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tThe formulation of a parti
ular 
uid-stru
ture intera
tion as an opti-mal 
ontrol problem is the departure point of this work. The 
ontrol is theverti
al 
omponent of the for
e a
ting on the interfa
e and the observationis the verti
al 
omponent of the velo
ity of the 
uid on the interfa
e. Thisapproa
h permits to solve the 
oupled 
uid-stru
ture problem by parti-tioned pro
edures. The analyti
 expression for the gradient of the 
ostfun
tion is obtained in order to devise a

urate numeri
al methods forthe minimization problem. Numeri
al results arising from blood 
ow inarteries are presented. To solve numeri
ally the optimal 
ontrol problem,we use a quasi Newton method whi
h employs the analyti
 gradient of the
ost fun
tion and the approximation of the inverse Hessian is updated bythe Broyden, Flet
her, Goldforb, Shano (BFGS) s
heme. This algorithmis faster than �xed point with relaxation or blo
k Newton methods.Key Words. 
uid-stru
ture intera
tion; virtual 
ontrol; mixed for-mulations; optimization algorithms; sensitivity analysis.AMS Subje
t Classi�
ation. 74F10, 49K40, 65N301 Introdu
tionIn this paper we 
onsider a variable bounded domain whi
h is o

upied by asteady newtonian in
ompressible 
reeping 
uid. The boundary 
an be de
om-1



2 C.M. Murea and C. V�azquezposed into a rigid part and an elasti
 part.The mathemati
al model whi
h governs the 
uid is based on a steady Stokesequation while the deformation of the elasti
 part of the boundary veri�es aparti
ular beam equation without shearing stress. Therefore the solution of themodel 
onsists of the determination of the elasti
 boundary displa
ement andthe 
omputation of the velo
ity and the pressure in the 
uid domain.In a �rst sense, the physi
al problem is related with those treated in 
uid-stru
ture intera
tion literature but the vibration approa
h is not 
onsideredhere.[30℄ In other sense, the asymptoti
 limit when the 
uid domain width tendsto zero 
an be modeled by a one-dimensional approa
h of Stokes equation, i.e.Reynolds equation, widely used in lubri
ation theory.[3℄On the other hand, if we think about the elasti
 boundary as part of theboundary of a two-dimensional domain whi
h is unknown a priori, then theproblem 
an be framed as a free boundary like problem. The free boundaryaspe
t of the model motivates the need of two 
oupling boundary 
onditions:
ontinuity of the velo
ity and of the stresses a
ross the interfa
e 
uid-stru
ture.This kind of problem is of 
onsiderable interest in biome
hani
s (the simula-tion of blood 
ow in large arteries, [29℄, [17℄, [33℄, [8℄, [18℄, [38℄), in aeroelasti
ity(
uttering of wings, [13℄, [14℄, [35℄, [36℄), in 
ars industry (design of hydrauli
sho
k absorber, [26℄).The existen
e results for the 
uid-stru
ture intera
tion 
an be found in [21℄,[23℄, [2℄ for the steady 
ase and in [22℄, [12℄, [4℄ for the unsteady 
ase.Sensitivity analysis of a 
oupled 
uid-stru
ture system was investigated in[15℄.The most frequently, the 
uid-stru
ture intera
tion problems are solved nu-meri
ally by partitioned pro
edures, i.e. the 
uid and the stru
ture equationsare solved separately, whi
h allows to use the existing solvers for ea
h sub-problem.There are di�erent strategies to dis
retise in time the unsteady 
uid-stru
tureintera
tion problem. A family of expli
it algorithms known also as staggeredwas su

essfully employed for the aeroelasti
 appli
ations.[13℄ Their stabilityproperties were studied in [35℄ and [36℄. For the stability reason, a very smalltime step is ne
essary.As it shown in [26℄ and [33℄, the staggered algorithms are unstable when thestru
ture is light and its density is 
omparable to that of its 
uid. In order toobtain un
onditionally stable algorithms, at ea
h time step we have to solve anon-linear 
uid-stru
ture 
oupled system. This 
an be done using �xed pointstrategies with eventually a relaxation parameter, but it has slow 
onvergen
erate [26℄, [33℄, [17℄. The 
onvergen
e 
an be a

elerated using Aitken's method[18℄ or transpiration 
ondition [11℄.Other way to a

elerate the 
onvergen
e is to use methods whi
h employ thederivative. In [40℄ a blo
k Newton algorithm was used where the derivative ofthe operators are approa
hed by �nite di�eren
es. Good 
onvergen
e rate wasobtained in [18℄ where the derivative of the operator was repla
ed by a mu
hsimpler operator. The blo
k S
hur-Newton method is proposed in [16℄ wherethe derivatives of the 
uid and stru
ture operators with respe
t to the state



Sensitivity and approximation of 
oupled 
uid-stru
ture problem 3variables were 
omputed exa
tly, but this algorithm has not been implementedyet.In a previous work, a three-dimensional 
uid-stru
ture intera
tion was for-mulated as an optimal 
ontrol system, where the 
ontrol is the for
e a
ting onthe interfa
e and the observation is the velo
ity of the 
uid on the interfa
e.[32℄The 
uid equations were solved taking into a

ount a given surfa
e for
e on theinterfa
e. The existen
e of an optimal 
ontrol was proved. We have to pre
isethat the 
uid-stru
ture intera
tion problem and its optimal 
ontrol version arenot equivalent.In this work, a two-dimensional steady state 
uid-stru
ture 
oupled problemis approximated by an optimal 
ontrol system, where the 
ontrol is the verti
al
omponent of the for
e a
ting on the interfa
e and the observation is the verti
al
omponent of the velo
ity of the 
uid on the interfa
e. The 
ontrol approa
hpermits to solve the 
oupled 
uid-stru
ture problem by partitioned pro
edures.The analyti
 
omputation of the gradient for the 
ost fun
tion is one of themain goals of this work in order to apply a

urate numeri
al methods. More-over, from the theoreti
al viewpoint, the optimality 
onditions 
an be written interms of this analyti
 expression of the gradient. In fa
t, although the analyti
formula for the gradient involves the solution of several auxiliary problems, thealternative use of �nite di�eren
e approximations for the derivatives introdu
estrun
ation errors and it is potentially mu
h more sensitive to ill-
onditioning ofthe state equations.[27℄The aims of this paper are: to analyse the behavior of the 
uid and stru
turesub-problems under the variation of the for
e a
ting on the interfa
e, to provethe di�erentiability of the 
ost fun
tion and to present numeri
al results arisingfrom blood 
ow in arteries. To solve numeri
ally the optimal 
ontrol problem,we use a quasi Newton method whi
h employs the analyti
 gradient of the
ost fun
tion and the approximation of the inverse Hessian is updated by theBroyden, Flet
her, Goldforb, Shano (BFGS) s
heme. This algorithm is fasterthan �xed point with relaxation or blo
k Newton methods.In Se
tion 2 the parti
ular 
uid-stru
ture problem is presented, related nota-tions are introdu
ed and the asso
iated optimal 
ontrol problem is brie
y posed.In Se
tion 3 the weak formulation of the stru
ture equations is analysed andwe pre
ise the set of admissible 
ontrols. For a given stru
ture displa
ement,the mixed formulations governing the 
uid velo
ity and pressure are posed inthe eulerian and arbitrary lagrangian eulerian 
oordinates in Se
tions 4 and5, respe
tively. In these arbitrary lagrangian eulerian 
oordinates the optimal
ontrol system is detailed in Se
tion 6. Next, the 
ontinuity and the di�erentia-bility of the 
ost fun
tion are proved in the Se
tion 7 and 8. Moreover, the exa
texpression of the 
ost fun
tion gradient is obtained. In Se
tion 9 we present aninteresting appli
ation to blood 
ow simulation in medium vessels. For this,parti
ular methods to solve the stru
ture and 
uid equations as well as spe
i�
algorithms for the dis
rete optimization problem are proposed. Some numeri
alresults for real data are presented and dis
ussed. The last se
tion is devoted tosome 
on
luding remarks.



4 C.M. Murea and C. V�azquez2 Presentation of the problemIn order to pose the equations for the model let us introdu
e some mathemati
alnotations. Let L and H be two positive 
onstants. We introdu
e the 
lassi
alSobolev spa
e U = H20 (0; L) and the sets (see the Figure 1):
F0 = (0; L)� (0; H); �0 = (0; L)� fHg; �1 = f0g � (0; H);�2 = (0; L)� f0g; �3 = fLg � (0; H); � = �1 [ �2 [ �3:6

-
6
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Figure 1: Sets appearing in the 
uid-stru
ture problemAs we have the 
ontinuous and 
ompa
t in
lusion of H20 (0; L) � C1 (0; L)then for ea
h u 2 U we denote by u0 its derivative (in fa
t it is a 
lassi
alderivative) and by u0 0 its se
ond (weak) derivative. For a given e 2 (0; H) wede�ne the setUad = fu 2 U ; u (0) = u (L) = u0 (0) = u0 (L) = 0;R L0 u(x1) dx1 = 0; H + u (x1) � e; 8x1 2 [0; L℄o :Moreover, for ea
h u 2 Uad, we introdu
e the notations (see the Figure 1)
Fu = �(x1; x2) 2 R2 ; x1 2 (0; L); 0 < x2 < H + u (x1)	 ;�u = �(x1; x2) 2 R2 ; x1 2 (0; L); x2 = H + u (x1)	 :In view of the de�nition of the Uad, the two-dimensional domain o

upiedby the 
uid is 
Fu , the elasti
 interfa
e between 
uid and stru
ture is the freeboundary �u, while � represents the rigid boundary.



Sensitivity and approximation of 
oupled 
uid-stru
ture problem 5We suppose that the 
uid is governed by the steady Stokes equations, whilethe deformation of the elasti
 part of the boundary veri�es a parti
ular beamequation without shearing stress.[5℄ We 
onsider that the stru
ture is a beam ofaxis parallel to Ox1 with 
onstant thi
kness h. We assume that the displa
ementof the beam is normal to its axis.The problem is to �nd:� u : [0; L℄! R the displa
ement of the stru
ture,� v = (v1; v2)T : 
Fu ! R2 the velo
ity of the 
uid and� p : 
Fu ! R the pressure of the 
uid,su
h thatEI u0000(x1) = � ��Fn � e2�(x1;H+u(x1))q1 + (u0(x1))2 + fS(x1) (1)u (0) = u (L) = u0 (0) = u0 (L) = 0 (2)Z L0 u(x1) dx1 = 0 (3)e � infx12[0;L℄ fH + u (x1)g (4)���v +rp = fF ; in 
Fu (5)div v = 0; in 
Fu (6)v = g; on � (7)v = 0; on �u (8)where� EI = Eh312 is rigidity to bending modulus of the stru
ture, E is the Youngmodulus, h is the thi
kness.� fS : (0; L)! R are the averaged volume for
es of the stru
ture, in generalthe gravity for
es and in this 
ase we have fS(x1) = �g0�Sh, where g0 isthe gravity, �S is the density of the stru
ture,� � > 0 is the vis
osity of the 
uid,� fF = (fF1 ; fF2 )T : 
Fu ! R2 are the volume for
es of the 
uid, in generalthe gravity for
es,� g = (g1; g2)T : � ! R2 is the imposed velo
ity pro�le of the 
uid on therigid boundary, su
h that Z� g � n d� = 0 (9)� �F = �p I + � �rv +rvT � is the stress tensor of the 
uid,



6 C.M. Murea and C. V�azquez� n = (n1; n2)T the unit outward normal ve
tor to �
Fu ,� e2 = (0; 1)T is the unit ve
tor in the x2 dire
tion.The in
ompressibility of the 
uid (6) states that the volume of the 
uid is
onserved or equivalently R L0 u(x1) dx1 is 
onstant. Without loss of generality,we assume that this 
onstant is zero and we obtain the 
ondition (3).The inequality (4) implies that the 
uid domain is 
onne
ted. The 
onstante has not a physi
al meaning.The system (1)-(8) is a 
oupled 
uid-stru
ture problem.The displa
ement of the stru
ture depends on the verti
al 
omponent of thestresses exer
ed by the 
uid on the interfa
e (equation 1). This 
ames from the
ontinuity of the stresses a
ross the interfa
e.The movement of the stru
ture 
hanges the domain where the 
uid equationsmust be solved (equations 5,6). Also, on the interfa
e we have to impose theequality between the 
uid and stru
ture velo
ity (equation 8).We shall introdu
e the 
ontrol approa
h.Let b� : (0; L)! R be the 
ontrol fun
tion.The displa
ement of the stru
ture is 
omputed byEI u0000(x1) = �b�(x1) + fS(x1); 8x1 2 (0; L)with boundary 
onditions (2), su
h that (3) and (4) hold.We 
an 
ompute the velo
ity and the pressure of the 
uid as the solutionof the equations (5), (6) with boundary 
onditions on the rigid boundary (7)together with boundary 
onditions on the interfa
e: v1 = 0 and��Fn � e2�(x1;H+u(x1)) = b�(x1)q1 + (u0(x1))2 ; 8x1 2 (0; L):The 
ontrol problem is to �nd b�, su
h that v2 = 0 on �u.As we use the value �b� for the applied stresses in the equations of thestru
ture and we take the value b� in the equations of the 
uid, the 
ontinuityof the stresses a
ross the interfa
e is strongly a

omplished.In the following, the boundary 
ondition v2j�u = 0 is treated by the LeastSquare Method and we obtain the optimal 
ontrol probleminfb� 12 

v2j�u

2 :The 
ontrol b� and the 
ost fun
tion are \virtual". The idea of VirtualControl whi
h leads to Domain De
omposition Methods was presented in [28℄and in the referen
es given there.Next, we shall pre
ise the regularity of the 
ontrol whi
h is linked to theequivalen
e or not-equivalen
e between the 
uid-stru
ture equations (1){(8) andits optimal 
ontrol version.



Sensitivity and approximation of 
oupled 
uid-stru
ture problem 7If the system of 
uid-stru
ture equations (1){(8) has a strong solution u 2H4(0; L), v 2 �H2 �
Fu ��2 and p 2 H1 �
Fu �, then the 
ontrol given by therelation b�(x1) = ��Fn � e2�(x1;H+u(x1))q1 + (u0(x1))2belongs to L2(0; L). In fa
t, the 
ontrol is even smoother. In this 
ase, thesystem (1){(8) is equivalent to the 
ontrol problem. So, there exists b� 2 L2(0; L)su
h that v2j�u = 0. In [4℄ the existen
e of a strong solution was proved for arelated problem.If the system of 
uid-stru
ture equations (1){(8) has only a week solutionu 2 H2(0; L), v 2 �H1 �
Fu ��2 and p 2 L2 �
Fu �, then b� is well de�ned in aspa
e like the dual of H1=200 (0; L), whi
h is larger than L2(0; L). In this 
ase, theoptimal 
ontrol problem infb�2L2(0;L) 12 

v2j�u

2has not solution, so it is not equivalent to the 
uid-stru
ture equations (1){(8).Using the density of L2(0; L) in the dual of H1=200 (0; L), we 
ould prove thatinf 12 

v2j�u

2 = 0 for b� 2 L2(0; L), but this aspe
t will not study here.The existen
e of a weak solution was proved in [21℄ and [2℄ for a two-dimensional steady state 
uid-stru
ture intera
tion problem, in [23℄ for a three-dimensional steady state, in [22℄ and [12℄ for an unsteady state.In the following, we shall take b� in L2(0; L) be
ause it is simpler to approx-imate than the dual of H1=200 (0; L).3 Weak formulation for the stru
ture equationsIn this paragraph we present the weak formulation for the stru
ture equations.We have assumed that the stru
ture is governed by a 
lassi
al beam equationswithout shearing stress.[5℄So, for a given EI 2 R�+ whi
h is the rigidity to bending modulus of thestru
ture, we de�ne the bilinear form8<: aS : U � U ! R(�;  ) 7! aS (�;  ) = EI Z L0 �0 0(x1)  0 0(x1) dx1 : (10)The bilinear form aS is evidently symmetri
 and 
ontinuous. In addition,applying the Poin
ar�e inequality (see [10℄ vol. 3, 
hap. IV, p. 920), we obtainthat aS is U -ellipti
. Moreover, let U 0 be the dual of U . We denote by h�; �iU 0;Uthe duality pairing between U 0 and U . A simple 
onsequen
e of the Lax-MilgramTheorem (see [10℄ vol. 4, 
hap. VII, p. 1217) leads to the following result:



8 C.M. Murea and C. V�azquezProposition 1 Let fS 2 U 0 and � 2 L2 (0; L). Then, the problem:Find u 2 U su
h thataS (u;  ) = Z L0 � (x1) (x1) dx1 + 
fS ;  �U 0;U 8 2 U (11)has a unique solution. Moreover the solution u 2 C1([0; L℄) and we have theL1(0; L) estimate:kukL1(0;L) � C1 k�kL2(0;L) + C2 

fS

U 0where C1 and C2 are 
onstants.When the data and the solution are smooth enough the solution u veri�esthe strong formulation given by:EI u0000(x1) = �(x1) + fS(x1); 8x1 2 (0; L)u(0) = u0(0) = 0;u(L) = u0(L) = 0:Remark 1 The physi
al meaning of fS is that of an external for
e applied tothe elasti
 stru
ture. For example, the 
onsideration of an harmoni
 expressionfor fS would lead to an harmoni
 response of the 
uid-stru
ture devi
e. Also,the gravity for
es are in
luded in fS. In the 
oupled model, � is asso
iated tothe 
uid for
es a
ting on the stru
ture.In order to obtain a 
uid domain with 
onstant volume, we have to imposesome 
ondition to �. We denote by L20(0; L) = n� 2 L2(0; L); R L0 �(x1) dx1 = 0o.Proposition 2 Let fS 2 U 0 and � 2 L20 (0; L).i) Then there exist an unique u 2 U , su
h that R L0 u (x1) dx1 = 0 and anunique 
onstant 
 2 R solutions ofaS (u;  ) = Z L0 (� (x1) + 
) (x1) dx1 + 
fS ;  �U 0;U 8 2 U (12)ii) Let u0 2 U , su
h that R L0 u0 dx1 = 0 and 
0 2 R are the solution ofaS (u0;  ) = 
0 Z L0  (x1) dx1 + 
fS;  �U 0;U 8 2 U (13)and u� 2 U , su
h that R L0 u� dx1 = 0 and `(�) 2 R are the solution ofaS (u�;  ) = Z L0 (� (x1) + `(�)) (x1) dx1 8 2 U: (14)Then, u = u0 + u�, 
 = 
0 + `(�) and the appli
ations� 2 L20 (0; L) 7! u� 2 U; � 2 L20 (0; L) 7! `(�) 2 Rare linear and 
ontinuous.



Sensitivity and approximation of 
oupled 
uid-stru
ture problem 9Proof. i) Existen
e. From the Proposition 1, there exist u1; u2; u3 2 U solutionsof aS (u1;  ) = 
fS;  �U 0;U 8 2 UaS (u2;  ) = R L0 � (x1) (x1) dx1 8 2 UaS (u3;  ) = R L0  (x1) dx1 8 2 UFrom the third equation and using that aS is ellipti
, we obtain0 < aS (u3; u3) = Z L0 u3 (x1) dx1:We sear
h 
 2 R and u = u1 + u2 + 
 � u3 su
h that R L0 u (x1) dx1 = 0 orequivalently 
 = �R L0 (u1 + u2)dx1R L0 u3dx1 :Uniqueness. Let ui, 
i, i = 1; 2 be two solutions of (12), su
h that R L0 ui dx1 =0. By subtra
ting, we obtainaS (u1 � u2;  ) = (
1 � 
2) Z L0  (x1) dx1; 8 2 Uand after the substitution  = u1 � u2 it followsaS (u1 � u2; u1 � u2) = (
1 � 
2) Z L0 (u1 � u2)dx1:But R L0 (u1 � u2)dx1 = 0, then aS (u1 � u2; u1 � u2) = 0 and 
onsequentlyu1 = u2.It follows that 0 = (
1 � 
2) Z L0  (x1) dx1; 8 2 Uthen 
1 = 
2.ii) From (13) and (14), we obtain that u0+u� 2 U su
h that R L0 u0+u� dx1 =0 and 
0 + `(�) 2 R are solutions ofaS (u0 + u�;  ) = Z L0 (� (x1) + 
0 + `(�)) (x1) dx1 + 
fS ;  �U 0;U 8 2 U:From the uniqueness proved at the point i), it follows that u = u0 + u� and
 = 
0 + `(�).It is easy to see that the appli
ations � 7! u� and � 7! `(�) are linear. Itremains to prove the 
ontinuity.We repla
e  = u� in (14) and using R L0 u�dx1 = 0, we obtainaS (u�; u�) = Z L0 (� (x1) + `(�))u� (x1) dx1 = Z L0 � (x1)u� (x1) dx1:



10 C.M. Murea and C. V�azquezBut aS is ellipti
 and using the Cau
hy-S
hwartz inequality, we haveku�k2U � C k�kL2(0;L) ku�kL2(0;L) � C k�kL2(0;L) ku�kUwhi
h proves the 
ontinuity of � 7! u�.From (14), we have`(�) Z L0  dx1 = aS (u�;  )� Z L0 � dx1; 8 2 U:We take  0 2 U su
h that R L0  0dx1 > 0 in the above equality. From the
ontinuity of aS , � 7! u� and using the Cau
hy-S
hwartz inequality, we obtainthat � 7! `(�) is 
ontinuous. �Remark 2 We obtain a displa
ement u su
h that R L0 u dx1 = 0 if and only ifthe for
es a
ting on the interfa
e have the form �+
0+`(�), where � 2 L20(0; L).In order to obtain a 
onne
ted 
uid domain, we must impose some 
onditionon fS and �.Let us denote by S : L2 (0; L)! U the mapS(�) = u; (15)where u is the unique solution of (11).We de�ne the admissible set for the for
es indu
ed by the 
uidFad = S�1 (Uad) :Let u0 2 U , su
h that R L0 u0 dx1 = 0 and 
0 2 R solutions of (13). Weassume that C1 k
0kL2(0;L) + C2 

fS

U 0 < H � e
onsequently ku0kL1(0;L) < H � e.Proposition 3 i) The set Fad is 
onvex and 
losed in L2 (0; L).ii) If ku0kL1(0;L) < H � e, then Fad is non empty.Proof. i) The set Uad is 
onvex and 
losed in U . The appli
ation S is 
ontinuousand aÆne. Consequently, Fad is 
onvex and 
losed.ii) We use the same notations as in the Proposition 2 part ii). From the
ontinuity at � = 0 of the linear fun
tion � 7! `(�), for small k�kL2(0;L) weobtain ku�kL1(0;L) < H � e� ku0kL1(0;L). So, if we set u = u0 + u�, we havekukL1(0;L) � ku0kL1(0;L) + ku�kL1(0;L)< ku0kL1(0;L) +H � e� ku0kL1(0;L) = H � e;whi
h implies that H+u(x1) � e, 8x1 2 [0; L℄. From the Proposition 2 we havethat u = S(� + 
0 + `(�)) veri�es R L0 u(x1) dx1 = 0. Consequently, for smallk�kL2(0;L), we have � + 
0 + `(�) 2 Fad. �



Sensitivity and approximation of 
oupled 
uid-stru
ture problem 114 Mixed formulation in variable 
uid domainFor ea
h � 2 Fad, let u be the solution of the equation (11) and let 
Fu be thedomain o

upied by the 
uid.In view of the properties of the in
lusion H20 (0; L) in C1 (0; L) then theelasti
 boundary �u is Lips
hitz, so we 
an de�ne the tra
e spa
e H1=2 (�u).Moreover, from a 
lassi
al result Theorem 2 in Vol. 6, p. 652 [10℄, the tra
efun
tion mapping H1 �
Fu � into H1=2 (�u) is 
ontinuous and onto.In order to establish the variational formulation and the model for the u-dependent problem in the u-dependent 
uid domain let us 
onsider the followingHilbert spa
es:Wu = nw 2 �H1 �
Fu ��2 ; w1 = 0 on �
Fu ; w2 = 0 on �o ;Qu = L2 �
Fu � :We introdu
e in �H1 �
Fu ��2 the divergen
e operatordiv w = �w1�x1 + �w2�x2 ; w = (w1; w2) 2 �H1 �
Fu ��2 :Next straightforward lemma states an important property of this operator.Lemma 1 For all u in Uad, the operator div mapping Wu into Qu is onto.This result is standard for the homogenous Diri
hlet boundary 
ondition onthe �
Fu .[19℄For the mixed boundary 
ondition (Diri
hlet on � and Neumann on �u) andfor an exterior domain (the 
omplement of a 
ompa
t set), the proof of this kindof result 
ould be found in [32℄. The proof remains valid in our 
ase when thedomain is bounded.We denote by � > 0 the vis
osity of the 
uid and by �(v) = (�ij(v))1�i;j�2 thesymmetri
 part of the deformation rate tensor, where �ij(v) = 12 � �vi�xj + �vj�xi�.Next, let us 
onsider the maps8><>: aF : U �Wu �Wu ! R(u; v; w) 7! aF (u; v; w) = 2� 2Xi;j=1 Z
Fu �ij(v)�ij(w) dx (16)and 8<: bF : U �Wu �Qu ! R(u;w; q) 7! bF (u;w; q) = � Z
Fu (div w) q dx: (17)The properties of the previous maps lead to the existen
e and uniquenessresult [19℄:



12 C.M. Murea and C. V�azquezProposition 4 For all u in Uad and � in L2 (�u), the problem:Find (v; p) 2Wu �Qu su
h that8><>: aF (u; v; w) + bF (u;w; p) = 2Xi=1 Z
Fu fFi wi dx+ Z�u �w2 d�; 8w 2WubF (u; v; q) = 0; 8q 2 Qu (18)has a unique solution.Remark 3 The system (18) represents a mixed formulation for the Stokes equa-tions: 8>>>><>>>>: ���v +rp = fF in 
Fudiv v = 0 in 
Fuv = 0 on ���Fn� � e2 = � on �uv1 = 0 on �uwhere � is the vis
osity of the 
uid, v and p represent the velo
ity and thepressure of the 
uid, fF = �fF1 ; fF2 �T 2 R2 are the gravity for
es, �F = �pI +2��(v) is the stress tensor of the 
uid, n is the unit outward normal ve
tor to �u,e2 = (0; 1)T is the unit ve
tor in the x2 dire
tion, � is the verti
al 
omponent ofthe surfa
e for
es on the elasti
 boundary �u. We have a Diri
hlet homogeneousboundary 
ondition on the rigid boundary � and on the elasti
 boundary �u wehave a Neumann and a Diri
hlet boundary 
onditions.The equilibrium of the physi
al situation, 
orresponding to a 
uid whi
ho

upies a two-dimensional region whose boundary 
ontains an elasti
 part, isbased on the balan
e of velo
ity and normal for
es in that boundary. In ourapproa
h to this parti
ular 
uid-stru
ture model both balan
es are obtained inan optimal 
ontrol problem setting. One of the �rst diÆ
ulties of this formula-tion is the u-dependen
e of the 
uid domain. To over
ome this problem in nextse
tion we propose an equivalent mixed formulation problem in a �xed domainbut with u-dependent 
oeÆ
ients.5 Mixed formulation for the 
uid equations ina �xed domainIn order to obtain the mixed formulation for the 
uid equations in a �xeddomain, the arbitrary lagrangian eulerian 
oordinates have been used. For thisformulation in a �xed domain we obtain the existen
e of the solution.For ea
h u 2 U be given, let us 
onsider the following one-to-one 
ontinuousdi�erentiable transformation:Tu : 
F0 ! 
Fu ; (bx1; bx2) 7! Tu (bx1; bx2) = �bx1; H + u (bx1)H bx2� (19)
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oupled 
uid-stru
ture problem 13whi
h admits the 
ontinuous di�erentiable inverse mappingT�1u : 
Fu ! 
F0 ; (x1; x2) 7! T�1u (x1; x2) = �x1; Hx2H + u (x1)� (20)and veri�es that Tu �
F0 � = 
Fu , Tu (�0) = �u and Tu (bx) = bx, 8bx 2 �. Weset x = Tu (bx) for ea
h x = (x1; x2) 2 
Fu and bx = (bx1; bx2) 2 
F0 . We note� = Tu (b�) for ea
h � 2 �u and b� 2 �0.Moreover, we denote byrTu (bx) = � 1 0u0(bx1)H bx2 H+u(bx1)H �r �T�1u � (x) =  1 0�u0(x1)Hx2(H+u(x1))2 HH+u(x1) !the ja
obian matri
es of the transformations Tu and T�1u respe
tively. As usualfor a given square matrix A, we denote by det (A), A�1, AT , 
of (A) the de-terminant, the inverse, the transpose and the 
ofa
tor matrix, respe
tively. Wehave (rTu)�1 (bx) = r �T�1u � (x) = r �T�1u � (Tu(bx))and 
of (rTu(bx)) = det (rTu(bx))�(rTu(bx))�1�T :Asso
iated with the transformation Tu we state the following useful lemma.Lemma 2 We have:1. A fun
tion � belongs to L1 �
Fu � if and only if the fun
tion b� = � Æ Tubelongs to L1 �
F0 �. Moreover, in this 
ase we haveZ
Fu � (x) dx = Z
F0 b� (bx) det (rTu (bx)) dbx: (21)2. A fun
tion � belongs to L1 (�u) if and only if the fun
tion b� = � Æ Tubelongs to L1 (�0). Moreover, in this 
ase we haveZ�u � (�) d� = Z�0 b� (b�) b!u (b�) db� (22)where b!u (b�) is given byb!u (b�) = k
of (rTu (b�)) bn (b�)kR2 (23)with bn (b�) being the unit outward normal ve
tor to �0 in b�.
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tion � belongs to H1 �
Fu � if and only if the fun
tion b� = � Æ Tubelongs to H1 �
F0 �. Moreover, we have ���x1 (x)���x2 (x) ! = �(rTu)�1 (bx)�T  �b��bx1 (bx)�b��bx2 (bx) ! : (24)The �rst and se
ond assertions of the above lemma follow from the well-known transport theorems in 
ontinuum me
hani
s.[20℄ The third part of thelemma is a 
onsequen
e of basi
 results for Sobolev spa
es [1℄ and the 
hainrule.In our 
ase, we havedet (rTu (bx)) = H + u(bx1)H ; b!u (bx1; H) =q1 + (u0(bx1))2:We denote by(rTu)�1 (bx) =  1 0�u0(bx1)bx2H+u(bx1) HH+u(bx1) ! = � s11(bx) s12(bx)s21(bx) s22(bx) �and as a 
onsequen
e of the above Lemma, we have �v1�x1 (x) �v1�x2 (x)�v2�x1 (x) �v2�x2 (x) ! =  �bv1�bx1 (bx) �bv1�bx2 (bx)�bv2�bx1 (bx) �bv2�bx2 (bx) !� s11(bx) s12(bx)s21(bx) s22(bx) � :In order to pose the variational formulation in the referen
e 
on�gurationlet us 
onsider the following Hilbert spa
es:
W = nbw 2 �H1 �
F0 ��2 ; bw1 = 0 on �
F0 ; bw2 = 0 on �obQ = L2 �
F0 �equipped with their usual inner produ
ts.We introdu
e the formsbaF : Uad �
W �
W ! R bbF : Uad �
W � bQ! Rde�ned bybaF (u; bv; bw) = 2� R
F0 h� �bv1�bx1 s11 + �bv1�bx2 s21��� bw1�bx1 s11 + � bw1�bx2 s21�+ 12 � �bv1�bx1 s12 + �bv1�bx2 s22 + �bv2�bx1 s11 + �bv2�bx2 s21��� bw1�bx1 s12 + � bw1�bx2 s22 + � bw2�bx1 s11 + � bw2�bx2 s21�+ � �bv2�bx1 s12 + �bv2�bx2 s22��� bw2�bx1 s12 + � bw2�bx2 s22�i det (rTu (bx)) dbx= 2� 2Xi;j;k;`=1Z
F0 ai;jk;` (u; bx) �bvi�bxk � bwj�bx` dbx: (25)
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oupled 
uid-stru
ture problem 15bbF (u; bw; bq) = � R
F0 � �bv1�bx1 s11 + �bv1�bx2 s21 + �bv2�bx1 s12 + �bv2�bx2 s22� bq det (rTu (bx)) dbx= � R
F0 � �bv1�bx1 H+u(bx1)H � �bv1�bx2 u0(bx1)bx2H + �bv2�bx2� bq dbx: (26)Let us 
onsider bfF (u) 2 
W 0 de�ned for all bw in 
W byD bfF (u) ; bwE
W 0;
W = 2Xi=1 Z
F0 fFi bwi det (rTu (bx)) dbx= 2Xi=1 Z
F0 fFi bwiH + u(bx1)H dbx:Proposition 5 For all u in Uad and b� in L2 (�0), the problem:Find (bv; bp) 2 
W � bQ su
h that8<: baF (u; bv; bw) +bbF (u; bw; bp) = D bfF (u) ; bwE+ Z�0 b� bw2 db�;8 bw 2 
WbbF (u; bv; bq) = 0;8bq 2 bQ (27)has a unique solution.The problem (27) is obtained from (18) and reversely by using the one-to-one transformations Tu and T�1u . We have bv = v Æ Tu, bp = p Æ Tu and b� =b!u (� Æ Tu), where b!u is given by the formula (23). Therefore, the Proposition5 is a 
onsequen
e of the Proposition 4.6 Optimal 
ontrol settingLet us 
onsider the spa
e 
M = L2 (�0). Next, we introdu
e the two linear andbounded operators AS : U ! U 0 CS : 
M ! U 0de�ned byhAS�;  iU 0;U = aS (�;  ) 8�;  2 U (28)DCSb�;  EU 0;U = Z L0 b� (x1; H) dx1 8b� 2 
M; 8 2 Uwhere aS is de�ned by (10).In terms of the operators de�ned by (28), equation (11) is posed in the formAS u�b�� = �CS b�+ fS



16 C.M. Murea and C. V�azquezwhi
h points out that the displa
ement of the stru
ture u�b�� depends on thefor
es b�.For ea
h u in Uad, there exist three linear bounded operatorsAF (u) : 
W ! 
W 0; BF (u) : 
W ! bQ0; CF : 
M ! 
W 0given by hAF (u) bv; bwi
W 0;
W = baF (u; bv; bw) ; 8bv; bw 2 
WhBF (u) bw; bqi bQ0; bQ = bbF (u; bw; bq) ; 8 bw 2 
W;8bq 2 bQDCF b�;wE
W 0;
W = Z�0 b� bw2 db�; 8b� 2 
M; 8 bw 2 
W: (29)So, the system (27) 
an be rewritten with operator notation in the form:For u 2 Uad and b� 2 
M given, �nd bv �u; b�� 2 
W and bp�u; b�� 2 bQ su
hthat8<: AF (u) bv �u; b��+B�F (u) bp�u; b�� = bfF (u) + CF b� in 
W 0BF (u) bv �u; b�� = 0 in bQ0 (30)or in an equivalent matrix notation as� AF (u) B�F (u)BF (u) 0 �0� bv �u; b��bp�u; b�� 1A = � bfF (u) + CF b�0 � (31)where B�F (u) is the adjoint operator of BF (u).In the next paragraph the 
uid-stru
ture 
oupled problem will be modeledby an optimal 
ontrol system.For ea
h bv 2 
W we denote by bvj�0 the tra
e on �0 of bv and we denote byk�k0;�0 the usual norm in L2 (�0). We denote by J : 
W ! R, the fun
tionde�ned by J ( bw) = 12 

 bw2j�0

20;�0 :Moreover, let j : Fad ! R be the fun
tion de�ned byj �b�� = J �bv �u�b��; b��� : (32)We pose the following optimal 
ontrol problem (P):inf j �b��subje
t to the 
onditions:
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oupled 
uid-stru
ture problem 171. b� 2 Fad2. u�b�� 2 Uad su
h thatAS u�b�� = �CS b�+ fS (33)3. bv �u�b��; b�� 2 
W; bp�u�b��; b�� 2 bQ su
h that0� AF �u�b��� B�F �u�b���BF �u�b��� 0 1A0� bv �u�b��; b��bp�u�b��; b�� 1A = � bfF (u) + CF b�0 � :(34)Therefore, the previous formulation 
orresponds to an optimal 
ontrol prob-lem with Neumann like boundary 
ontrol (b�) and Diri
hlet like boundary ob-servation (bv2j�0). Moreover, the 
ontrol appears also in the 
oeÆ
ients of the
uid equations (34) as it happens in some optimal design problems.[37℄, [41℄ The
ondition b� 2 Fad represents the 
ontrol 
onstraint, while the state 
onstraintis given by the fa
t that u�b�� 2 Uad.This mathemati
al formulation provides an interesting tool for the numeri
alapproximation of the a priori 
uid-stru
ture 
oupled problem in an un
oupledway. That is, the stru
ture equations represented by the �rst two 
onditionsand the 
uid equations (34) 
an be solved separately in an iterative pro
ess.As we mentioned in the se
ond se
tion, on the interfa
e we have two bound-ary 
onditions: equality of the 
uid and stru
ture velo
ities (whi
h is a Diri
hletlike boundary 
ondition) and equality of the stresses (whi
h is a Neumann likeboundary 
ondition). In our approa
h we pursue both 
oupling 
onditions inthe iterative algorithm:� Step 1: We start with a guess for the for
es b� on the interfa
e.� Step 2: The displa
ement u�b�� of the stru
ture 
an be 
omputed by (33).� Step 3: On
e the 
oeÆ
ients of the equations (34) have been obtained, we
an 
ompute the velo
ity and the pressure of the 
uid as the solution ofthe weak mixed formulation on the �xed domain (34).� Step 4: Update b� in order to minimize the 
ost fun
tion j.Remark 4 As we use the value �b� for the for
es on �0 in the equations of thestru
ture and we take the value b� in the equations of the 
uid, the Neumannlike boundary 
ondition is strongly a

omplished. The Diri
hlet like boundary
ondition bv2j�0 = 0 is approa
hed by a Least Square formulation posed in termsof the minimization problem inf 12 

bv2j�0

20;�0 :
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ost fun
tionIn this subse
tion, we shall prove that the 
ost fun
tion j is 
ontinuous.The 
ost fun
tion is the 
omposition of the following fun
tions:b� 2 Fad 7�! u�b�� 2 Uad;�u; b�� 2 Uad � 
M 7�! bv �u; b�� 2 
W;bw 2 
W 7�! J ( bw) 2 R:The �rst and the third are 
ontinuous, evidently. Next, by using the Impli
itFun
tion Theorem (see the Appendix), we shall prove that the se
ond one is
ontinuous too.We de�neU = fu 2 U ; u (0) = u (L) = u0 (0) = u0 (L) = 0;H + u (x1) > 0; 8x1 2 [0; L℄g ; (35)so that Uad � U � U and U is an open set of U .Let us 
onsider the fun
tion h : �
M � U� � �
W � bQ� ! 
W 0 � bQ0 de�nedby h ((b�; u) ; ( bw; bq)) = �AF (u) bw +B�F (u) bq � bfF (u)� CF b�;BF (u) bw� :Next we apply Theorem 4 (see the Appendix) for the 
aseX = 
M � U; Y = Z = 
W � bQ; G = 
M � U �
W � bQ;x0 = �b�; u�b��� ; y0 = �bv �u�b�� ; b�� ; bp�u�b�� ; b��� ;x = (b�; u) ; y = ( bw; bq) :We have that h (x0; y0) = 0. A

ording to the Proposition 5 and in view ofthe identities (30) and (31), we have that�h�y ((b�; u) ; ( bw; bq)) = � AF (u) B�F (u)BF (u) 0 � 2 L�
W � bQ;
W 0 � bQ0�is invertible.In view of the Remark 6 (see the Appendix), it remains to verify that h and�h�y are 
ontinuous in (x0; y0).Proposition 6 Let u be in Uad. We havelimku�ukU!0 kAF (u)�AF (u)kL(
W;
W 0) = 0; (36)limku�ukU!0 kBF (u)�BF (u)kL(
W; bQ0) = 0; (37)limku�ukU!0 kB�F (u)�B�F (u)kL( bQ;
W 0) = 0 (38)where k�kU is the norm of the Sobolev spa
e U = H20 (0; L).
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oupled 
uid-stru
ture problem 19Proof. We have that hAF (u) bv; bwi = baF (u; bv; bw)where baF is de�ned by (25).Next, by using the elementary integral 
al
ulus results, we obtainju (bx1)j = �����Z bx10 u0 (s) ds����� � Z bx10 ju0 (s)j ds� Z L0 ju0 (s)j ds �  Z L0 ju0 (s)j2 ds!1=2 � kukU (39)and analogouslyju0 (bx1)j = �����Z bx10 u00 (s) ds����� � Z bx10 ju00 (s)j ds� Z L0 ju00 (s)j ds �  Z L0 ju00 (s)j2 ds!1=2 � kukU : (40)Sin
e the 
oeÆ
ients of the bilinear form baF (u; �; �) are 
ontinuous withrespe
t to u, u0 and thanks to above inequalities, we obtain that there exists a
onstant C1 �
F0 � depending only upon the shape of the domain 
F0 , su
h thatfor all bv and bw in 
W , we havebaF (u� u; bv; bw) � C1 �
F0 � ku� ukU kbvk
W k bwk
W :It was essential for obtaining the above estimation the fa
t that the domain
F0 is bounded!It follows thatkAF (u)�AF (u)kL(
W;
W 0) def= supkbvk
W�1;kbwk
W�1 h(AF (u)�AF (u)) bv; bwi= supkbvk
W�1;kbwk
W�1baF (u� u; bv; bw) � C1 �
F0 � ku� ukU :whi
h proves the relation (36).Analogously, we obtain the two other relations whi
h 
omplete the proof.�Proposition 7 The fun
tionu 2 Uad 7! bfF (u) 2 
W 0is 
ontinuous.
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 bfF (u)� bfF (u)


 = supk bwk�1 ����� 2Xi=1 Z
F0 bfFi (u� u) (bx1) bwi dbx������ ku� ukU supk bwk�1 2Xi=1 Z
F0 ��� bfFi ��� j bwij dbx!� ku� ukUvuut 2Xi=1 Z
F0 ��� bfFi ���2 dbxand the 
on
lusion holds. �Corollary 1 The fun
tion �h�y from G to L�
W � bQ;
W 0 � bQ0� is 
ontinuouson G.Corollary 2 The fun
tions(u; bw) 2 Uad �
W 7�! AF (u) bw 2 
W 0(u; bw) 2 Uad �
W 7�! BF (u) bw 2 bQ0(u; bq) 2 Uad � bQ 7�! B�F (u) bq 2 
W 0are 
ontinuous.Proof. Let u and bv be given in Uad and 
W respe
tively. We havekAF (u) bw � AF (u) bvk
W 0 �kAF (u) bw �AF (u) bw +AF (u) bw � AF (u) bvk
W 0 �kAF (u)�AF (u)kL(
W;
W 0) k bwk
W + kAF (u)kL(
W;
W 0) k bw � bvk
W :From Proposition 6, we havelimku�ukU!0 kAF (u)�AF (u)kL(
W;
W 0) = 0:Next, sin
e k bw � bvk
W ! 0, we get that k bwk
W is bounded and the proof is
omplete. �Corollary 3 The fun
tion h from G to 
W 0 � bQ0 is 
ontinuous on G.All the hypotheses of the Theorem 4 (see the Appendix) hold, so the impli
itfun
tion � : 
M � U ! 
W � bQ given by� (b�; u) = (bv (u; b�) ; bp (u; b�))is 
ontinuous in �b�; u�b���. Moreover, this result holds for ea
h b� 2 
M , su
hthat u�b�� 2 U .Therefore, we obtain that the 
ost fun
tion j de�ned in (32) is 
ontinuouson Fad, sin
e it is the 
omposition of three 
ontinuous fun
tions.
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oupled 
uid-stru
ture problem 218 Di�erentiability of the 
ost fun
tionIn this se
tion we analyze the di�erentiability of the 
ost fun
tion as well as theexpression of its gradient. We use the method of deformation of domains.[31℄,[7℄, [9℄In the four following lemmas, the di�erentiability of intermediate fun
tionsis established. Moreover, the analyti
 formula for their derivatives is obtained.We follow the notations introdu
ed in the previous se
tions.Lemma 3 The fun
tion J : 
W ! R de�ned byJ ( bw) = 12 k bw2k20;�0is Fr�e
het di�erentiable andJ 0 (bv) bw = Z�0 bv2 bw2 db�:Proof. The fun
tion bw 7�! R�0 bv2 bw2 db� is linear and 
ontinuous, evidently. Weshall use the de�nition of the Fr�e
het di�erentiability detailed in the Appendix.limbw!0 ��� 12kbv2+bw2k20;�0� 12 kbv2k20;�0�R�0 bv2 bw2 db����kbwk1;
F0= limbw!0 kbw2k20;�02kbwk1;
F0 = limbw!0 kbw2k0;�0kbwk1;
F0 kbw2k0;�02 :Sin
e k bw2k0;�0 � k bwk0;�0 and from the 
ontinuity of the tra
e operatorde�ned on H1 �
F0 �, we havek bw2k0;�0k bwk1;
F0 � k bwk0;�0k bwk1;
F0 � 
onst:so the above limit is 0. �Lemma 4 Let bv, bw be given in 
W and bq in bQ. Then the fun
tions from Uad toR de�ned by u 7�! baF (u; bv; bw)u 7�! bbF (u; bw; bq)are Fr�e
het di�erentiable on Uad and the derivatives have the forms:�baF�u (u; bv; bw) = 2� 2Xi;j;k;`=1 Z
F0 �ai;jk;`�u (u; bx) �bvi�bxk � bwj�bx` dbx (41)�bbF�u (u; bw; bq) = � Z
F0  (bx1)H � bw1�bx1 bq dbx + Z
F0  0 (bx1) bx2H � bw1�bx2 bq dbx: (42)



22 C.M. Murea and C. V�azquezProof. In view of the identity (26), the fun
tionu 7! bbF (u; bw; bq)is aÆne. Using the inequalities (39) and (40), we get the 
ontinuity of thisfun
tion. Consequently, it is Fr�e
het di�erentiable.But, for a linear and 
ontinuous fun
tionu 2 U 7! f (u) 2 Rthe Fr�e
het derivative has the formf 0 (u) = f ( ) ; 8 2 U:The above identity gives (42).Using the same method, we 
an get the Fr�e
het di�erentiability and deriva-tives for all the terms of baF (u; bv; bw) whi
h are aÆne with respe
t to u.The only remaining point 
on
erns the di�erentiability of the fun
tionu 7�! Z
F0 ai;jk;` (u; bx) �bvi�bxk � bwj�bx` dbx:where u 2 U 7! ai;jk;` (u; �) 2 L1 �
F0 � is nonlinear.We apply the Theorem 7 
on
erning the di�erentiability of integrals withparameter (see the Appendix) in the 
ase b
 � 
F0 andf (u; bx) = ai;jk;` (u; bx) �bvi�bxk � bwj�bx` dbx:The uniform 
onvergen
e is ensured due to the inequalities (39) and (40) andto the 
ompa
tness of the domain 
F0 .The elementary rules for 
omputing Fr�e
het derivative establish the identity(41), whi
h 
ompletes the proof. �Lemma 5 The fun
tion u 2 Uad 7! bfF (u) 2 
W 0is Fr�e
het di�erentiable and the derivative D bfF (u) 2 L�U;
W 0� has the formDD bfF (u) ; bwE = 2Xi=1 Z
F0  (bx1)H fFi bwi dbx; 8bw 2 
WProof. The above fun
tion is aÆne and from the Proposition 7, it is 
ontinuous,then it is Fr�e
het di�erentiable. �Lemma 6 We have
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uid-stru
ture problem 23a) the fun
tion from Uad � 
M into 
W � bQ de�ned by�u; b�� 7�! �bv �u; b�� ; bp�u; b���is Fr�e
het di�erentiable on Uad � 
M ,b) the derivative of the fun
tionb� 2 bK 7�! bv �u�b�� ; b�� 2 
Whas the form ��bv�u �u�b�� ; b��A�1S CS + �bv�b� �u�b�� ; b�� :Proof. a) Let b� be in Fad. We have that u�b�� 
omputed from (43) belongsto Uad.Let bv �u�b�� ; b�� and bp�u�b�� ; b�� be 
omputed from (44).We re
all that U de�ned by (35) is an open set in U .We apply the result 
on
erning the di�erentiability of the impli
it fun
tion(see the Theorem 7 in the Appendix) in the 
aseX = 
M � U; Y = Z = 
W � bQ; G = 
M � U �
W � bQ;x0 = �b�; u�b��� ; y0 = �bv �u�b�� ; b�� ; bp�u�b�� ; b��� ;x = (b�; u) ; y = ( bw; bq)for the fun
tion h : �
M � U�� �
W � bQ�! 
W 0 � bQ0 de�ned byh ((b�; u) ; ( bw; bq)) = �AF (u) bw +B�F (u) bq � bfF (u)� CF b�; BF (u) bw� :In Se
tion 7, we have proved that all the hypotheses of the Theorem 4hold for the previous 
hoi
e. It remains to show that �h�x exists on G and it is
ontinuous in (x0; y0).In order to prove that, we apply the Theorem 2 (see the Appendix). Wehave to prove that the fun
tions �h�b� and �h�u exist on G and they are 
ontinuousin (x0; y0).But the fun
tion b� 2 
M 7�! h ((b�; u) ; ( bw; bq))is linear and 
ontinuous. Its Fr�e
het derivative is�h�b� ((b�; u) ; ( bw; bq)) = (�CF ; 0) ;whi
h is evidently 
ontinuous on G (be
ause it is 
onstant).



24 C.M. Murea and C. V�azquezNext, we prove the similar result for �h�u .We obtain from the identities (41) and (42) that there exist three operatorsDAF (u) 2 L�
W;L�U;
W 0��DB�F (u) 2 L� bQ;L�U;
W 0��DBF (u) 2 L�
W;L�U; bQ0��su
h that ((DAF (u) bv) ) bw = �baF�u (u; bv; bw) ((DB�F (u) bq) ) bw = �bbF�u (u; bw; bq) ((DBF (u) bw) ) bq = �bbF�u (u; bw; bq) for all u 2 U , bv; bw 2 
W , bq 2 bQ and  2 U .From the Lemma 4, we get that there exists a fun
tion !, su
h thatbaF (u+  ; bv; bw)� baF (u; bv; bw)� �baF�u (u; bv; bw) = k kU ! (u; bv; bw; )or equivalentlyhAF (u+  ) bv; bwi
W 0;
W � hAF (u) bv; bwi
W 0;
W � h(DAF (u) bv) ; bwi
W 0;
W= k kU ! (u; bv; bw; )and lim !0! (u; bv; bw; ) = 0:In fa
t, we have that ! 
onverges to 0 uniformly with respe
t to k bwk
W � 1.More pre
isely, we have: 8" > 0; 9Æ" > 0;8 kbwk
W � 1;8 ku� ukU � Æ",j! (u; bv; bw; )� ! (u; bv; bw; )j � ":Then the fun
tion u 7�! AF (u) bv 2 
W 0is Fr�e
het di�erentiable and its derivative isDAF (u) bv 2 L�U;
W 0� :In a similar way, we obtain that the fun
tionu 7�! h ((b�; u) ; ( bw; bq)) 2 
W 0 � bQ0is Fr�e
het di�erentiable and its derivative is�h�u ((b�; u) ; ( bw; bq)) = �DAF (u) bw +DB�F (u) bq �D bfF (u) ; DBF (u) bw� :
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ture problem 25Following an analogous argument as in the Proposition 6 and Corollary 2,we get that the fun
tion �h�u is 
ontinuous on G.Now, we 
an apply the Theorem 7 (see the Appendix) and we obtain thatthe impli
it fun
tion � : 
M � U �! 
W � bQ, given by� (b�; u) = (bv (u; b�) ; bp (u; b�)) ;is Fr�e
het di�erentiable, whi
h states the �rst part of this Lemma.b) Next, from the identity AS u�b�� = �CS b�+fS; we have that the fun
tionb� 7! u�b�� is di�erentiable and u0 �b�� = �A�1S CS .By using the 
hain rule, the derivative of the fun
tionb� 7! bv �u�b�� ; b��has the form�bv�u �u�b�� ; b��u0 �b��+ �bv�b� �u�b�� ; b�� = � �bv�u �u�b�� ; b��A�1S CS+ �bv�b� �u�b�� ; b��and the proof is 
omplete. �Now, we present the main result 
on
erning the 
omputation of the gradientfor the 
uid-stru
ture intera
tion problem.Theorem 1 The 
ost fun
tion j de�ned by (32) is Fr�e
het di�erentiable. More-over, we have forall b� in Fad and forall b� in 
M :j0 �b�� b� =  �baF�u (u; bv; bz) + �bbF�u (u; bz; bp) + �bbF�u (u; bv; br)!A�1S CSb�� Z
F0 �A�1S CSb�� (bx1)H fF � bz dbx + Z�0 bv2 �bv2�b� �u; b�� b� db�;where the displa
ement u is 
omputed fromAS u = �CS b�+ fS ; (43)the velo
ity bv and the pressure bp of the 
uid are 
omputed as solution of8<: baF (u; bv; bw) +bbF (u; bw; bp) = D bfF (u) ; bwE+ Z�0 b� bw2 db�; 8bw 2 
WbbF (u; bv; bq) = 0; 8bq 2 bQ; (44)the adjoint state bz and br are 
omputed as solution of8<: baF (u; bw; bz) +bbF (u; bw; br) = Z�0 bv2 bw2 db�; 8 bw 2 
WbbF (u; bz; bq) = 0; 8bq 2 bQ (45)



26 C.M. Murea and C. V�azquezand �bv2�b� �u; b�� b� is 
omputed from8>><>>: baF �u; �bv�b� �u; b�� b�; bw�+bbF �u; bw; �bp�b� �u; b�� b�� = Z�0 b� bw2 db�;8 bw 2 
WbbF �u; �bv�b� �u; b�� b�; bq� = 0;8bq 2 bQ: (46)Proof. A

ording to the Lemma 3, Lemma 6 and the 
hain rule, we obtainthat j is di�erentiable andj0 �b�� b� = J 0 �bv �u�b�� ; b��� �bv�u �u�b�� ; b��u0 �b�� b�+J 0 �bv �u�b�� ; b��� �bv�b� �u�b�� ; b�� b�= Z�0 bv2 �u�b�� ; b�� �bv2�u �u�b�� ; b��u0 �b�� b� db�+ Z�0 bv2 �u�b�� ; b�� �bv2�b� �u�b�� ; b�� b� db�:Our next obje
tive is to evaluate the �rst term of the above sum.For this, let (bz; br) be the solution of the adjoint system (45). Next, repla
ingbw by �bv�u �u�b�� ; b��u0 �b�� b� in (45), we obtain:Z�0 bv2 �u�b�� ; b�� �bv2�u �u�b�� ; b��u0 �b�� b� db�= baF �u; �bv�u �u�b�� ; b��u0 �b�� b�; bz�+bbF �u; �bv�u �u�b�� ; b��u0 �b�� b�; br� :Next, if we derive the equations (27) with respe
t to u, we obtain�baF�u �u; bv �u; b�� ; bw� + �baF�bv �u; bv �u; b�� ; bw� �bv�u �u; b�� +�bbF�u �u; bw; bp�u; b��� + �bbF�bq �u; bw; bp�u; b��� �bp�u �u; b�� = Z
F0  (bx1)H fF � bw dbx; 8bw 2 
W; 8 2 U (47)and 8bq 2 bQ, 8 2 U we have�bbF�u �u; bv �u; b�� ; bq� + �bbF� bw �u; bv �u; b�� ; bq� �bv�u �u; b�� = 0: (48)Now, repla
ing bw by bz in (47), bq by br in (48) and  by A�1S CSb� in (47) and(48), we obtain�baF�u �u; bv �u; b�� ; bz�A�1S CSb�+ �baF�bv �u; bv �u; b�� ; bz� �bv�u �u; b��A�1S CSb�
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ture problem 27+�bbF�u �u; bz; bp�u; b���A�1S CSb�+ �bbF�bq �u; bz; bp�u; b��� �bp�u �u; b��A�1S CSb�= Z
F0 �A�1S CSb�� (bx1)H fF � bz dbx (49)and�bbF�u �u; bv �u; b�� ; br�A�1S CSb�+ �bbF� bw �u; bv �u; b�� ; br� �bv�u �u; b��A�1S CSb� = 0:(50)But the following fun
tionsbv 7! baF (u; bv; bz) ; bq 7! bbF (u; bv; bq) ; bw 7! bbF (u; bw; br)are linear and 
ontinuous. Consequently, they are di�erentiable and we have�baF�bv �u; bv �u; b�� ; bz� �bv�u �u; b��A�1S CSb� = baF �u; �bv�u �u; b��A�1S CSb�; bz��bbF�bq �u; bv �u; b�� ; bz� �bp�u �u; b��A�1S CSb� = bbF �u; bv �u; b�� ; �bp�u �u; b��A�1S CSb���bbF� bw �u; bv �u; b�� ; br� �bv�u �u; b��A�1S CSb� = bbF �u; �bv�u �u; b��A�1S CSb�; br� : (51)So, the identity (49) 
ould be rewritten as follows�baF�u �u; bv �u; b�� ; bz�A�1S CSb�+ baF �u; �bv�u �u; b��A�1S CSb�; bz�+�bbF�u �u; bz; bp�u; b���A�1S CSb�+bbF �u; bv �u; b�� ; �bp�u �u; b��A�1S CSb��= Z
F0 �A�1S CSb�� (bx1)H fF � bz dbx:Sin
e bbF �u; bv �u; b�� ; bq� = 0 for all bq, it follows that�baF�u �u; bv �u; b�� ; bz�A�1S CSb�+ �bbF�u �u; bz; bp�u; b���A�1S CSb�� R
F0 (A�1S CSb�)(bx1)H fF � bz dbx = �baF �u; �bv�u �u; b��A�1S CSb�; bz�= baF �u; �bv�u �u; b��u0 �b�� b�; bz� :Now, repla
ing the third equality of (51) in (50), we get�bbF�u �u; bv �u; b�� ; br�A�1S CSb� = �bbF �u; �bv�u �u; b��A�1S CSb�; br�= bbF �u; �bv�u �u; b��u0 �b�� b�; br�whi
h 
ompletes the 
omputation of the �rst term of the gradient, i.e.R�0 bv2 �u�b�� ; b�� �bv2�u �u�b�� ; b��u0 �b�� b� db�= ��baF�u (u; bv; bz) + �bbF�u (u; bz; bp) + �bbF�u (u; bv; br)�A�1S CSb�� R
F0 (A�1S CSb�)(bx1)H fF � bz dbx:



28 C.M. Murea and C. V�azquezOur next goal is to 
ompute the se
ond term of the gradient.The fun
tionb� 7! 0� bv �u; b��bp�u; b�� 1A = � AF (u) B�F (u)BF (u) 0 ��1� CF b�0 �is linear and 
ontinuous, therefore it is di�erentiable. Moreover, we have0� �bv�b� �u; b�� b��bp�b� �u; b�� b� 1A = � AF (u) B�F (u)BF (u) 0 ��1� CF b�0 � :So, we 
an 
ompute �bv2�b� �u; b�� b� by solving a Stokes problem whi
h permits to
ompute numeri
ally the se
ond term of the gradient and the proof is 
omplete.�9 Approximation and numeri
al resultsIn this Se
tion we present a pra
ti
al appli
ation of the optimal 
ontrol algo-rithm presented in Se
tion 6, having in view the 
omputation of 
ost fun
tiongradient. For this, we propose parti
ular numeri
al approximation methods.Let �i 2 L2 (0; L) be some parti
ular given fun
tions and let �i 2 R be thedis
ret 
ontrols to be identi�ed, 1 � i � m.From the Proposition 2, ii) there exist u0 2 U su
h that R L0 u0 dx1 = 0 and
0 2 R solutions of (13) and ui 2 U su
h that R L0 ui dx1 = 0 and 
i 2 R solutionsof aS (ui;  ) = Z L0 (�i (x1) + 
i) (x1) dx1 8 2 U: (52)It was not ne
essary to have R L0 �i (x1) dx1 = 0.We take b�(x1; H) = �
0 +Pmi=1 �i (��i (x1)� 
i) in the equation (43) andwe obtain the displa
ement u = u0 +Pmi=1 �iui su
h that R L0 u dx1 = 0. Inother words, b�(x1; H) = �
0 +Pmi=1 �i (��i (x1)� 
i) is an admissible 
ontrolif and only if the displa
ement u = u0 +Pmi=1 �iui veri�es the 
ondition (4).With the notationJ (�1; : : : ; �m) = j �
0 + mXi=1 �i (��i (x1)� 
i)!we have�J��k (�1; : : : ; �m) = j0 b� = �
0 + mXi=1 �i (��i (bx1)� 
i)! (��k � 
k)= ��baF�u (u; bv; bz)uk � �bbF�u (u; bz; bp)uk � �bbF�u (u; bv; br)uk
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F0 uk (bx1)H fF � bz dbx+ Z�0 bv2 �bv2�b� �u; b�� (��k � 
k) db�;where bv and bp is the solution of (44), bz and br is the solution of (45) and�bv2�b� �u; b�� (��k � 
k) is the solution of (46) for b� = ��k � 
k.The problems (44), (45) and (46) represent weak forms of di�erent Stokesequations written in the referen
e domain 
F0 . We know that (44), for example,is equivalent to (18) whi
h represents a weak form of a Stokes equation writtenin the real domain 
Fu . For the approximation by Finite Elements Method,it is better to use (18) instead of (44), be
ause there exists a large literature
on
erning mixed form of Stokes equations, see for example the standard works[19℄ and [6℄.The fun
tion J is not de�ned in whole Rm , but only for � = (�1; : : : ; �m)su
h that the displa
ement u = u0 +Pmi=1 �iui veri�es the 
ondition (4). If weignore for the moment this 
onstraint, so that we 
an use quasi-Newton methodslike Broyden, Flet
her, Goldfarb, Shanno (BFGS) or Davidon, Flet
her, Powell(DFP) algorithms for the minimization problem without 
onstraintsinf J (�1; : : : ; �m) :Constrained minimization algorithms like proje
ted or penalization te
hniques
an also be used.Among the wide variety of possible appli
ations of the here presented 
ontrolapproa
h of 
uid-stru
ture problems, we are interested in simulating the blood
ow through medium vessels (arteries). The 
omputation has been made in adomain of length L = 3 
m and height H = 0:5 
m whi
h represents a halfwidth of the vessel. In this 
ase, the 
uid is the blood and the stru
ture is thewall of the vessel.The numeri
al values of the following physi
al parameters have been takenfrom [17℄. The vis
osity of the blood was taken to be � = 0:035 g
m�s , its density�F = 1 g
m3 . The thi
kness of the vessel is h = 0:1 
m, the Young modulusE = 0:75 � 106 g
m�s2 , the density �S = 1:1 g
m3 .The gravitational a

eleration is g0 = 981 
ms2 and the averaged volume for
eof the stru
ture is fS(x1) = �g0�Sh.On the rigid boundary, we impose the following boundary 
onditions:v1(x1; x2) = ( �1� x22H2 �V0; (x1; x2) 2 �1 [ �3V0; (x1; x2) 2 �2v2(x1; x2) = 0; (x1; x2) 2 �where V0 = 30 
ms .[39℄ The volume for
e in 
uid is fF = (0;�g0�F )T . Im-posing non-homogeneous Diri
hlet boundary 
onditions for the velo
ity on therigid boundary do not 
hange the formula to 
ompute the gradient of the 
ostfun
tion, ex
epting the spa
e where we sear
h the velo
ity bv in the problem(44).Using the notations from the beginning of this se
tion, we have 
0 = g0�Shand u0 = 0.



30 C.M. Murea and C. V�azquezWe take m = 4. Let �i = (i � 1)L=(m � 1) for 1 � i � m. There exist�i polynomial fun
tions of degree 3, su
h that �i(�j) = Æij , where Æij is theKrone
ker's symbol.
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Figure 2: The shape fun
tions �i for the approximation of the 
ontrolLet ui, 
i be the solutions of (52). From the regularity of �i, we 
an use thefollowing strong formulation in order to 
ompute ui, 
i:EI u0000i (x1) = �i(x1) + 
i; 8x1 2 (0; L)ui(0) = u0i(0) = 0;ui(L) = u0i(L) = 0R L0 ui(x1) dx1 = 0:We have 
omputed ui, 
i exa
tly, using the software Mathemati
a. The dis-pla
ements ui are polynomial fun
tions of degree 7. We 
ould use alternatively�nite elements shape fun
tions for �i, but in this 
ase we should handle theweak formulation in order to 
ompute ui and 
i.For the 
uid we have used a Mixed Finite Elements Method, P2 Lagrangetriangles for the velo
ity and P1 for the pressure [19℄, [6℄.The numeri
al tests have been produ
ed using freefem++ v1.27.[24℄ We haveused the BFGS algorithm for the minimization problem with the starting point� = 0 so that in the �rst �ve iterations the 
ost fun
tion takes the valuespresented in Table 1.After 5 iterations we have obtained(�1; �2; �3; �4) = (13:81347223; 2:81316723; �2:64008687; �13:98655258)and the gradient of the 
ost fun
tion wasrJ = (0:000255; 0:004768; �0:020800; 0:009256)T :More iterations do not quantitatively 
hange the values of �, the 
ost fun
tionand the solution. The relative 
hange in su

essive values of � evaluated in the
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oupled 
uid-stru
ture problem 31Iterations J0 8.3697042781 7.7058560752 0.1529776423 0.1479572984 0.1452060685 0.144683623Table 1: The 
ost fun
tion historynorm k�k1 is less than 0:02. The �rst four digits to the right of the de
imalpoint of the 
ost fun
tion don't 
hange after the �fth iteration. Ten iterationsare required to a
hieve krJ k1 � 10�6.Noti
e that the 
ondition (4) was not violated.In order to 
ompute rJ (�), we have to solve the adjoint state problem(45) and m linear systems (46) whi
h have the same matrix. The linear sys-tems were solved by LU de
omposition. We observe that (44) and (45) havethe same left side, so when we 
ompute rJ (�) we 
an use the same LU de-
omposition obtained 
omputing J (�). If we 
ompute rJ (�) by the FiniteDi�eren
es Method, we have to solve m linear systems, but the matri
es aredi�erent be
ause u 
hanges, so using the analyti
 formula of the gradient ismore advantageous.
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eWe have obtained 


b�+ bp


20;�0 = 0:002878, in other words, the verti
al 
om-ponent of the stresses exer
ed by the 
uid on the interfa
e depends on thepressure only, �b� � bpj�0 . This is justi�ed by the following result [34℄: ifv 2 �H2 �
Fu ��2, p 2 H1 �
Fu �, v is 
onstant on �u, div v = 0 in 
Fu , then� ��Fn� � n = p on �u. In our 
ase � ��Fn� � e2 = �� and n � e2.As we see in Figure 4, the velo
ity on the boundary �0 is not null, but the
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Figure 5: The displa
ement [
m℄ of the vessel magni�ed by a fa
tor 20The displa
ement of the vessel is very small, it is less than 0:04 
m (seeFigure 5). The pressure on the interfa
e bp is almost the same as �b�, so itde
reases from the in
ow (left) to the out
ow (right). The displa
ement of theinterfa
e is 
onsequent with the pressure: the displa
ement of the vessel wall isoutwards at the left and inwards at the right.The 
omputed velo
ity distribution is similar to a Poiseuille 
ow (see Figure6).10 Con
lusionsIn this work, a parti
ular 
uid-stru
ture intera
tion model is formulated as anoptimal 
ontrol problem.
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Figure 6: The velo
ity [
m=s℄ redu
ed by a fa
tor 100The optimal 
ontrol setting allows to solve numeri
ally the 
uid-stru
tureintera
tion problem (whi
h is a priori a 
oupled problem) by an iterative algo-rithm su
h that the 
uid and the stru
ture equations are solved separately atea
h iteration. Thus, existing software pa
kages 
ould be adapted to approxi-mate the solution of all the intermediate problems appearing in the algorithm.The di�erentiability of the 
ost fun
tion and the analyti
al expression for itsgradient are obtained.In order to perform a numeri
al method, the analyti
 expression for the gra-dient reveals very useful and a

urate to apply 
lassi
al des
ent methods. Tosolve numeri
ally a problem arising from blood 
ow in arteries, we have useda quasi Newton method whi
h employs the analyti
 gradient of the 
ost fun
-tion and the approximation of the inverse Hessian is updated by the Broyden,Flet
her, Goldforb, Shano (BFGS) s
heme. This algorithm is faster than �xedpoint with relaxation or blo
k Newton methods.We 
an adapt this te
hnique to the unsteady 
oupled 
uid-stru
ture prob-lems.A Appendi
esA.1 Fr�e
het di�erentiabilityLet (X; k�kX), (Y; k�kY ) and (Z; k�kZ) be three normed spa
es.De�nition 1 We say that the fun
tion f : X ! Y is Fr�e
het di�erentiableat x 2 X, if there exists f 0 (x) 2 L (X;Y ) su
h thatlimh!0 kf (x+ h)� f (x) � f 0 (x)hkYkhkX = 0The linear operator f 0 (x) is 
alled the Fr�e
het derivative of f at x.In the 
ase when X = Qni=1Xi, we denote by �f�xi (x) 2 L (Xi; Y ) theFr�e
het partial derivative of f with respe
t to xi at x 2 X .



34 C.M. Murea and C. V�azquezTheorem 2 Let f : X =Qni=1Xi ! Y be a fun
tion and let x0 be an elementof X. We assume that there exists V a neighborhood of x0, su
h that �f�xi existson V and its are 
ontinuous in x0.Then f is Fr�e
het di�erentiable in x0 andf 0 �x0�h = nXi=1 �f�xi �x0�hifor all h = (h1; : : : ; hn) 2 X.Theorem 3 Let h : X ! Z be the 
omposition of two mappings f : X ! Yand g : Y ! Z h = g Æ fAssume that f is Fr�e
het Di�erentiable in x and g in f (x), then h is Fr�e
hetdi�erentiable in x and h0 (x) = g0 (f (x)) Æ f 0 (x) :A.2 Impli
it Fun
tion TheoremWe begin by re
alling the Impli
it Fun
tion Theorem. The proof of this result
ould be found in [25℄ for example.Theorem 4 (The Impli
it Fun
tion Theorem) Let (X; k�kX), (Y; k�kY )and (Z; k�kZ) be normed spa
es. We suppose that h is a mapping from an opensubset G of X � Y into Z.Suppose (x0; y0) is a point in G and h is 
ontinuous in (x0; y0) su
h that:i) h (x0; y0) = 0;ii) �h�y exists on G and it is 
ontinuous in (x0; y0),iii) �h�y (x0; y0) is invertible and ��h�y (x0; y0)��1 is 
ontinuous.Then there exists a neighborhood V of x0 and a fun
tion � : V ! Z su
hthat:iv) � (x0) = y0;v) h (x; � (x)) = 0 for all x in V ,vi) � is 
ontinuous in x0.Remark 5 If h is 
ontinuous on G, then � is 
ontinuous in a neighborhood ofx0.
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ture problem 35Remark 6 In the 
ase when X, Y and Z are Bana
h spa
es, if �h�y (x0; y0) 2L (Y; Z) is invertible, from the Open Mapping Theorem we have that��h�y (x0; y0)��1 is 
ontinuous.Theorem 5 (The di�erentiability of the impli
it funtion) Moreover, ifthere exists �h�x on G 
ontinuous in (x0; y0), then the impli
it fun
tion � isFr�e
het di�erentiable in x0 and�0 (x0) = ���h�y (x0; y0)��1 �h�x (x0; y0) :A.3 Integrals with parameterLet U be a Hilbert spa
e and let b
 be a 
ompa
t set of R2 .Theorem 6 (
ontinuity of integrals with parameter) Let f be a fun
tionfrom U � b
 to R su
h that for all u 2 U the fun
tionbx 2 b
 7�! f (u; bx)is Lebesgue integrable.Let u be an element of U su
h that f (u; bx) 
onverges to f (u; bx) uniformlywith respe
t to bx, when u 
onverges to u.Then limu!u Zb
 f (u; bx) dbx = Zb
 f (u; bx) dbx:Theorem 7 (di�erentiability of integrals with parameter) Moreover, weassume that:a) for all u 2 U and for all bx 2 b
, the Fr�e
het derivative�f�u (u; bx) 2 U 0exists,b) the fun
tions bx 2 b
 7�! �f�u (u; bx) 2 Rare Lebesgue integrable for all  2 U ,
) �f�u (u; bx) 
onverges in U 0 to �f�u (u; bx) uniformly with respe
t to bx, when u
onverges to u.Then, the fun
tion F from U to R, de�ned byF (u) = Zb
 f (u; bx) dbx
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het di�erentiable in u andF 0 (u) = Zb
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