2 fSU 0 < H � eonsequently ku0kL1(0;L) < H � e.Proposition 3 i) The set Fad is onvex and losed in L2 (0; L).ii) If ku0kL1(0;L) < H � e, then Fad is non empty.Proof. i) The set Uad is onvex and losed in U . The appliation S is ontinuousand aÆne. Consequently, Fad is onvex and losed.ii) We use the same notations as in the Proposition 2 part ii). From theontinuity at � = 0 of the linear funtion � 7! `(�), for small k�kL2(0;L) weobtain ku�kL1(0;L) < H � e� ku0kL1(0;L). So, if we set u = u0 + u�, we havekukL1(0;L) � ku0kL1(0;L) + ku�kL1(0;L)< ku0kL1(0;L) +H � e� ku0kL1(0;L) = H � e;whih implies that H+u(x1) � e, 8x1 2 [0; L℄. From the Proposition 2 we havethat u = S(� + 0 + `(�)) veri�es R L0 u(x1) dx1 = 0. Consequently, for smallk�kL2(0;L), we have � + 0 + `(�) 2 Fad. �



Sensitivity and approximation of oupled uid-struture problem 114 Mixed formulation in variable uid domainFor eah � 2 Fad, let u be the solution of the equation (11) and let 
Fu be thedomain oupied by the uid.In view of the properties of the inlusion H20 (0; L) in C1 (0; L) then theelasti boundary �u is Lipshitz, so we an de�ne the trae spae H1=2 (�u).Moreover, from a lassial result Theorem 2 in Vol. 6, p. 652 [10℄, the traefuntion mapping H1 �
Fu � into H1=2 (�u) is ontinuous and onto.In order to establish the variational formulation and the model for the u-dependent problem in the u-dependent uid domain let us onsider the followingHilbert spaes:Wu = nw 2 �H1 �
Fu ��2 ; w1 = 0 on �
Fu ; w2 = 0 on �o ;Qu = L2 �
Fu � :We introdue in �H1 �
Fu ��2 the divergene operatordiv w = �w1�x1 + �w2�x2 ; w = (w1; w2) 2 �H1 �
Fu ��2 :Next straightforward lemma states an important property of this operator.Lemma 1 For all u in Uad, the operator div mapping Wu into Qu is onto.This result is standard for the homogenous Dirihlet boundary ondition onthe �
Fu .[19℄For the mixed boundary ondition (Dirihlet on � and Neumann on �u) andfor an exterior domain (the omplement of a ompat set), the proof of this kindof result ould be found in [32℄. The proof remains valid in our ase when thedomain is bounded.We denote by � > 0 the visosity of the uid and by �(v) = (�ij(v))1�i;j�2 thesymmetri part of the deformation rate tensor, where �ij(v) = 12 � �vi�xj + �vj�xi�.Next, let us onsider the maps8><>: aF : U �Wu �Wu ! R(u; v; w) 7! aF (u; v; w) = 2� 2Xi;j=1 Z
Fu �ij(v)�ij(w) dx (16)and 8<: bF : U �Wu �Qu ! R(u;w; q) 7! bF (u;w; q) = � Z
Fu (div w) q dx: (17)The properties of the previous maps lead to the existene and uniquenessresult [19℄:



12 C.M. Murea and C. V�azquezProposition 4 For all u in Uad and � in L2 (�u), the problem:Find (v; p) 2Wu �Qu suh that8><>: aF (u; v; w) + bF (u;w; p) = 2Xi=1 Z
Fu fFi wi dx+ Z�u �w2 d�; 8w 2WubF (u; v; q) = 0; 8q 2 Qu (18)has a unique solution.Remark 3 The system (18) represents a mixed formulation for the Stokes equa-tions: 8>>>><>>>>: ���v +rp = fF in 
Fudiv v = 0 in 
Fuv = 0 on ���Fn� � e2 = � on �uv1 = 0 on �uwhere � is the visosity of the uid, v and p represent the veloity and thepressure of the uid, fF = �fF1 ; fF2 �T 2 R2 are the gravity fores, �F = �pI +2��(v) is the stress tensor of the uid, n is the unit outward normal vetor to �u,e2 = (0; 1)T is the unit vetor in the x2 diretion, � is the vertial omponent ofthe surfae fores on the elasti boundary �u. We have a Dirihlet homogeneousboundary ondition on the rigid boundary � and on the elasti boundary �u wehave a Neumann and a Dirihlet boundary onditions.The equilibrium of the physial situation, orresponding to a uid whihoupies a two-dimensional region whose boundary ontains an elasti part, isbased on the balane of veloity and normal fores in that boundary. In ourapproah to this partiular uid-struture model both balanes are obtained inan optimal ontrol problem setting. One of the �rst diÆulties of this formula-tion is the u-dependene of the uid domain. To overome this problem in nextsetion we propose an equivalent mixed formulation problem in a �xed domainbut with u-dependent oeÆients.5 Mixed formulation for the uid equations ina �xed domainIn order to obtain the mixed formulation for the uid equations in a �xeddomain, the arbitrary lagrangian eulerian oordinates have been used. For thisformulation in a �xed domain we obtain the existene of the solution.For eah u 2 U be given, let us onsider the following one-to-one ontinuousdi�erentiable transformation:Tu : 
F0 ! 
Fu ; (bx1; bx2) 7! Tu (bx1; bx2) = �bx1; H + u (bx1)H bx2� (19)



Sensitivity and approximation of oupled uid-struture problem 13whih admits the ontinuous di�erentiable inverse mappingT�1u : 
Fu ! 
F0 ; (x1; x2) 7! T�1u (x1; x2) = �x1; Hx2H + u (x1)� (20)and veri�es that Tu �
F0 � = 
Fu , Tu (�0) = �u and Tu (bx) = bx, 8bx 2 �. Weset x = Tu (bx) for eah x = (x1; x2) 2 
Fu and bx = (bx1; bx2) 2 
F0 . We note� = Tu (b�) for eah � 2 �u and b� 2 �0.Moreover, we denote byrTu (bx) = � 1 0u0(bx1)H bx2 H+u(bx1)H �r �T�1u � (x) =  1 0�u0(x1)Hx2(H+u(x1))2 HH+u(x1) !the jaobian matries of the transformations Tu and T�1u respetively. As usualfor a given square matrix A, we denote by det (A), A�1, AT , of (A) the de-terminant, the inverse, the transpose and the ofator matrix, respetively. Wehave (rTu)�1 (bx) = r �T�1u � (x) = r �T�1u � (Tu(bx))and of (rTu(bx)) = det (rTu(bx))�(rTu(bx))�1�T :Assoiated with the transformation Tu we state the following useful lemma.Lemma 2 We have:1. A funtion � belongs to L1 �
Fu � if and only if the funtion b� = � Æ Tubelongs to L1 �
F0 �. Moreover, in this ase we haveZ
Fu � (x) dx = Z
F0 b� (bx) det (rTu (bx)) dbx: (21)2. A funtion � belongs to L1 (�u) if and only if the funtion b� = � Æ Tubelongs to L1 (�0). Moreover, in this ase we haveZ�u � (�) d� = Z�0 b� (b�) b!u (b�) db� (22)where b!u (b�) is given byb!u (b�) = kof (rTu (b�)) bn (b�)kR2 (23)with bn (b�) being the unit outward normal vetor to �0 in b�.



14 C.M. Murea and C. V�azquez3. A funtion � belongs to H1 �
Fu � if and only if the funtion b� = � Æ Tubelongs to H1 �
F0 �. Moreover, we have ���x1 (x)���x2 (x) ! = �(rTu)�1 (bx)�T  �b��bx1 (bx)�b��bx2 (bx) ! : (24)The �rst and seond assertions of the above lemma follow from the well-known transport theorems in ontinuum mehanis.[20℄ The third part of thelemma is a onsequene of basi results for Sobolev spaes [1℄ and the hainrule.In our ase, we havedet (rTu (bx)) = H + u(bx1)H ; b!u (bx1; H) =q1 + (u0(bx1))2:We denote by(rTu)�1 (bx) =  1 0�u0(bx1)bx2H+u(bx1) HH+u(bx1) ! = � s11(bx) s12(bx)s21(bx) s22(bx) �and as a onsequene of the above Lemma, we have �v1�x1 (x) �v1�x2 (x)�v2�x1 (x) �v2�x2 (x) ! =  �bv1�bx1 (bx) �bv1�bx2 (bx)�bv2�bx1 (bx) �bv2�bx2 (bx) !� s11(bx) s12(bx)s21(bx) s22(bx) � :In order to pose the variational formulation in the referene on�gurationlet us onsider the following Hilbert spaes:W = nbw 2 �H1 �
F0 ��2 ; bw1 = 0 on �
F0 ; bw2 = 0 on �obQ = L2 �
F0 �equipped with their usual inner produts.We introdue the formsbaF : Uad �W �W ! R bbF : Uad �W � bQ! Rde�ned bybaF (u; bv; bw) = 2� R
F0 h� �bv1�bx1 s11 + �bv1�bx2 s21��� bw1�bx1 s11 + � bw1�bx2 s21�+ 12 � �bv1�bx1 s12 + �bv1�bx2 s22 + �bv2�bx1 s11 + �bv2�bx2 s21��� bw1�bx1 s12 + � bw1�bx2 s22 + � bw2�bx1 s11 + � bw2�bx2 s21�+ � �bv2�bx1 s12 + �bv2�bx2 s22��� bw2�bx1 s12 + � bw2�bx2 s22�i det (rTu (bx)) dbx= 2� 2Xi;j;k;`=1Z
F0 ai;jk;` (u; bx) �bvi�bxk � bwj�bx` dbx: (25)



Sensitivity and approximation of oupled uid-struture problem 15bbF (u; bw; bq) = � R
F0 � �bv1�bx1 s11 + �bv1�bx2 s21 + �bv2�bx1 s12 + �bv2�bx2 s22� bq det (rTu (bx)) dbx= � R
F0 � �bv1�bx1 H+u(bx1)H � �bv1�bx2 u0(bx1)bx2H + �bv2�bx2� bq dbx: (26)Let us onsider bfF (u) 2 W 0 de�ned for all bw in W byD bfF (u) ; bwEW 0;W = 2Xi=1 Z
F0 fFi bwi det (rTu (bx)) dbx= 2Xi=1 Z
F0 fFi bwiH + u(bx1)H dbx:Proposition 5 For all u in Uad and b� in L2 (�0), the problem:Find (bv; bp) 2 W � bQ suh that8<: baF (u; bv; bw) +bbF (u; bw; bp) = D bfF (u) ; bwE+ Z�0 b� bw2 db�;8 bw 2 WbbF (u; bv; bq) = 0;8bq 2 bQ (27)has a unique solution.The problem (27) is obtained from (18) and reversely by using the one-to-one transformations Tu and T�1u . We have bv = v Æ Tu, bp = p Æ Tu and b� =b!u (� Æ Tu), where b!u is given by the formula (23). Therefore, the Proposition5 is a onsequene of the Proposition 4.6 Optimal ontrol settingLet us onsider the spae M = L2 (�0). Next, we introdue the two linear andbounded operators AS : U ! U 0 CS : M ! U 0de�ned byhAS�;  iU 0;U = aS (�;  ) 8�;  2 U (28)DCSb�;  EU 0;U = Z L0 b� (x1; H) dx1 8b� 2 M; 8 2 Uwhere aS is de�ned by (10).In terms of the operators de�ned by (28), equation (11) is posed in the formAS u�b�� = �CS b�+ fS



16 C.M. Murea and C. V�azquezwhih points out that the displaement of the struture u�b�� depends on thefores b�.For eah u in Uad, there exist three linear bounded operatorsAF (u) : W ! W 0; BF (u) : W ! bQ0; CF : M ! W 0given by hAF (u) bv; bwiW 0;W = baF (u; bv; bw) ; 8bv; bw 2 WhBF (u) bw; bqi bQ0; bQ = bbF (u; bw; bq) ; 8 bw 2 W;8bq 2 bQDCF b�;wEW 0;W = Z�0 b� bw2 db�; 8b� 2 M; 8 bw 2 W: (29)So, the system (27) an be rewritten with operator notation in the form:For u 2 Uad and b� 2 M given, �nd bv �u; b�� 2 W and bp�u; b�� 2 bQ suhthat8<: AF (u) bv �u; b��+B�F (u) bp�u; b�� = bfF (u) + CF b� in W 0BF (u) bv �u; b�� = 0 in bQ0 (30)or in an equivalent matrix notation as� AF (u) B�F (u)BF (u) 0 �0� bv �u; b��bp�u; b�� 1A = � bfF (u) + CF b�0 � (31)where B�F (u) is the adjoint operator of BF (u).In the next paragraph the uid-struture oupled problem will be modeledby an optimal ontrol system.For eah bv 2 W we denote by bvj�0 the trae on �0 of bv and we denote byk�k0;�0 the usual norm in L2 (�0). We denote by J : W ! R, the funtionde�ned by J ( bw) = 12  bw2j�020;�0 :Moreover, let j : Fad ! R be the funtion de�ned byj �b�� = J �bv �u�b��; b��� : (32)We pose the following optimal ontrol problem (P):inf j �b��subjet to the onditions:



Sensitivity and approximation of oupled uid-struture problem 171. b� 2 Fad2. u�b�� 2 Uad suh thatAS u�b�� = �CS b�+ fS (33)3. bv �u�b��; b�� 2 W; bp�u�b��; b�� 2 bQ suh that0� AF �u�b��� B�F �u�b���BF �u�b��� 0 1A0� bv �u�b��; b��bp�u�b��; b�� 1A = � bfF (u) + CF b�0 � :(34)Therefore, the previous formulation orresponds to an optimal ontrol prob-lem with Neumann like boundary ontrol (b�) and Dirihlet like boundary ob-servation (bv2j�0). Moreover, the ontrol appears also in the oeÆients of theuid equations (34) as it happens in some optimal design problems.[37℄, [41℄ Theondition b� 2 Fad represents the ontrol onstraint, while the state onstraintis given by the fat that u�b�� 2 Uad.This mathematial formulation provides an interesting tool for the numerialapproximation of the a priori uid-struture oupled problem in an unoupledway. That is, the struture equations represented by the �rst two onditionsand the uid equations (34) an be solved separately in an iterative proess.As we mentioned in the seond setion, on the interfae we have two bound-ary onditions: equality of the uid and struture veloities (whih is a Dirihletlike boundary ondition) and equality of the stresses (whih is a Neumann likeboundary ondition). In our approah we pursue both oupling onditions inthe iterative algorithm:� Step 1: We start with a guess for the fores b� on the interfae.� Step 2: The displaement u�b�� of the struture an be omputed by (33).� Step 3: One the oeÆients of the equations (34) have been obtained, wean ompute the veloity and the pressure of the uid as the solution ofthe weak mixed formulation on the �xed domain (34).� Step 4: Update b� in order to minimize the ost funtion j.Remark 4 As we use the value �b� for the fores on �0 in the equations of thestruture and we take the value b� in the equations of the uid, the Neumannlike boundary ondition is strongly aomplished. The Dirihlet like boundaryondition bv2j�0 = 0 is approahed by a Least Square formulation posed in termsof the minimization problem inf 12 bv2j�020;�0 :



18 C.M. Murea and C. V�azquez7 Continuity of the ost funtionIn this subsetion, we shall prove that the ost funtion j is ontinuous.The ost funtion is the omposition of the following funtions:b� 2 Fad 7�! u�b�� 2 Uad;�u; b�� 2 Uad � M 7�! bv �u; b�� 2 W;bw 2 W 7�! J ( bw) 2 R:The �rst and the third are ontinuous, evidently. Next, by using the ImpliitFuntion Theorem (see the Appendix), we shall prove that the seond one isontinuous too.We de�neU = fu 2 U ; u (0) = u (L) = u0 (0) = u0 (L) = 0;H + u (x1) > 0; 8x1 2 [0; L℄g ; (35)so that Uad � U � U and U is an open set of U .Let us onsider the funtion h : �M � U� � �W � bQ� ! W 0 � bQ0 de�nedby h ((b�; u) ; ( bw; bq)) = �AF (u) bw +B�F (u) bq � bfF (u)� CF b�;BF (u) bw� :Next we apply Theorem 4 (see the Appendix) for the aseX = M � U; Y = Z = W � bQ; G = M � U �W � bQ;x0 = �b�; u�b��� ; y0 = �bv �u�b�� ; b�� ; bp�u�b�� ; b��� ;x = (b�; u) ; y = ( bw; bq) :We have that h (x0; y0) = 0. Aording to the Proposition 5 and in view ofthe identities (30) and (31), we have that�h�y ((b�; u) ; ( bw; bq)) = � AF (u) B�F (u)BF (u) 0 � 2 L�W � bQ;W 0 � bQ0�is invertible.In view of the Remark 6 (see the Appendix), it remains to verify that h and�h�y are ontinuous in (x0; y0).Proposition 6 Let u be in Uad. We havelimku�ukU!0 kAF (u)�AF (u)kL(W;W 0) = 0; (36)limku�ukU!0 kBF (u)�BF (u)kL(W; bQ0) = 0; (37)limku�ukU!0 kB�F (u)�B�F (u)kL( bQ;W 0) = 0 (38)where k�kU is the norm of the Sobolev spae U = H20 (0; L).



Sensitivity and approximation of oupled uid-struture problem 19Proof. We have that hAF (u) bv; bwi = baF (u; bv; bw)where baF is de�ned by (25).Next, by using the elementary integral alulus results, we obtainju (bx1)j = �����Z bx10 u0 (s) ds����� � Z bx10 ju0 (s)j ds� Z L0 ju0 (s)j ds �  Z L0 ju0 (s)j2 ds!1=2 � kukU (39)and analogouslyju0 (bx1)j = �����Z bx10 u00 (s) ds����� � Z bx10 ju00 (s)j ds� Z L0 ju00 (s)j ds �  Z L0 ju00 (s)j2 ds!1=2 � kukU : (40)Sine the oeÆients of the bilinear form baF (u; �; �) are ontinuous withrespet to u, u0 and thanks to above inequalities, we obtain that there exists aonstant C1 �
F0 � depending only upon the shape of the domain 
F0 , suh thatfor all bv and bw in W , we havebaF (u� u; bv; bw) � C1 �
F0 � ku� ukU kbvkW k bwkW :It was essential for obtaining the above estimation the fat that the domain
F0 is bounded!It follows thatkAF (u)�AF (u)kL(W;W 0) def= supkbvkW�1;kbwkW�1 h(AF (u)�AF (u)) bv; bwi= supkbvkW�1;kbwkW�1baF (u� u; bv; bw) � C1 �
F0 � ku� ukU :whih proves the relation (36).Analogously, we obtain the two other relations whih omplete the proof.�Proposition 7 The funtionu 2 Uad 7! bfF (u) 2 W 0is ontinuous.



20 C.M. Murea and C. V�azquezProof. We have bfF (u)� bfF (u) = supk bwk�1 ����� 2Xi=1 Z
F0 bfFi (u� u) (bx1) bwi dbx������ ku� ukU supk bwk�1 2Xi=1 Z
F0 ��� bfFi ��� j bwij dbx!� ku� ukUvuut 2Xi=1 Z
F0 ��� bfFi ���2 dbxand the onlusion holds. �Corollary 1 The funtion �h�y from G to L�W � bQ;W 0 � bQ0� is ontinuouson G.Corollary 2 The funtions(u; bw) 2 Uad �W 7�! AF (u) bw 2 W 0(u; bw) 2 Uad �W 7�! BF (u) bw 2 bQ0(u; bq) 2 Uad � bQ 7�! B�F (u) bq 2 W 0are ontinuous.Proof. Let u and bv be given in Uad and W respetively. We havekAF (u) bw � AF (u) bvkW 0 �kAF (u) bw �AF (u) bw +AF (u) bw � AF (u) bvkW 0 �kAF (u)�AF (u)kL(W;W 0) k bwkW + kAF (u)kL(W;W 0) k bw � bvkW :From Proposition 6, we havelimku�ukU!0 kAF (u)�AF (u)kL(W;W 0) = 0:Next, sine k bw � bvkW ! 0, we get that k bwkW is bounded and the proof isomplete. �Corollary 3 The funtion h from G to W 0 � bQ0 is ontinuous on G.All the hypotheses of the Theorem 4 (see the Appendix) hold, so the impliitfuntion � : M � U ! W � bQ given by� (b�; u) = (bv (u; b�) ; bp (u; b�))is ontinuous in �b�; u�b���. Moreover, this result holds for eah b� 2 M , suhthat u�b�� 2 U .Therefore, we obtain that the ost funtion j de�ned in (32) is ontinuouson Fad, sine it is the omposition of three ontinuous funtions.



Sensitivity and approximation of oupled uid-struture problem 218 Di�erentiability of the ost funtionIn this setion we analyze the di�erentiability of the ost funtion as well as theexpression of its gradient. We use the method of deformation of domains.[31℄,[7℄, [9℄In the four following lemmas, the di�erentiability of intermediate funtionsis established. Moreover, the analyti formula for their derivatives is obtained.We follow the notations introdued in the previous setions.Lemma 3 The funtion J : W ! R de�ned byJ ( bw) = 12 k bw2k20;�0is Fr�ehet di�erentiable andJ 0 (bv) bw = Z�0 bv2 bw2 db�:Proof. The funtion bw 7�! R�0 bv2 bw2 db� is linear and ontinuous, evidently. Weshall use the de�nition of the Fr�ehet di�erentiability detailed in the Appendix.limbw!0 ��� 12kbv2+bw2k20;�0� 12 kbv2k20;�0�R�0 bv2 bw2 db����kbwk1;
F0= limbw!0 kbw2k20;�02kbwk1;
F0 = limbw!0 kbw2k0;�0kbwk1;
F0 kbw2k0;�02 :Sine k bw2k0;�0 � k bwk0;�0 and from the ontinuity of the trae operatorde�ned on H1 �
F0 �, we havek bw2k0;�0k bwk1;
F0 � k bwk0;�0k bwk1;
F0 � onst:so the above limit is 0. �Lemma 4 Let bv, bw be given in W and bq in bQ. Then the funtions from Uad toR de�ned by u 7�! baF (u; bv; bw)u 7�! bbF (u; bw; bq)are Fr�ehet di�erentiable on Uad and the derivatives have the forms:�baF�u (u; bv; bw) = 2� 2Xi;j;k;`=1 Z
F0 �ai;jk;`�u (u; bx) �bvi�bxk � bwj�bx` dbx (41)�bbF�u (u; bw; bq) = � Z
F0  (bx1)H � bw1�bx1 bq dbx + Z
F0  0 (bx1) bx2H � bw1�bx2 bq dbx: (42)



22 C.M. Murea and C. V�azquezProof. In view of the identity (26), the funtionu 7! bbF (u; bw; bq)is aÆne. Using the inequalities (39) and (40), we get the ontinuity of thisfuntion. Consequently, it is Fr�ehet di�erentiable.But, for a linear and ontinuous funtionu 2 U 7! f (u) 2 Rthe Fr�ehet derivative has the formf 0 (u) = f ( ) ; 8 2 U:The above identity gives (42).Using the same method, we an get the Fr�ehet di�erentiability and deriva-tives for all the terms of baF (u; bv; bw) whih are aÆne with respet to u.The only remaining point onerns the di�erentiability of the funtionu 7�! Z
F0 ai;jk;` (u; bx) �bvi�bxk � bwj�bx` dbx:where u 2 U 7! ai;jk;` (u; �) 2 L1 �
F0 � is nonlinear.We apply the Theorem 7 onerning the di�erentiability of integrals withparameter (see the Appendix) in the ase b
 � 
F0 andf (u; bx) = ai;jk;` (u; bx) �bvi�bxk � bwj�bx` dbx:The uniform onvergene is ensured due to the inequalities (39) and (40) andto the ompatness of the domain 
F0 .The elementary rules for omputing Fr�ehet derivative establish the identity(41), whih ompletes the proof. �Lemma 5 The funtion u 2 Uad 7! bfF (u) 2 W 0is Fr�ehet di�erentiable and the derivative D bfF (u) 2 L�U;W 0� has the formDD bfF (u) ; bwE = 2Xi=1 Z
F0  (bx1)H fFi bwi dbx; 8bw 2 WProof. The above funtion is aÆne and from the Proposition 7, it is ontinuous,then it is Fr�ehet di�erentiable. �Lemma 6 We have



Sensitivity and approximation of oupled uid-struture problem 23a) the funtion from Uad � M into W � bQ de�ned by�u; b�� 7�! �bv �u; b�� ; bp�u; b���is Fr�ehet di�erentiable on Uad � M ,b) the derivative of the funtionb� 2 bK 7�! bv �u�b�� ; b�� 2 Whas the form ��bv�u �u�b�� ; b��A�1S CS + �bv�b� �u�b�� ; b�� :Proof. a) Let b� be in Fad. We have that u�b�� omputed from (43) belongsto Uad.Let bv �u�b�� ; b�� and bp�u�b�� ; b�� be omputed from (44).We reall that U de�ned by (35) is an open set in U .We apply the result onerning the di�erentiability of the impliit funtion(see the Theorem 7 in the Appendix) in the aseX = M � U; Y = Z = W � bQ; G = M � U �W � bQ;x0 = �b�; u�b��� ; y0 = �bv �u�b�� ; b�� ; bp�u�b�� ; b��� ;x = (b�; u) ; y = ( bw; bq)for the funtion h : �M � U�� �W � bQ�! W 0 � bQ0 de�ned byh ((b�; u) ; ( bw; bq)) = �AF (u) bw +B�F (u) bq � bfF (u)� CF b�; BF (u) bw� :In Setion 7, we have proved that all the hypotheses of the Theorem 4hold for the previous hoie. It remains to show that �h�x exists on G and it isontinuous in (x0; y0).In order to prove that, we apply the Theorem 2 (see the Appendix). Wehave to prove that the funtions �h�b� and �h�u exist on G and they are ontinuousin (x0; y0).But the funtion b� 2 M 7�! h ((b�; u) ; ( bw; bq))is linear and ontinuous. Its Fr�ehet derivative is�h�b� ((b�; u) ; ( bw; bq)) = (�CF ; 0) ;whih is evidently ontinuous on G (beause it is onstant).



24 C.M. Murea and C. V�azquezNext, we prove the similar result for �h�u .We obtain from the identities (41) and (42) that there exist three operatorsDAF (u) 2 L�W;L�U;W 0��DB�F (u) 2 L� bQ;L�U;W 0��DBF (u) 2 L�W;L�U; bQ0��suh that ((DAF (u) bv) ) bw = �baF�u (u; bv; bw) ((DB�F (u) bq) ) bw = �bbF�u (u; bw; bq) ((DBF (u) bw) ) bq = �bbF�u (u; bw; bq) for all u 2 U , bv; bw 2 W , bq 2 bQ and  2 U .From the Lemma 4, we get that there exists a funtion !, suh thatbaF (u+  ; bv; bw)� baF (u; bv; bw)� �baF�u (u; bv; bw) = k kU ! (u; bv; bw; )or equivalentlyhAF (u+  ) bv; bwiW 0;W � hAF (u) bv; bwiW 0;W � h(DAF (u) bv) ; bwiW 0;W= k kU ! (u; bv; bw; )and lim !0! (u; bv; bw; ) = 0:In fat, we have that ! onverges to 0 uniformly with respet to k bwkW � 1.More preisely, we have: 8" > 0; 9Æ" > 0;8 kbwkW � 1;8 ku� ukU � Æ",j! (u; bv; bw; )� ! (u; bv; bw; )j � ":Then the funtion u 7�! AF (u) bv 2 W 0is Fr�ehet di�erentiable and its derivative isDAF (u) bv 2 L�U;W 0� :In a similar way, we obtain that the funtionu 7�! h ((b�; u) ; ( bw; bq)) 2 W 0 � bQ0is Fr�ehet di�erentiable and its derivative is�h�u ((b�; u) ; ( bw; bq)) = �DAF (u) bw +DB�F (u) bq �D bfF (u) ; DBF (u) bw� :



Sensitivity and approximation of oupled uid-struture problem 25Following an analogous argument as in the Proposition 6 and Corollary 2,we get that the funtion �h�u is ontinuous on G.Now, we an apply the Theorem 7 (see the Appendix) and we obtain thatthe impliit funtion � : M � U �! W � bQ, given by� (b�; u) = (bv (u; b�) ; bp (u; b�)) ;is Fr�ehet di�erentiable, whih states the �rst part of this Lemma.b) Next, from the identity AS u�b�� = �CS b�+fS; we have that the funtionb� 7! u�b�� is di�erentiable and u0 �b�� = �A�1S CS .By using the hain rule, the derivative of the funtionb� 7! bv �u�b�� ; b��has the form�bv�u �u�b�� ; b��u0 �b��+ �bv�b� �u�b�� ; b�� = � �bv�u �u�b�� ; b��A�1S CS+ �bv�b� �u�b�� ; b��and the proof is omplete. �Now, we present the main result onerning the omputation of the gradientfor the uid-struture interation problem.Theorem 1 The ost funtion j de�ned by (32) is Fr�ehet di�erentiable. More-over, we have forall b� in Fad and forall b� in M :j0 �b�� b� =  �baF�u (u; bv; bz) + �bbF�u (u; bz; bp) + �bbF�u (u; bv; br)!A�1S CSb�� Z
F0 �A�1S CSb�� (bx1)H fF � bz dbx + Z�0 bv2 �bv2�b� �u; b�� b� db�;where the displaement u is omputed fromAS u = �CS b�+ fS ; (43)the veloity bv and the pressure bp of the uid are omputed as solution of8<: baF (u; bv; bw) +bbF (u; bw; bp) = D bfF (u) ; bwE+ Z�0 b� bw2 db�; 8bw 2 WbbF (u; bv; bq) = 0; 8bq 2 bQ; (44)the adjoint state bz and br are omputed as solution of8<: baF (u; bw; bz) +bbF (u; bw; br) = Z�0 bv2 bw2 db�; 8 bw 2 WbbF (u; bz; bq) = 0; 8bq 2 bQ (45)



26 C.M. Murea and C. V�azquezand �bv2�b� �u; b�� b� is omputed from8>><>>: baF �u; �bv�b� �u; b�� b�; bw�+bbF �u; bw; �bp�b� �u; b�� b�� = Z�0 b� bw2 db�;8 bw 2 WbbF �u; �bv�b� �u; b�� b�; bq� = 0;8bq 2 bQ: (46)Proof. Aording to the Lemma 3, Lemma 6 and the hain rule, we obtainthat j is di�erentiable andj0 �b�� b� = J 0 �bv �u�b�� ; b��� �bv�u �u�b�� ; b��u0 �b�� b�+J 0 �bv �u�b�� ; b��� �bv�b� �u�b�� ; b�� b�= Z�0 bv2 �u�b�� ; b�� �bv2�u �u�b�� ; b��u0 �b�� b� db�+ Z�0 bv2 �u�b�� ; b�� �bv2�b� �u�b�� ; b�� b� db�:Our next objetive is to evaluate the �rst term of the above sum.For this, let (bz; br) be the solution of the adjoint system (45). Next, replaingbw by �bv�u �u�b�� ; b��u0 �b�� b� in (45), we obtain:Z�0 bv2 �u�b�� ; b�� �bv2�u �u�b�� ; b��u0 �b�� b� db�= baF �u; �bv�u �u�b�� ; b��u0 �b�� b�; bz�+bbF �u; �bv�u �u�b�� ; b��u0 �b�� b�; br� :Next, if we derive the equations (27) with respet to u, we obtain�baF�u �u; bv �u; b�� ; bw� + �baF�bv �u; bv �u; b�� ; bw� �bv�u �u; b�� +�bbF�u �u; bw; bp�u; b��� + �bbF�bq �u; bw; bp�u; b��� �bp�u �u; b�� = Z
F0  (bx1)H fF � bw dbx; 8bw 2 W; 8 2 U (47)and 8bq 2 bQ, 8 2 U we have�bbF�u �u; bv �u; b�� ; bq� + �bbF� bw �u; bv �u; b�� ; bq� �bv�u �u; b�� = 0: (48)Now, replaing bw by bz in (47), bq by br in (48) and  by A�1S CSb� in (47) and(48), we obtain�baF�u �u; bv �u; b�� ; bz�A�1S CSb�+ �baF�bv �u; bv �u; b�� ; bz� �bv�u �u; b��A�1S CSb�



Sensitivity and approximation of oupled uid-struture problem 27+�bbF�u �u; bz; bp�u; b���A�1S CSb�+ �bbF�bq �u; bz; bp�u; b��� �bp�u �u; b��A�1S CSb�= Z
F0 �A�1S CSb�� (bx1)H fF � bz dbx (49)and�bbF�u �u; bv �u; b�� ; br�A�1S CSb�+ �bbF� bw �u; bv �u; b�� ; br� �bv�u �u; b��A�1S CSb� = 0:(50)But the following funtionsbv 7! baF (u; bv; bz) ; bq 7! bbF (u; bv; bq) ; bw 7! bbF (u; bw; br)are linear and ontinuous. Consequently, they are di�erentiable and we have�baF�bv �u; bv �u; b�� ; bz� �bv�u �u; b��A�1S CSb� = baF �u; �bv�u �u; b��A�1S CSb�; bz��bbF�bq �u; bv �u; b�� ; bz� �bp�u �u; b��A�1S CSb� = bbF �u; bv �u; b�� ; �bp�u �u; b��A�1S CSb���bbF� bw �u; bv �u; b�� ; br� �bv�u �u; b��A�1S CSb� = bbF �u; �bv�u �u; b��A�1S CSb�; br� : (51)So, the identity (49) ould be rewritten as follows�baF�u �u; bv �u; b�� ; bz�A�1S CSb�+ baF �u; �bv�u �u; b��A�1S CSb�; bz�+�bbF�u �u; bz; bp�u; b���A�1S CSb�+bbF �u; bv �u; b�� ; �bp�u �u; b��A�1S CSb��= Z
F0 �A�1S CSb�� (bx1)H fF � bz dbx:Sine bbF �u; bv �u; b�� ; bq� = 0 for all bq, it follows that�baF�u �u; bv �u; b�� ; bz�A�1S CSb�+ �bbF�u �u; bz; bp�u; b���A�1S CSb�� R
F0 (A�1S CSb�)(bx1)H fF � bz dbx = �baF �u; �bv�u �u; b��A�1S CSb�; bz�= baF �u; �bv�u �u; b��u0 �b�� b�; bz� :Now, replaing the third equality of (51) in (50), we get�bbF�u �u; bv �u; b�� ; br�A�1S CSb� = �bbF �u; �bv�u �u; b��A�1S CSb�; br�= bbF �u; �bv�u �u; b��u0 �b�� b�; br�whih ompletes the omputation of the �rst term of the gradient, i.e.R�0 bv2 �u�b�� ; b�� �bv2�u �u�b�� ; b��u0 �b�� b� db�= ��baF�u (u; bv; bz) + �bbF�u (u; bz; bp) + �bbF�u (u; bv; br)�A�1S CSb�� R
F0 (A�1S CSb�)(bx1)H fF � bz dbx:



28 C.M. Murea and C. V�azquezOur next goal is to ompute the seond term of the gradient.The funtionb� 7! 0� bv �u; b��bp�u; b�� 1A = � AF (u) B�F (u)BF (u) 0 ��1� CF b�0 �is linear and ontinuous, therefore it is di�erentiable. Moreover, we have0� �bv�b� �u; b�� b��bp�b� �u; b�� b� 1A = � AF (u) B�F (u)BF (u) 0 ��1� CF b�0 � :So, we an ompute �bv2�b� �u; b�� b� by solving a Stokes problem whih permits toompute numerially the seond term of the gradient and the proof is omplete.�9 Approximation and numerial resultsIn this Setion we present a pratial appliation of the optimal ontrol algo-rithm presented in Setion 6, having in view the omputation of ost funtiongradient. For this, we propose partiular numerial approximation methods.Let �i 2 L2 (0; L) be some partiular given funtions and let �i 2 R be thedisret ontrols to be identi�ed, 1 � i � m.From the Proposition 2, ii) there exist u0 2 U suh that R L0 u0 dx1 = 0 and0 2 R solutions of (13) and ui 2 U suh that R L0 ui dx1 = 0 and i 2 R solutionsof aS (ui;  ) = Z L0 (�i (x1) + i) (x1) dx1 8 2 U: (52)It was not neessary to have R L0 �i (x1) dx1 = 0.We take b�(x1; H) = �0 +Pmi=1 �i (��i (x1)� i) in the equation (43) andwe obtain the displaement u = u0 +Pmi=1 �iui suh that R L0 u dx1 = 0. Inother words, b�(x1; H) = �0 +Pmi=1 �i (��i (x1)� i) is an admissible ontrolif and only if the displaement u = u0 +Pmi=1 �iui veri�es the ondition (4).With the notationJ (�1; : : : ; �m) = j �0 + mXi=1 �i (��i (x1)� i)!we have�J��k (�1; : : : ; �m) = j0 b� = �0 + mXi=1 �i (��i (bx1)� i)! (��k � k)= ��baF�u (u; bv; bz)uk � �bbF�u (u; bz; bp)uk � �bbF�u (u; bv; br)uk



Sensitivity and approximation of oupled uid-struture problem 29+ Z
F0 uk (bx1)H fF � bz dbx+ Z�0 bv2 �bv2�b� �u; b�� (��k � k) db�;where bv and bp is the solution of (44), bz and br is the solution of (45) and�bv2�b� �u; b�� (��k � k) is the solution of (46) for b� = ��k � k.The problems (44), (45) and (46) represent weak forms of di�erent Stokesequations written in the referene domain 
F0 . We know that (44), for example,is equivalent to (18) whih represents a weak form of a Stokes equation writtenin the real domain 
Fu . For the approximation by Finite Elements Method,it is better to use (18) instead of (44), beause there exists a large literatureonerning mixed form of Stokes equations, see for example the standard works[19℄ and [6℄.The funtion J is not de�ned in whole Rm , but only for � = (�1; : : : ; �m)suh that the displaement u = u0 +Pmi=1 �iui veri�es the ondition (4). If weignore for the moment this onstraint, so that we an use quasi-Newton methodslike Broyden, Flether, Goldfarb, Shanno (BFGS) or Davidon, Flether, Powell(DFP) algorithms for the minimization problem without onstraintsinf J (�1; : : : ; �m) :Constrained minimization algorithms like projeted or penalization tehniquesan also be used.Among the wide variety of possible appliations of the here presented ontrolapproah of uid-struture problems, we are interested in simulating the bloodow through medium vessels (arteries). The omputation has been made in adomain of length L = 3 m and height H = 0:5 m whih represents a halfwidth of the vessel. In this ase, the uid is the blood and the struture is thewall of the vessel.The numerial values of the following physial parameters have been takenfrom [17℄. The visosity of the blood was taken to be � = 0:035 gm�s , its density�F = 1 gm3 . The thikness of the vessel is h = 0:1 m, the Young modulusE = 0:75 � 106 gm�s2 , the density �S = 1:1 gm3 .The gravitational aeleration is g0 = 981 ms2 and the averaged volume foreof the struture is fS(x1) = �g0�Sh.On the rigid boundary, we impose the following boundary onditions:v1(x1; x2) = ( �1� x22H2 �V0; (x1; x2) 2 �1 [ �3V0; (x1; x2) 2 �2v2(x1; x2) = 0; (x1; x2) 2 �where V0 = 30 ms .[39℄ The volume fore in uid is fF = (0;�g0�F )T . Im-posing non-homogeneous Dirihlet boundary onditions for the veloity on therigid boundary do not hange the formula to ompute the gradient of the ostfuntion, exepting the spae where we searh the veloity bv in the problem(44).Using the notations from the beginning of this setion, we have 0 = g0�Shand u0 = 0.



30 C.M. Murea and C. V�azquezWe take m = 4. Let �i = (i � 1)L=(m � 1) for 1 � i � m. There exist�i polynomial funtions of degree 3, suh that �i(�j) = Æij , where Æij is theKroneker's symbol.
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Figure 2: The shape funtions �i for the approximation of the ontrolLet ui, i be the solutions of (52). From the regularity of �i, we an use thefollowing strong formulation in order to ompute ui, i:EI u0000i (x1) = �i(x1) + i; 8x1 2 (0; L)ui(0) = u0i(0) = 0;ui(L) = u0i(L) = 0R L0 ui(x1) dx1 = 0:We have omputed ui, i exatly, using the software Mathematia. The dis-plaements ui are polynomial funtions of degree 7. We ould use alternatively�nite elements shape funtions for �i, but in this ase we should handle theweak formulation in order to ompute ui and i.For the uid we have used a Mixed Finite Elements Method, P2 Lagrangetriangles for the veloity and P1 for the pressure [19℄, [6℄.The numerial tests have been produed using freefem++ v1.27.[24℄ We haveused the BFGS algorithm for the minimization problem with the starting point� = 0 so that in the �rst �ve iterations the ost funtion takes the valuespresented in Table 1.After 5 iterations we have obtained(�1; �2; �3; �4) = (13:81347223; 2:81316723; �2:64008687; �13:98655258)and the gradient of the ost funtion wasrJ = (0:000255; 0:004768; �0:020800; 0:009256)T :More iterations do not quantitatively hange the values of �, the ost funtionand the solution. The relative hange in suessive values of � evaluated in the



Sensitivity and approximation of oupled uid-struture problem 31Iterations J0 8.3697042781 7.7058560752 0.1529776423 0.1479572984 0.1452060685 0.144683623Table 1: The ost funtion historynorm k�k1 is less than 0:02. The �rst four digits to the right of the deimalpoint of the ost funtion don't hange after the �fth iteration. Ten iterationsare required to ahieve krJ k1 � 10�6.Notie that the ondition (4) was not violated.In order to ompute rJ (�), we have to solve the adjoint state problem(45) and m linear systems (46) whih have the same matrix. The linear sys-tems were solved by LU deomposition. We observe that (44) and (45) havethe same left side, so when we ompute rJ (�) we an use the same LU de-omposition obtained omputing J (�). If we ompute rJ (�) by the FiniteDi�erenes Method, we have to solve m linear systems, but the matries aredi�erent beause u hanges, so using the analyti formula of the gradient ismore advantageous.
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0 0.5 1 1.5 2 2.5 3Figure 3: The applied stresses �b� = 0 +Pmi=1 �i (�i + i) [dyn=m2℄ on theinterfaeWe have obtained b�+ bp20;�0 = 0:002878, in other words, the vertial om-ponent of the stresses exered by the uid on the interfae depends on thepressure only, �b� � bpj�0 . This is justi�ed by the following result [34℄: ifv 2 �H2 �
Fu ��2, p 2 H1 �
Fu �, v is onstant on �u, div v = 0 in 
Fu , then� ��Fn� � n = p on �u. In our ase � ��Fn� � e2 = �� and n � e2.As we see in Figure 4, the veloity on the boundary �0 is not null, but the
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Figure 5: The displaement [m℄ of the vessel magni�ed by a fator 20The displaement of the vessel is very small, it is less than 0:04 m (seeFigure 5). The pressure on the interfae bp is almost the same as �b�, so itdereases from the inow (left) to the outow (right). The displaement of theinterfae is onsequent with the pressure: the displaement of the vessel wall isoutwards at the left and inwards at the right.The omputed veloity distribution is similar to a Poiseuille ow (see Figure6).10 ConlusionsIn this work, a partiular uid-struture interation model is formulated as anoptimal ontrol problem.
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Figure 6: The veloity [m=s℄ redued by a fator 100The optimal ontrol setting allows to solve numerially the uid-strutureinteration problem (whih is a priori a oupled problem) by an iterative algo-rithm suh that the uid and the struture equations are solved separately ateah iteration. Thus, existing software pakages ould be adapted to approxi-mate the solution of all the intermediate problems appearing in the algorithm.The di�erentiability of the ost funtion and the analytial expression for itsgradient are obtained.In order to perform a numerial method, the analyti expression for the gra-dient reveals very useful and aurate to apply lassial desent methods. Tosolve numerially a problem arising from blood ow in arteries, we have useda quasi Newton method whih employs the analyti gradient of the ost fun-tion and the approximation of the inverse Hessian is updated by the Broyden,Flether, Goldforb, Shano (BFGS) sheme. This algorithm is faster than �xedpoint with relaxation or blok Newton methods.We an adapt this tehnique to the unsteady oupled uid-struture prob-lems.A AppendiesA.1 Fr�ehet di�erentiabilityLet (X; k�kX), (Y; k�kY ) and (Z; k�kZ) be three normed spaes.De�nition 1 We say that the funtion f : X ! Y is Fr�ehet di�erentiableat x 2 X, if there exists f 0 (x) 2 L (X;Y ) suh thatlimh!0 kf (x+ h)� f (x) � f 0 (x)hkYkhkX = 0The linear operator f 0 (x) is alled the Fr�ehet derivative of f at x.In the ase when X = Qni=1Xi, we denote by �f�xi (x) 2 L (Xi; Y ) theFr�ehet partial derivative of f with respet to xi at x 2 X .



34 C.M. Murea and C. V�azquezTheorem 2 Let f : X =Qni=1Xi ! Y be a funtion and let x0 be an elementof X. We assume that there exists V a neighborhood of x0, suh that �f�xi existson V and its are ontinuous in x0.Then f is Fr�ehet di�erentiable in x0 andf 0 �x0�h = nXi=1 �f�xi �x0�hifor all h = (h1; : : : ; hn) 2 X.Theorem 3 Let h : X ! Z be the omposition of two mappings f : X ! Yand g : Y ! Z h = g Æ fAssume that f is Fr�ehet Di�erentiable in x and g in f (x), then h is Fr�ehetdi�erentiable in x and h0 (x) = g0 (f (x)) Æ f 0 (x) :A.2 Impliit Funtion TheoremWe begin by realling the Impliit Funtion Theorem. The proof of this resultould be found in [25℄ for example.Theorem 4 (The Impliit Funtion Theorem) Let (X; k�kX), (Y; k�kY )and (Z; k�kZ) be normed spaes. We suppose that h is a mapping from an opensubset G of X � Y into Z.Suppose (x0; y0) is a point in G and h is ontinuous in (x0; y0) suh that:i) h (x0; y0) = 0;ii) �h�y exists on G and it is ontinuous in (x0; y0),iii) �h�y (x0; y0) is invertible and ��h�y (x0; y0)��1 is ontinuous.Then there exists a neighborhood V of x0 and a funtion � : V ! Z suhthat:iv) � (x0) = y0;v) h (x; � (x)) = 0 for all x in V ,vi) � is ontinuous in x0.Remark 5 If h is ontinuous on G, then � is ontinuous in a neighborhood ofx0.



Sensitivity and approximation of oupled uid-struture problem 35Remark 6 In the ase when X, Y and Z are Banah spaes, if �h�y (x0; y0) 2L (Y; Z) is invertible, from the Open Mapping Theorem we have that��h�y (x0; y0)��1 is ontinuous.Theorem 5 (The di�erentiability of the impliit funtion) Moreover, ifthere exists �h�x on G ontinuous in (x0; y0), then the impliit funtion � isFr�ehet di�erentiable in x0 and�0 (x0) = ���h�y (x0; y0)��1 �h�x (x0; y0) :A.3 Integrals with parameterLet U be a Hilbert spae and let b
 be a ompat set of R2 .Theorem 6 (ontinuity of integrals with parameter) Let f be a funtionfrom U � b
 to R suh that for all u 2 U the funtionbx 2 b
 7�! f (u; bx)is Lebesgue integrable.Let u be an element of U suh that f (u; bx) onverges to f (u; bx) uniformlywith respet to bx, when u onverges to u.Then limu!u Zb
 f (u; bx) dbx = Zb
 f (u; bx) dbx:Theorem 7 (di�erentiability of integrals with parameter) Moreover, weassume that:a) for all u 2 U and for all bx 2 b
, the Fr�ehet derivative�f�u (u; bx) 2 U 0exists,b) the funtions bx 2 b
 7�! �f�u (u; bx) 2 Rare Lebesgue integrable for all  2 U ,) �f�u (u; bx) onverges in U 0 to �f�u (u; bx) uniformly with respet to bx, when uonverges to u.Then, the funtion F from U to R, de�ned byF (u) = Zb
 f (u; bx) dbx
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