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There are two variational problems for space curves inspired by the mechanics
of elastic rods: the first one was formulated by Daniel Bernoulli (1740) for rods
with circular cross-section and the second one was formulated by M. Sadowsky
(1930) for rectangular narrow thin plates. The helical solutions of the first problem
are always circular. Sadowsky’s problem admits all the circular helices as solutions
and in addition also non circular helices.

These last are geodesics on cylinders having as orthogonal cross section Poleni’s
curve (1729) called also “la courbe des forçats”.
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1. INTRODUCTION

There are two variational problems for space curves inspired by the mechanics of
elastic rods. The equilibrium of rods with circular cross section leads to the study of
the functional

B(s) =
∫

c
κ2ds

considered firstly by Daniel Bernoulli (1740) and then by Euler (1743). The equilibrium
of narrow thin plates leads to the functional

S(c) =
∫

c
κ2

(

1 +
τ 2

κ2

)2

ds

introduced by Sadowsky in 1930. Here c is a space curve, κ and τ are respectively its
curvature and torsion and s denotes an arc-length parameter. Extremals of B(c), when
helices, are circular i.e. they have constant κ and τ. All circular helices are extremals
for S(c) but there are also non-circular helices, i.e. curves c along which only the ratio
ω = κ−1τ is constant, which are extremals for S(c); these are geodesics on cylinders
having as directrix curves special syntractrices the so-called Poleni’s curves (1729). The
paper contains the proof of this result.
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2. EULER-LAGRANGE EQUATIONS

The Euler-Lagrange equations corresponding to the functional B(c) are

κ′′ − κτ 2 +
1

2
κ3 = 0(1)

2κ′τ + κτ ′ = 0(2)

where primes denote derivation with respect to arc-length s. If ω = κ−1τ is constant,
the equation (2) reduces to κκ

′

ω = 0 so that the product κ2ω is constant and therefore
the curvature κ is also constant; the helices solutions of the system (1)–(2) are therefore
circular.

Following [1], the Euler-Lagrange equations corresponding to the functional S(c) are

κ−1(1 + ω2)κ′′′ + 2ωω′′′

+κ′′(−κ−2(1 + ω2)κ′ + 12κ−1ωω′)
+ω′′(6κ−1ωκ′ + 8(1 + ω2)−1(1 + 3ω2)ω′)

−8κ−2ω (κ′)2 ω′ + 8κ−1(1 + ω2)−1(1 + 3ω2)κ′ (ω′)2

+24ω(1 + ω2)−1 (ω′)3 + κ(1 + ω2)2κ′ + 3κ2ω(1 + ω2)ω′ = 0

(3)

and
2κ−1ω(1 + ω2)κ′′′ + 2(1 + 3ω2)ω′′′

+κ′′(−6κ−2ω(1 + ω2)κ′ + 4κ−1(1 + 3ω2)ω′)
+ω′′(2κ−1(1 + 3ω2)κ′ + 36ωω′)

+4κ−3ω(1 + ω2) (κ′)3 − 4κ−2(1 + 3ω2) (κ′)2 ω′ + 12κ−1ωκ′ (ω′)2

+12 (ω′)3 + κω(1 + ω2)2κ′ + κ2(1 + ω2)(1 + 3ω2)ω′ = 0.

(4)

These are identically satisfied when κ and ω = κ−1τ are constant. We look now for
solutions with variable κ and constant ω. Under this hypothesis, the system reduces,
after the elimination of the third order derivative of κ, to the second order equation

κ−1κ′′ − κ−2κ′2 +
1 + ω2

4
κ2 = 0.

Replacing κ by R−1 where R is the radius of curvature of the extremal c, the equation
writes

−RR
′′

+ R
′2 +

1 + ω2

4
= 0.

The general solution of this equation is

R =

√
1 + ω2

2α
cosh(αs + β)

which depends on two arbitrary constants α 6= 0 and β.
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3. HELICES

One knows that helices are geodesics on cylinders. In order to determine the directrix
i.e. the orthogonal cross-section of the cylinder on which lie the helical extremals of
S(c), lets denote by {T, N, B} the Frenet frame of the helix and look for a curve γ(s)
orthogonal to the generatrices of the cylinder. At each point c(s) of the helix, the vector
of Darboux

(ωT + B)/
√

1 + ω2

defines the direction of the generatrix of the cylinder at c(s). One verifies that the curve

γ(s) = c(s) − s
ω

1 + ω2
(ωT (s) + B(s))

which lies on the cylinder described by the line which rests on c(s) preserving the fixed
direction of Darboux’s vector, is orthogonal to the generatrices of the cylinder.

Precisely

γ′(s) =
1

1 + ω2
(T (s) − ωB(s)) =

(

1 + ω2
)

−1/2
(T (s) − ωB(s))

(

1 + ω2
)

−1/2

so that

σ = s
(

1 + ω2
)

−1/2

is the arc-length on γ. Moreover, as the derivative with respect to σ of the unitary

tangent vector to γ, (T (s) − ωB(s)) (1 + ω2)
−1/2

is

(

1 + ω2
)1/2

(

d

ds
(T (s) − ωB(s))

(

1 + ω2
)

−1/2
)

=
1

R

(

1 + ω2
)

N

one deduces that the radius of curvature r(s) of the curve γ is

r(s) = R
(

1 + ω2
)

−1
=

1

2α
√

1 + ω2
cosh(αs + β).

In order to determine now the plane curve γ whose radius of curvature r is known,
one has to integrate the differential system

d2x

dσ2
= −1

r

dy

dσ
,

d2y

dσ2
=

1

r

dx

dσ
.

One introduces a complex variable z = x + iy, so that the above system becomes

d2z

dσ2
=

i

r

dz

dσ
,

or
z′′

z′
=

i2α

cosh(αs + β)
.(5)
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A first integration of this equation leads to

z′ = eCe4i arctan eαs+β

= eC
(

cos
(

4 arctan eαs+β
)

+ i sin
(

4 arctan eαs+β
))

= eC
(

cos
(

arctan eαs+β
)

+ i sin
(

arctan eαs+β
))4

= eC



1 − 8e2(αs+β)

(1 + e2(αs+β))
2 + i4

eαs+β
(

1 − e2(αs+β)
)

(1 + e2(αs+β))
2



 .

We have

8

2α

(

1

1 + e2(αs+β)

)′

=
4

α

(

− 2αe2(αs+β)

(1 + e2(αs+β))
2

)

= − 8e2(αs+β)

(1 + e2(αs+β))
2

and
4

α

(

eαs+β

1 + e2(αs+β)

)

′

=
4

α

[

α

(

eαs+β

1 + e2(αs+β)
− eαs+β2e2(αs+β)

(1 + e2(αs+β))
2

)]

=
4

α
α

eαs+β
(

1 − e2(αs+β)
)

(1 + e2(αs+β))
2 = 4

eαs+β
(

1 − e2(αs+β)
)

(1 + e2(αs+β))
2 .

The system (5) has the solutions of the form

z = eC

(

s +
4

α

1

1 + e2(αs+β)
+

4i

α

eαs+β

1 + e2(αs+β)

)

+ Const

In particular, for C = 0, α = 1, β = 0, Const = 0 and z = x + iy, we obtain

x(s) = s +
4

1 + e2s
, y(s) = 4

es

1 + e2s
=

2

cosh s
.

Replacing x by x + 2 the parametric equations of the curve γ(s) becomes

x(s) = s − 2 tanh s, y(s) =
2

cosh s

and one recognizes the parametric equations of the syntractrix of Poleni, called also “la
courbe des forçats” [2].

Acknowledgments. The authors are indebted to François Apéry for his coopera-
tion to discover Poleni’s personality.
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