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POLENI CURVES ON SURFACES OF CONSTANT

CURVATURE

Abstract. In the euclidean plane, a regular curve can be defined
through its intrinsic equation which relates its curvature k to the
arc length s. Elastic plane curves were determined this way. If
k(s) = 2α

cosh(αs) , the curve is known under the name “la courbe des

forçats”, introduced in 1729 by Giovanni Poleni in relation with the
tractrix [9]. The above equation is yet meaningful on a surface if one
interprets k as the geodesic curvature of the curve. In this paper we
solve the above equation on a surface of constant curvature.

1. Elastic Poleni curves

In [7] the authors show that on surfaces of Gaussian curvature G, elastic curves
γ are solutions of the intrinsic equation

k′′

g +
1

2
k3

g + kg (G − λ) = 0,

where kg denotes the geodesic curvature of γ, λ is a constant and the primes
indicate derivation with respect to the arc-length parameter s on γ. As the
function f(s) = 2

cosh(s) satisfies the equation

f ′′ +
1

2
f3 − f = 0,

there exist on a surface S of constant curvature elastic curves with intrinsic
equation

(1) kg(s) =
2

cosh (s)
.

If S is the euclidean plane, the solution of (1) is Giovanni Poleni’s curve
introduced in 1729 in relation with the tractrix [9]. Its parametric equations are

(2) x (s) = s − 2 tanh (s) , y (s) =
2

cosh (s)
.

It is plotted in Figure 1.1. Actually, for every α ∈ R, the function f(s) = 2α
cosh(αs)
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Figure 1.1: Poleni’s curve

satisfies the differential equation

f ′′ +
1

2
f3 − α2f = 0.

Therefore there exist on surface S elastic curves with intrinsic equation

(3) kg(s) =
2α

cosh(αs)
.

If S is the euclidean plane, equation (3) writes

x′′ =
−2αy′

cosh(αs)
, y′′ =

2αx′

cosh(αs)
.

Integrating these equations, with initial condition

x(0) = 0, x′(0) = 1, y(0) =
2

α
, y′(0) = 0,

one finds

x(s) = s − 2

α
tanh(αs), y(s) =

2

α cosh(αs)
.

Notice that the curve (αx (s/α) , αy (s/α)) is simply the Poleni curve (2), so
that the study of equation (3) in the euclidean plane reduces to the study of
equation (1). For the sphere and the hyperbolic space, there are no dilatations
and equation (3) deserves a special study. In the following, we call “Poleni
curves” the solutions of the intrinsic equation (3).

Geodesics on cylinders having as directrix the curve (2) are extremals of
Sadowsky’s functional

S =

∫

γ

κ2

(

1 +
τ2

κ2

)2

ds

where κ, τ represent the curvature and the torsion of the curve γ, in the three-
dimensional euclidean space E3, see [5]. An analogous result is valid for geodesics
on conuses having as directrix elastic Poleni curves on the sphere S2, see [4].
This example motivates our research.
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Notice that the Poleni curve (2) in the euclidean plane has an axe of
symmetry and it has an asymptote as s → ±∞. In fact, on any surface, a
solution of equation (3) is asymptotically geodesic and has an axis of symmetry.
If S is the sphere, the Poleni curve corresponding to α = 1, is (see Proposition
1):

x = 2 cos(s) tanh(s/2), y = 2 sin(s) tanh(s/2),

where (x, y) are the stereographical coordinates. It is a symmetric double spiral
which tends to the circle of radius 2 centered at the origin. Hence (Theorem
1), on the sphere, the situation is similar to the euclidean case: there exist two
geodesics (here circles) which are characterized by the fact that the first one is
an axis of symmetry of the curve and the second one is asymptotic to the curve.

If S is the hyperbolic half plane, the Poleni curve corresponding to α = 1
is (see Proposition 2):

x = s, y = cosh(s).

Notice that this is the catenary (or chainette) curve of the euclidean space.
Hence (Theorem 2), on the hyperbolic space, the Poleni curve is asymptotic to
all geodesics that intersect it transversally at a unique point and among these
geodesics there is one which is an axis of symmetry of the curve.

The study of elastic curves goes back to Euler in 1744 [3]. His classifica-
tion of plane elastic curves can be found in Love’s book (see [8], Section 263) or
in the historical survey by Truesdell [10]. This study was the birth of the Euler
Lagrange calculus of variation. In Euler’s classification of plane elastic curves,
Poleni’s curve, called also “la courbe des forçats”, occupies a special place: dis-
carding the circle and the straight line, it is the only elastic plane curve that
does not need elliptic functions for its parametrization.

The study of euclidean elastic curves (together with the extension to
the non-euclidean case) was revisited by Langer and Singer [7] and also by
Bryant and Griffiths [1], using Griffiths’s formalism based on the theory of
exterior differential systems, and by Jurdjevic [6], using Pontryagin’s Maximum
Principle of optimal control theory. The papers [1, 6, 7] contain important
results on the classification of elastic curves in the non euclidean case. Even
though they mentioned the special case of asymptotically geodesic elastic curves
(see especially Figure 8 of [1] and Figure 2.c of [7]), they all don’t give explicit
formula for the Poleni curve. On the sphere S2, the Poleni curve is explicitly
mentioned by Brunnett and Crouch, see Figure 7 in [2], but its double spiral
behavior is not apparent in their figure.

This paper is organized as follows. In Section 2 we recall some facts on
the riemannian geometry of surfaces. In Section 3, equation (3) of Poleni curves
is expressed in the geographical coordinates of the sphere S2 and numerical solu-
tions of the obtained equation are given. In Section 4, equation (3) is expressed
in the stereographical projection of the sphere and the obtained equation is
explicitly solved in the case α = 1. In Section 5, equation (3) is expressed in
the hyperbolic half plane and the obtained equation is explicitly solved in the
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case α = 1. In Section 6 we compare our results with the parameterizations
given by Jurdjevic in [6]. In Section 7, the Poleni curves of geodesic curva-
ture f(s) = 2α

cosh(αs) are considered. Discarding the constant curvature curves,

these curves are the only elastic curves that can be parametrized by elementary
functions.

2. Geodesic curvatures and intrinsic equations

On the surface S, the geodesic curvature kg of the curve γ represents the mod-
ulus of the normal component of the acceleration vector A := ∇γ′γ′. Clearly, s
being an arc-length parameters on γ, let γ ′ = dγ/ds be the unit tangent vector
field along γ. Denoting by g (·, ·) the scalar product on the tangent bundle of
the surface S, it follows that

‖γ′‖2
:= g (γ′, γ′) = 1.

Let ∇ denotes the operator of covariant (absolute) differentiation on the surface.
Then

g (∇γ′γ′, γ′) =
1

2
∇γ′g (γ′, γ′) = 0,

so the acceleration vector A = ∇γ′γ′ is orthogonal to γ ′ along the curve. Equa-
tion (3) of Poleni curves becomes therefore

(4) ‖∇γ′γ′‖ =
2α

cosh (αs)
.

If along γ, an orthonormal frame field {T = γ ′, N} is chosen, in order to solve
(4) one has to integrate the system

(5) ∇γ′γ′ =
2α

cosh (αs)
N.

Following [11], we recall some general formulas from the theory of surfaces
when the local coordinates x1, x2 are used. Let

(6) ds2 =

2
∑

i,j=1

gijdxidxj = g11dx2
1 + 2g12dx1dx2 + g22dx2

2

be the riemannian metric on the surface S and let

(7) L =
1

2

2
∑

i,j=1

gijdxidxj

be the Lagrange function associated to (6). The Euler-Lagrange system corre-
sponding to L is

(8)
d

ds

∂L

∂x′

i

− ∂L

∂xi
= 0, i = 1, 2
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and we use it to deduce the components of the acceleration vector A = ∇γ′γ′.
This is done by isolating second order derivatives of the coordinates xi in (8)
i.e. transforming it in

(9) x′′

i +
2

∑

j,k=1

Γi
jkx′

jx
′

k = 0, i = 1, 2.

Now the left side part of (9) represents the component Ai of the acceleration
vector A with respect to xi, for i = 1, 2. In the sequel, we apply this procedure
for several curvilinear systems of coordinates on surfaces of constant curvature.

3. Geographical coordinates on the sphere S2

Denote φ and θ the longitude and the colatitude of a point on the unit sphere
S2. The cartesian coordinates of the point are

x = sin θ cosφ, y = sin θ sin φ, z = cos θ, 0 < θ < π

and the riemannian metric of S2 becomes

(10) ds2 = dθ2 + sin2 θdφ2.

The Lagrange function (7) associated to ds2 is

(11) L =
1

2

(

(θ′)
2
+ sin2 θ (φ′)

2
)

and the Euler-Lagrange equations write

d

ds
θ′ − sin θ cos θ (φ′)

2
= 0,

d

ds

(

sin2 θφ′
)

= 0

so that, transforming in the form (9) gives

θ′′ − sin θ cos θ (φ′)
2

= 0, φ′′ + 2
cos θ

sin θ
θ′φ′ = 0.

The left side parts of these equations represent the components Aθ, Aφ of the
acceleration vector A of a curve γ along which θ and φ are functions of arc-length
parameter s. The vector fields along the curve, T (θ′, φ′), N (−φ′ sin θ, θ′/ sin θ)
are unitary and orthonormal as

(12) g (T, T ) = ‖γ′‖2
= (θ′)

2
+ sin2 θ (φ′)

2
= 1

and

g (N, N) = (−φ′ sin θ)
2

+ sin2 θ (θ′/ sin θ)
2

= sin2 θ (φ′)
2
+ (θ′)

2
= 1

g (T, N) = θ′ (−φ′ sin θ) + sin2 θφ′ (θ′/ sin θ) = 0.
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It follows that the system of differential equations

θ′′ − sin (θ) cos (θ) (φ′)
2

= − 2α

cosh (αs)
φ′ sin (θ)(13)

φ′′ + 2
cos (θ)

sin (θ)
θ′φ′ =

2α

cosh(αs)

θ′

sin (θ)
(14)

translates the vector equation (5).

V

V

O

Figure 1.2: The curve of geographic coordinates (φi, θi) (left) and its projection
on the symmetry plane (right). The asymptotic plane is orthogonal to OV

We have solved numerically (13)–(14), in the case α = 1, together with
the conditions θ (0) = π/4, θ′ (0) = 0, φ (0) = π/4 and φ′ (0) = −

√
2 by a

Runge-Kutta algorithm of fourth order using the symbolic computing system
MAPLE. We have obtained θi, θ′i, φi, φ′

i approximation of θ(i∆s), θ′(i∆s),
φ(i∆s), φ′(i∆s) respectively.

Let V be the peak of the curve i.e. the point with maximal curvature 2
(for s = 0) and denote by tV the tangent at the solution curve in V . We observe
on Figure 1.2 that the plane orthogonal to tV in V is a plane of symmetry for
the curve. It contains a first self-intersecting point. Despite the curve seems to
be closed, in fact it is composed by two symmetrical spirals which wind around
a diameter of S2 and these spirals tend asymptotically to the equatorial circle
corresponding to V , see Theorem 1.

At this stage, the computed φi, θi, φ′

i and θ′i verify the equations (13)
and (14). The equation (12) has not been used yet. The computed quantities
satisfy

−2 · 10−6 ≤ (θ′i)
2
+ sin2 θi (φ′

i)
2 − 1 ≤ 6 · 10−6,

in other words, the computed φi, θi, φ′

i and θ′i verify the three equations (12),
(13) and (14).
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4. Stereographical projection

If one projects the unit sphere S2 from its north pole on the plane tangent to
S2 at its south pole and one transports its metric on that plane, one gets on the
plane the Riemann metric

ds2 =
dx2 + dy2

[

1 + 1
4 (x2 + y2)

]2 .

The geodesics of this metric are the images of the great circles of S2, these are
the circles or straight lines of the plane which contain two diametrically opposed
points of the circle of radius 2 centered on the origin. Starting as before with
the Lagrange function

L =
1

2

x′2 + y′2

[

1 + 1
4 (x2 + y2)

]2 ,

the Euler-Lagrange equations are

d

ds

x′

[

1 + 1
4 (x2 + y2)

]2 +
1

2

x
(

x′2 + y′2
)

[

1 + 1
4 (x2 + y2)

]3 = 0,

d

ds

y′

[

1 + 1
4 (x2 + y2)

]2 +
1

2

y
(

x′2 + y′2
)

[

1 + 1
4 (x2 + y2)

]3 = 0.

Isolating the second order derivatives x′′, y′′ one gets the components of the
acceleration

Ax = x′′ − x
(

x′2 − y′2
)

+ 2yx′y′

2 + 1
2 (x2 + y2)

, Ay = y′′ − y
(

y′2 − x′2
)

+ 2xx′y′

2 + 1
2 (x2 + y2)

.

The vector fields T (x′, y′), N(−y′, x′) along the curve γ are unitary and orthog-
onal as

(15) ‖γ′(s)‖2 =
(x′(s))

2
+ (y′(s))

2

[

1 + 1
4

(

(x(s))
2

+ (y(s))
2
)]2 = 1

and equation (5) is expressed by the system

(16) x′′ − x
(

x′2 − y′2
)

+ 2yx′y′

2 + 1
2 (x2 + y2)

=
−2αy′

cosh(αs)
,

(17) y′′ − y
(

y′2 − x′2
)

+ 2xx′y′

2 + 1
2 (x2 + y2)

=
2αx′

cosh(αs)
.
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Proposition 1. Up to isometry, the parametric equations of the Poleni

curve with α = 1 on the sphere are

(18) x(s) = 2 cos(s) tanh(s/2), y(s) = 2 sin(s) tanh(s/2).

Proof. Up to isometry, one can restrict to the initial condition

x (0) = 0, x′ (0) = 1, y (0) = 0, y′ (0) = 0.

We use the symbolic computing system MAPLE to write Taylor series of the
solution of (16,17), with α = 1, satisfying the previous initial conditions. At
order 7 one obtains

x(s) = s − 7

12
s3 +

11

120
s5 + 0(s7), y(s) = −s2 +

1

4
s4 − 11

360
s6 + 0(s7).

Then we compute

x(s)
√

x2(s) + y2(s)
= 1− s2

2
+

s4

24
+ 0(s6) = cos(s),

y(s)
√

x2(s) + y2(s)
= s − s3

6
+

s5

120
+ 0(s6) = sin(s),

√

x2(s) + y2(s)

2
=

s

2
− s3

24
+

s5

240
+ 0(s6) = tanh(s/2).

Hence formulas (18) are conjectured. By straightforward calculations we verify
that (18) is actually the solution of (16,17), with α = 1, satisfying the specified
initial conditions.

Theorem 1. Let V be the peak of the Poleni curve, with α = 1, on the

sphere. Then the plane orthogonal to the Poleni curve at V is a symmetry plane

for the curve. The curve has an infinite number of self-intersecting points of

arc-length ±sn given by

sn =
π

2
+ nπ, n ∈ N

contained in the symmetry plane. The Poleni curve is composed of two sym-

metrical spirals which wind around the diameter determined by V and tend

asymptotically to a circle of radius 1.

Proof. Let us project the unit sphere S2 from point −V on the plane tangent
to S2 at V . We chose cartesian coordinates x and y on this plane such that tV

projects on the vector (1, 0). Then the Poleni curve is given by equations (18).
Thus x2(s) + y2(s) tends to 4. The circle of radius 2 correspond to the circle
of radius 1 on the sphere, orthogonal to V . The arc-lengths ±sn of the self-
intersecting points are given by equation cos(sn) = 0. Thus sn = π

2 + nπ.
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Figure 1.3: The Poleni curve (18) and its image via the transformation (19),
showing the self-intersection points on the y axis.

Figure 1.3 shows the Poleni curve (18) and its image via the transforma-
tion

(19) (x, y) 7→
(

xf
(

√

x2 + y2
)

, yf
(

√

x2 + y2
))

,

where f(r) = − ln(1−r/2)
r = 1

2 + O(r). This transformation is a magnifying glass
of the neighborhood of the circle of radius 2. It shows many self-intersection
points of the Poleni curve. In the geographic coordinates (φ, θ) the curve (18)
is given by

φ(s) = s, θ(s) = arccos

(

1

cosh(s)

)

.

In the cartesian coordinates (x, y, z) such that x2 +y2 +z2 = 1, the Poleni curve
has the following parametric equations

(20) x(s) = cos(s) tanh(s), y(s) = sin(s) tanh(s), z(s) =
1

cosh(s)
.

5. The Poincaré model of hyperbolic geometry

In the half-plane P = {(x, y) ∈ R
2 : y > 0} the riemannian metric and the

Lagrange function are

ds2 =
dx2 + dy2

y2
, L =

1

2

x′2 + y′2

y2
.

The Euler-Lagrange equations are

d

ds

x′

y2
= 0,

d

ds

y′

y2
+

x′2 + y′2

y3
= 0.
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The x, y components of the acceleration are

Ax = x′′ − 2
x′y′

y
, Ay = y′′ +

x′2 − y′2

y

and equation (5) is expressed by the system

(21) x′′ − 2
x′y′

y
=

−2αy′

cosh(αs)
, y′′ +

x′2 − y′2

y
=

2αx′

cosh(αs)
.

The Poleni curves (x(s), y(s)) are the solutions of (21) satisfying

(22)
(x′(s))

2
+ (y′(s))

2

(y(s))
2 = 1.

Proposition 2. Up to isometry, the parametric equations of the Poleni

curve, with α = 1, on the hyperbolic half-plane are

(23) x(s) = s, y(s) = cosh(s).

Proof. Up to isometry, one can restrict to the initial condition

x (0) = 0, x′ (0) = 1, y (0) = 1, y′ (0) = 0.

As in the proof of Proposition 1, we use the symbolic computing system MAPLE
to write Taylor series of the solution and we conjecture formulas (23). By
straightforward calculations we verify that (23) is actually the solution of (21),
with α = 1, satisfying the previous initial conditions.

x

y

V

a

P

Q

y=cosh(x)

(x−a)2+y2 =R2

Figure 1.4: Vertical lines are asymptotic to the Poleni curve y = cosh(x) in P.

Theorem 2. Let V be the peak of the Poleni curve. The geodesic which is

orthogonal to the Poleni curve at point V is an axis of geodesical symmetry of the

curve and it is asymptotic to the curve as s → ±∞. A geodesic is asymptotic to

the Poleni curve as s → +∞ or s → −∞ if and only if it intersects transversally

the Poleni curve at an unique point.
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Proof. Up to isometry, the Poleni curve P is the graph y = cosh(x), with
V = (0, 1). The geodesic which is orthogonal to P at V is the y axis. It is
an axis of symmetry of P . A vertical line is the only geodesic that can be
asymptotic to P . Let us prove that any vertical line x = a is asymptotic to P .
Let P = (s, cosh(s)) be a point of P . The geodesic passing by P and orthogonal
to the vertical line x = a intersects this line at point Q (see Figure 1.4). Its
equation is

(x − a)2 + y2 = R2, where R2 = (s − a)2 + cosh2(s).

Hence the distance from point P to the geodesic x = a is

dP(P, Q) =

∣

∣

∣

∣

∣

∣

∫ a

s

√

1 + (f ′(x))
2

f(x)
dx

∣

∣

∣

∣

∣

∣

, f(x) =
√

R2 − (x − a)2.

Thus

dP(P, Q) = argtanh
|s − a|

√

(s − a)2 + cosh2(s)

tends to 0 as s → ±∞.

Figure 1.5: Isometric Poleni curves in P and D.

Figure 1.5 shows various images of the Poleni curve (23) under the hy-
perbolic rotations

z = x + iy 7→ az + b

−bz + a
, a2 + b2 = 1,

together with their corresponding curves in the unit disk D = {(x, y) ∈ R2 :
x2 + y2 < 1} via the transformation

z = x + iy ∈ P 7→ z − i

z + i
=

x2 + y2 − 1 − 2ix

x2 + (y + 1)2
∈ D.
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In particular, the isometric image of (23) under the isometry z 7→ − 1
z of P is

the curve.

x(s) =
−s

s2 + cosh2(s)
, y(s) =

cosh(s)

s2 + cosh2(s)
.

The geodesics which are asymptotic to this curve are the y axis and all the
circles with center on the x axis and tangent to the y-axis. All these geodesics
intersect the Poleni curve transversally at a unique point.

6. Jurdjevic’s parametrization of non euclidean elastic curves

Jurdjevic gave the following parametrization (see [6], Formula (10) page 117) of
an elastic curve on the sphere of geodesical curvature k(s) :

(24) x = ± cos(φ)

√

1 − k2

M
, y = sin(φ)

√

1 − k2

M
, z =

k√
M

,

where φ(s) is defined by

φ′ =

√
MH1

M − k2
, H1(s) = H − 1

2
k2(s).

The constants H and M in these formulas are given by (see [6], Proposition 4)

(u′)
2

+ u3 − 4u2(H − 1) + 4u(H2 − M) = 0, u(s) = k2(s).

In the case k(s) = 2
cosh(s) , the function u(s) = k2(s) is a solution of

(25) (u′)2 + u3 − 4u2 = 0.

Hence H = 2, M = H2 = 4 and

φ′(s) = 2
2− 2

cosh2(s)

4 − 4
cosh2(s)

= 1.

Thus φ(s) = s. On the other hand

√

1 − k2

M
=

√

1 − 1

cosh2(s)
= | tanh(s)|.

Consequently formula (24) writes :

(26) x(s) = ± cos(s)| tanh(s)|, y(s) = sin(s)| tanh(s)|, z(s) =
1

cosh(s)
.

Actually, these formulas define two symmetrical Poleni curves on the sphere,
compare with (20). Notice that there is no choice of the signe ± in (26) which
gives a complete Poleni curve, see Figure 1.6.
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Figure 1.6: The curve (26) with sign − (left) and sign + (right), seen from the
north pole.

Jurdjevic gave also the parametrization of elastic curve on the hyperbolic
space

H = {(x, y, z) ∈ R
3 : x2 + y2 − z2 = −1, z > 0}.

He distinguishes three cases. The first case corresponds to M < 0, see [6],
Formula (10), page 117. Notice that this formula contains a misprint : M
should be replaced by |M |. The parametrization of the elastic curve is

(27) x = ± cos(φ)

√

k2

−M
− 1, y = sin(φ)

√

k2

−M
− 1, z =

k√
−M

,

where φ(s) is defined by

φ′ =

√
−MH1

M − k2
.

The second case corresponds to M > 0, see [6], Formula (12) page 120. The
elastic curve is parametrized by

(28) x = − k√
M

, y = cosh(φ)

√

1 +
k2

M
, y = sinh(φ)

√

1 +
k2

M
,

where φ(s) is defined by

φ′ = −
√

MH1

M + k2
.

In the third case, corresponding to M = 0, the parametrization (which appears
without number in page 122 of [6]) is

(29) x =
k2φ − k2 + 1

2k
, y = kφ, z =

k2φ + k2 + 1

2k
,
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where φ(s) is defined by

φ′ =
H1

k2
.

In the hyperbolic case H1(s) = H − k2(s)/2, as in the spherical case, but
constants H and M are given now by (see [6], Proposition 4)

(u′)
2
+ u3 − 4u2(H + 1) + 4u(H2 − M) = 0,

The Poleni curve satisfies (25). Thus, it corresponds to H = 0, M = H2 = 0.
In this case φ′ = −1/2. Thus φ(s) = −s/2. Consequently formula (29) writes :

(30) x(s) =
s2 + cosh2(s) − 4

4 cosh(s)
, y(s) =

−s

cosh(s)
, z(s) =

s2 + cosh2(s) + 4

4 cosh(s)

The coordinates (x1, y1) in the Poincaré hyperbolic half space P are linked to
the coordinates (x, y, z) by the relations

x1 =
y

x − z
, y1 =

1

z − x
.

Thus, the curve in P corresponding to the curve (30) is

x1 =
s

2
, y1(s) =

cosh(s)

2
.

This curve is isometric to the Poleni curve (23) since the transformation x1 =
x/2, y1 = y/2 is an isometry of P.

7. Poleni curves of geodesic curvature f(s) = 2α
cosh(αs)

We analyze the spherical case first. We use cartesian coordinates. Here we have

H = 1 + α2, M = H2 = (1 + α2)2.

Using Jurdjevic’s parametrization (24), we obtain, after some lengthy compu-
tations and simplifications, the following formulas (the details will appear in a
forthcoming paper)

Proposition 3. Up to isometry, the parametric equations of the Poleni

curve on the sphere S2 are

x(s) =
(1 − α2) sin(s) + 2α cos(s) tanh(αs)

1 + α2
,

y(s) =
(α2 − 1) cos(s) + 2α sin(s) tanh(αs)

1 + α2
, z(s) =

2α

(1 + α2) cosh(αs)
.
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V V

Figure 1.7: Poleni curves in the sphere with α = 2 (left) and α = 0.5 (right).

V

O

β

V

O

β

Figure 1.8: Orthogonal projection on the symmetry plane of the Poleni curve in
the sphere with α = 2 (left) and α = 0.5 (right), showing the angle β = β(α).

Figures 1.7 and 1.8 show the curves corresponding to α = 2 and α = 1/2.
From this parametrization we deduce the following result

Theorem 3. The plane which is orthogonal to the Poleni curve at its

peak V is a plane of symmetry for the curve. The diameter contained in the

plane which is orthogonal to the symmetry plane and makes the angle

β(α) = 2 arctan(α)

with the vector OV , is asymptotic to the curve. The Poleni curve has an infinite

number of self-intersection points of arc-lengths ±sn which are given by the

solutions of equation

sn + arctan
2α tanh(αsn)

1 − α2
= nπ, n ∈ N.
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We analyze now the hyperbolic case. We use cartesian coordinates on
H2. Here we have

H = α2 − 1, M = H2 = (α2 − 1)2.

Using Jurdjevic’s parametrization (28) in the case α2 6= 1, we obtain the follow-
ing formulas (the details will appear in a forthcoming paper)

Proposition 4. Up to isometry, the parametric equations of the Poleni

curve, with α2 6= 1, on the hyperbolic space are

x(s) =
2α

|α2 − 1| cosh(αs)
, y(s) =

(1 + α2) sinh(s) − 2α cosh(s) tanh(αs)

|α2 − 1| ,

z(s) =
(1 + α2) cosh(s) − 2α sinh(s) tanh(αs)

|α2 − 1| .

0

21/2

-5

-1/5

2

1/2

-5

-1/5

Figure 1.9: Poleni curves in P and D, corresponding to the curve given by the
parametrization of Proposition 4, with α = 2, α = 1/2, α = −5 and α = −1/5.

Notice that this family of elastic curves does not contain the Poleni curve
(23) which corresponds to α = 1. From the parametrization we deduce the
following result.

Theorem 4. For all α 6= ±1, the geodesic which is orthogonal to the

Poleni curve at its peak, is an axis of symmetry of the curve and there exist a

unique geodesic, which is asymptotic to the curve as s → ±∞. When |α| < 1
the Poleni curve has no self-intersection. When |α| > 1 the Poleni curve has a

unique self-intersection point. The arc-lengths ±s0 of the self-intersecting point

are given by the solution of equation

tanh(s0) =
2α

1 + α2
tanh(αs0).
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The Poleni curves corresponding to α and −α respectively, are isometric.
Recall that in Theorem 2 we proved that in the case α = 1, all the geodesics
which intersect the Poleni curve transversally at a unique point are asymptotic
to the curve as s → ±∞. Figure 1.9 shows the curves in P and D corresponding
to the Poleni curve of H2 defined by the parametrization given in Proposition
4, with various values of α. In P, the peak V of the curve and its tangent vector
tV are

V =

(

0,

∣

∣

∣

∣

α − 1

α + 1

∣

∣

∣

∣

)

, tV =

(

α − 1

α + 1
, 0

)

,

thus V tends to the “boundary” as α → ±1. In P the asymptotic geodesic is
the circle of radius 1 centered at the origin. In D the asymptotic geodesic is the
vertical axis.

Figure 1.10 shows various Poleni curves in the hyperbolic half-space P,
and the corresponding curves in the disk D, where the initial condition is fixed
at

x1(0) = 0, x′

1(0) = 1, y1(0) = 0, y′

1(0) = 0,

where (x1, y1) are the coordinates in P. The parametrization of these curves is

x1(s) =
(α + 1)(α2 + 1) sinh[(α−1)s]

α−1 − (α2 − 1) cosh(s) sinh(αs)

2α (cosh[(α − 1)s] + 1) + (α − 1)2 cosh(s) cosh(αs)
,

y1(s) =
(α + 1)2 cosh(αs)

2α (cosh[(α − 1)s] + 1) + (α − 1)2 cosh(s) cosh(αs)
,

This parametrization reduces to the Poleni curve (23) when α = 1. It shows
how the Poleni curve (23) is the limiting case between Poleni curves with self-
intersection and those without self-intersection.

1

0

0.65

1.35

2
1

0

0.65

2

1.35

Figure 1.10: Poleni curves in P and D, corresponding to α = 0 (a geodesic),
α = 0.65, α = 1 (the Poleni curve), α = 1.35 and α = 2.
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