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Abstract. We prove that the domain obtained by small perturbation
of a Lipschtz domain is the union of a star-shaped domains with respect
to every point of balls, such that the radius of the balls is independent of
the perturbation. This result is useful in order to get uniform estimation
for a fluid-structure interaction problem.
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1 Introduction

In [4] and [5] the existence of a solution is studied for an elastic structure im-
mersed in an incompressible fluid.

Let D ⊂ R
2 be a bounded open domain. We denote by ΩS

0 the undeformed

structure domain and by u = (u1, u2) : Ω
S

0 → R
2 its displacement. A particle

of the structure with initial position at the point X will occupy the position

x = Φ (X) = X+ u (X) in the deformed domain Ω
S

u = Φ
(
Ω

S

0

)
. In [5], we have

assumed that ∂ΩS
u has the uniform cone property and the geometry of the cone

is independent of u. The fluid occupies the domain ΩF
u = D \ΩS

u , see Figure 1.

It is possible to construct an uniform extension operator E from {v ∈(
H1
(
ΩS

u

))2
; ∇ · v = 0 in ΩS

u } to
(
H1

0 (D)
)2

such that

∇ ·E(v) = 0, in D (1)

E(v) = v, in ΩS
u (2)

‖E(v)‖1,D ≤ K ‖v‖1,ΩS
u

(3)

where the constant K > 0 is independent of ΩS
u , but it depends on the geometry

of the cone.
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Fig. 1. Fluid and structure domains.

This construction is obtained by solving the Bogowskii problem in ΩF
u , see

for example [3], Lemma 3.1, page 121. There exists w ∈
(
H1

0

(
ΩF

u

))2
such that

∇ ·w = f , in ΩF
u (4)

w = 0, on ∂D (5)

w = 0, on ∂ΩS
u (6)

|w|1,ΩF
u
≤ K1 ‖f‖0,ΩF

u
(7)

where
∫
ΩF

u
f dx = 0. If ΩF

u is star-shaped with respect to any point of a ball of

radius Ru, we have the following estimation of K1 > 0:

K1 ≤ c0

(
diam(ΩF

u )

Ru

)2(
1 +

diam(ΩF
u )

Ru

)
(8)

where diam(ΩF
u ) is the diameter of ΩF

u . A similar result holds if the domain ΩF
u

is union of star-shaped domains with respect to any point of a ball, see Theorem
3.1, p. 129, [3]. We have diam(ΩF

u ) ≤ diam(D), for all u such that ΩF
u ⊂ D.

The aim of this paper is to prove that, under some geometrical assump-
tions,one can choose Ru = R = constant, for small u.

2 Small Perturbation of the Boundary of a Star-Shaped

Domain with Respect to any Point of a Ball

We denote by BR(x0) the open ball of radius R centered at x0, i.e. BR(x0) =
{x ∈ R

2; |x0 − x| < R}, where | · | is the euclidean norm. A domain Ω is star-
shaped with respect to every point of a ball BR(x0) such that BR(x0) ⊂ Ω, if
and only if, for every x ∈ BR(x0) and y ∈ Ω, the segment with ends x, y is
included in Ω. A characterization of such a domain is that every ray starting
from a point x ∈ BR(x0) intersects the boundary of the domain at only one
point.
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Fig. 2. A star-shaped domain with respect to every point of a ball.

Proposition 1. Let a, r > 0 be two constants such that

a ≥ 4r (9)

and ϕ ∈ W 1,∞(−r, r) be such that

∃η ∈ (0, r), sup
x∈(−r,r)

|ϕ(x)| ≤ η (10)

∃L > 0, sup
x∈(−r,r)

|ϕ′(x)| ≤ L. (11)

We define the domain, see Figure 2

Ωϕ =
{
(x1, x2) ∈ R

2; −r < x1 < r, −r < x2 < a+ ϕ(x1)
}
. (12)

Let R ∈ (0, r). If L < a−2r
2r , then the domain Ωϕ is star-shaped with respect to

every point of the ball BR(0).

Proof. Since R < r, then BR(0) ⊂ Ωϕ. Let x ∈ BR(0). We suppose that a ray
starting from this point cuts ∂Ωϕ in two points y and z and y ∈ (x, z), i.e. y is
on the segment with ends x and z.

Let us denote the top boundary of Ωϕ by

Γϕ =
{
(x1, a+ ϕ(x1)) ∈ R

2; −r < x1 < r
}
.

If y, z ∈ ∂Ωϕ \ Γϕ it follows that the ray cuts the boundary of the strip

C =
{
(x1, x2) ∈ R

2; −r < x1 < r, −r < x2

}
,



twice, which is not true because the C is a convex set and a convex set is star-
shaped with respect to every interior point.

If we have only y ∈ ∂Ωϕ \ Γϕ, then z belongs to the exterior of the strip C,
consequently z /∈ Γϕ.

So, we will study only two cases:
i) y, z ∈ Γϕ;
ii) y ∈ Γϕ and z ∈ ∂Ωϕ \ Γϕ.
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Fig. 3. Case i) at the left and case ii) at the right

Case i): y, z ∈ Γϕ.
Let ξ = (ξ1, ξ2) be the point in the plane, such that the line passing throw ξ

and x is parallel to the axis Ox1 and the line passing throw ξ and z is parallel
to the axis Ox2.

We denote by α the angle x̂zξ. Since x ∈ BR(0) using (10), we get |z− ξ| ≥
a− 2r and |x− ξ| ≤ 2r, then

tanα =
|x− ξ|
|z− ξ| ≤

2r

a− 2r
.

By assumption we have y, z ∈ Γϕ, then y = (y1, a+ ϕ(y1)) and

z = (z1, a+ ϕ(z1)) with −r < y1, z1 < r. We have also, tanα = |y1−z1|
|ϕ(y1)−ϕ(z1)| and

using (11) we get

tanα ≥ 1

L
.

This implies that
2r

a− 2r
≥ 1

L

which is in contradiction with the hypothesis L < a−2r
2r .



Case ii): y ∈ Γϕ and z ∈ ∂Ωϕ \ Γϕ.

As in the Case i), we construct ξ, we denote by α the angle x̂zξ and we get

tanα =
|x− ξ|
|z− ξ| ≤

2r

a− 2r
.

Since z cannot belong to the bottom boundary of C, we assume that z belongs
to the right boundary of C, so z = (r, z2). We denote by q the point at the right
top corner of Ωϕ, so q = (r, a + ϕ(r)). We have W 1,∞(−r, r) ⊂ C0([−r, r]) (see
[1], Theorem VIII.7, page 129), so ϕ(r) is well defined.

Let α′ be the angle ŷqξ. Then

tanα′ =
|y1 − r|

|ϕ(y1)− ϕ(r)| ≥
1

L
.

If z2 > a+ ϕ(r) it follows that z belongs to the exterior of Ωϕ not to ∂Ωϕ,
so z2 ≤ a+ ϕ(r). In this case α ≥ α′ and we get

1

L
= tanα′ < tanα ≤ 2r

a− 2r

which is in contradiction with the hypothesis L < a−2r
2r .

Proposition 2. Let ζ : [−r, r] → R be a Lipschitz function of constant L, i.e.

∀x, y ∈ [−r, r], |ζ(x) − ζ(y)| ≤ L|x− y|.

Denote by Γζ = {(x, ζ(x)) ∈ R
2, x ∈ [−r, r]}, the graph of ζ.

Let u = (u1, u2) : Γζ → R
2 be such that

∃η1 ∈
(
0,

r

2

)
, sup

x∈Γζ

|u(x)| ≤ η1 (13)

∃η2 ∈
(
0,

1√
1 + L2

)
, ∀x,y ∈ Γζ , |u(x) − u(y)| ≤ η2|x− y|. (14)

Then there exits a Lipschitz function ϕ :
(
− r

2 ,
r
2

)
→ R of constant less than

L+η2

√
1+L2

1−η2

√
1+L2

, such that its graph is included in (Id+ u) (Γζ). If ζ(0) = 0, then

∀z ∈
(
− r

2
,
r

2

)
, |ϕ(z)| ≤ r

(√
1 + L2 +

1

2

)
.

Proof. Let us introduce the function

φ : [−r, r] → R, φ(x) = x+ u1(x, ζ(x)).

We will prove that φ is strictly increasing, so it is injective. To simplify, we
assume that ζ and u are of class C1. We get

φ′(x) = 1 +
∂u1

∂x1
(x, ζ(x)) +

∂u1

∂x2
(x, ζ(x))ζ′(x).



Since ζ is Lipschitz function of constant L, |ζ′(x)| ≤ L. Similary, we have
|∇u(x)| ≤ η2. Using Cauchy-Schwarz we get

∣∣∣∣
∂u1

∂x1
(x, ζ(x)) +

∂u1

∂x2
(x, ζ(x))ζ′(x)

∣∣∣∣ ≤
√(

∂u1

∂x1

)2

+

(
∂u1

∂x2

)2√
1 + L2

≤ η2
√
1 + L2.

It follows that

φ′(x) ≥ 1− η2
√
1 + L2 > 0,

and then φ is strictly increasing, so φ is a bijection from [−r, r] to [φ(−r), φ(r)].
From (13), we obtain φ(−r) < − r

2 and φ(r) > r
2 .
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Fig. 4. The graphs of ζ and ϕ.

Let us introduce the function ϕ :
(
− r

2 ,
r
2

)
→ R,

ϕ(z) = ζ(x) + u2(x, ζ(x)),

where x = φ−1(z). The function is well defined because if z is in
(
− r

2 ,
r
2

)
, then

x = φ−1(z) is in (−r, r).

We will prove that ϕ is a Lipschitz function. Let z, w ∈
(
− r

2 ,
r
2

)
and x =

φ−1(z), y = φ−1(w).

|ϕ(z)− ϕ(w)| = |ζ(x) − ζ(y) + u2(x, ζ(x)) − u2(y, ζ(y))|
≤ |ζ(x) − ζ(y)|+ |u2(x, ζ(x)) − u2(y, ζ(y))|
≤ L|x− y|+ η2 |(x, ζ(x)) − (y, ζ(y))|
= L|x− y|+ η2

√
(x− y)2 + (ζ(x) − ζ(y))2

≤
(
L+ η2

√
1 + L2

)
|x− y|.



We have

|z − w| = |x− y + u1(x, ζ(x)) − u1(y, ζ(y))|
≥ |x− y| − |u1(x, ζ(x)) − u1(y, ζ(y))|
≥ |x− y| − η2 |(x, ζ(x)) − (y, ζ(y))|
≥ |x− y| − η2

√
(x− y)2 + (ζ(x) − ζ(y))2

≥
(
1− η2

√
1 + L2

)
|x− y|.

We deduce that for all z, w ∈
(
− r

2 ,
r
2

)

|ϕ(z)− ϕ(w)|
|z − w| ≤

(
L+ η2

√
1 + L2

)
(
1− η2

√
1 + L2

) .

Let (z, ϕ(z)) be a point on the graph of ϕ, where z ∈
(
− r

2 ,
r
2

)
. Then there

exits x = φ−1(z) ∈ (−r, r). From the definition of φ and ϕ, we have

(z, ϕ(z)) = (x+ u1(x, ζ(x)), ζ(x) + u2(x, ζ(x)))

= (x, ζ(x)) + (u1(x, ζ(x)), u2(x, ζ(x)))

= (Id+ u) (x, ζ(x))

which proves that the graph of ϕ is included in (Id+ u) (Γζ). Also

|ϕ(z)| ≤ |(z, ϕ(z))|
= |(x+ u1(x, ζ(x)), ζ(x) + u2(x, ζ(x)))|
≤ |(x, ζ(x))|+ |(u1(x, ζ(x)), u2(x, ζ(x)))|
≤
√
x2 + (ζ(x))2 + η1 ≤

√
r2 + (ζ(x))2 +

r

2

If ζ(0) = 0, since ζ is a Lipschitz function of constant L, we have

|ζ(x)| = |ζ(x) − ζ(0)| ≤ L|x− 0| < Lr.

Then |ϕ(z)| ≤ r
(√

1 + L2 + 1
2

)
.

3 Uniform Estimation of the Radius of the Ball for Small

Perturbation of Lipschitz Domain

Definition 1 (see [2]). Let r, a, L be three positive numbers and Ω an open
bounded set of R

2. We say that the boundary ∂Ω is uniform Lipschitz if, for
every x0 ∈ ∂Ω, there exits a Cartezian coordinates system {x1, x2} of origin x0

and a Lipschitz function ζ : (−r, r) → (−a, a) of constant L, such that ζ(0) = 0,

∂Ω ∩ P (x0) = {(x1, ζ(x1)), x1 ∈ (−r, r)},
Ω ∩ P (x0) = {(x1, x2), x1 ∈ (−r, r), ζ(x1) < x2 < a},

where P (x0) = (−r, r) × (−a, a).



We will use the same notation as in the first section. We will prove a result
similar to the Lemma 3.2, p. 40, from [3], but the radius of the balls is the same
for all admissible displacements.

Theorem 1. Let ∂ΩS
0 be an uniform Lipschitz boundary of parameters r, a, L.

We set R ∈
(
0, r

2

)
. There exists two constants η1 ∈

(
0, r

2

)
, η2 ∈

(
0, 1√

1+L2

)
and

two natural numbers m,n ∈ N
∗, such that for all u : ∂ΩS

0 → R
2, such that

sup
x∈∂ΩS

0

|u(x)| ≤ η1 (15)

∀x,y ∈ ∂ΩS
0 , |u(x) − u(y)| ≤ η2|x− y| (16)

we have the decomposition

ΩF
u =

(
m⋃

i=1

Ωi

)⋃



m+n⋃

j=m+1

Bη1
(xj)




where Ωi = ΩF
u ∩ Q(xi) for 1 ≤ i ≤ m are star-shaped domains with respect to

every point of a ball Bi of radius R, Bi ⊂ Ωi, Q(xi) are rectangles of center
xi ∈ ∂ΩS

0 congruent to
(
− r

2 ,
r
2

)
× (−a, a) and Bη1

(xj) for m + 1 ≤ j ≤ m+ n

are balls of center xj ∈ ΩF
u and radius η1, Bη1

(xj) ⊂ ΩF
u .

Proof. Let us remark that if ΩS
0 is Lipschitz of parameters r, a, L, then it is

also for the parameters r′, a, L, for r′ < r. Consequently, we can choose r small
enough such that 2L+

√
1 + L2 + 5

2 < a
r
.

Let P (x) be the rectangle of center x ∈ ∂ΩS
0 given by the Definition 1. We

denote by Q(x) the rectangle
(
− r

2 ,
r
2

)
×(−a, a) using the same local coordinates.

We have ∂ΩS
0 ⊂ ∪

x∈∂ΩS
0

Q(x) and since ∂ΩS
0 is compact, then there exitsm ∈ N

∗

and xi ∈ ∂ΩS
0 , 1 ≤ i ≤ m, such that

∂ΩS
0 ⊂

m⋃

i=1

Q(xi).

We will use the notation

Oη = {x ∈ R
2; d(x, ∂ΩS

0 ) ≤ η},
ΩF

0,η = {x ∈ ΩF
0 ; d(x, ∂ΩS

0 ) > η}

where d(x, A) = infy∈A |x − y| is the distance function. There exists η0 > 0,
such that

Oη0
⊂

m⋃

i=1

Q(xi). (17)

Set η1 = min(η0

2 ,
r
2 ).



Let u : ∂ΩS
0 → R

2 be such that (15) holds. Then (Id+u)(∂ΩS
0 ) ⊂ Oη1

⊂ Oη0
,

for all admissible u and it follows that

ΩF
u ⊂ Oη0

∪ΩF
0,η0

. (18)

Since ΩF
0,η0

is bounded, then there exists n ∈ N
∗ and xj ∈ ΩF

0,η0
for m+1 ≤ j ≤

m+ n, such that

ΩF
0,η0

⊂
m+n⋃

j=m+1

Bη1
(xj). (19)

But η1 ≤ η0

2 , so Bη1
(xj) ⊂ ΩF

u . From (17), (18), (19), we get

ΩF
u =

(
m⋃

i=1

(
ΩF

u ∩Q(xi)
)
)⋃




m+n⋃

j=m+1

Bη1
(xj)


 .

x2
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Fig. 5. The rectangle
(

−
r
2
, r
2

)

× (−a, a) is of center xi ∈ ∂ΩS
0 , the ball of radius η1 is

of center xj ∈ ΩF
0,η0

.

Using the Proposition 2, (Id + u)(∂ΩS
0 ) ∩ Q(xi) is the graph of a Lipschitz

function ϕ :
(
− r

2 ,
r
2

)
→ (−a, a) of constant

L′ =
L+ η2

√
1 + L2

1 − η2
√
1 + L2

and |ϕ| ≤ r
(√

1 + L2 + 1
2

)
. If η2 ∈ [0, 1

2
√
1+L2

), then L′ ∈ [L, 2L+ 1).



We have 2L + 1 <
a−r(

√
1+L2+ 3

2
)

r
by the choice of r at the begining of the

proof. Using a similar argument as in the Proposition 1, we get that Ωi =
ΩF

u ∩ Q(xi) is a star-shaped domain with respect to every point of the ball of
radius R and center (0,−a+ r

2 ).

Corollary 1. Using the Theorem 3.1, p. 129, from [3], we get that the con-
stant K1 from the inequality (7) depends on min(η1, R) and diam(D), but it is
independent on the displacement u.
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