
Simulation numérique d’une problème

d’interaction entre un fluide pulsatif et une
structure élastique
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Strong equations of the structure

Find the transverse displacement u : [0, L] × [0,T ] → R such that

ρShS ∂2u

∂t2
(x1, t) +

E (hS)3

12(1 − ν2)

∂4u

∂x4
1

(x1, t) = η(x1, t),

u(0, t) = 0,
∂u

∂x1
(0, t) = 0, t ∈ (0,T )

u(L, t) = 0,
∂u

∂x1
(L, t) = 0, t ∈ (0,T )

u(x1, 0) = u0(x1), x1 ∈ (0, L)

∂u

∂t
(x1, 0) = u̇0(x1), x1 ∈ (0, L)



Strong form of the unsteady Navier-Stokes equations

ρF

(
∂v

∂t
+ (v · ∇)v

)
− µ∆v + ∇p = fF , ∀t ∈ (0,T ),∀x ∈ ΩF

t

∇ · v = 0, ∀t ∈ (0,T ),∀x ∈ ΩF
t

v × n = 0, on Σ1 × (0,T )

p = Pin, on Σ1 × (0,T )

v = g, on Σ2 × (0,T )

v × n = 0, on Σ3 × (0,T )

p = Pout , on Σ3 × (0,T )

v (x1,H + u(x1, t), t) =

(
0,

∂u

∂t
(x1, t)

)T

,

∀(x1, t) ∈ (0, L) × (0,T )

v(x, 0) = v0(x), ∀x ∈ ΩF
0



Strong form of the coupled equations

Find the transverse displacement u of the structure, the velocity v
and the pressure p of the fluid such that

η(x1, t) = −
(
σFn · e2

)
(x1,H+u(x1,t))

√

1 +

(
∂u

∂x1
(x1, t)

)2

where σF = −p I + µ
(
∇v + ∇vT

)
is the stress tensor of the fluid,

e2 = (0, 1)T is the unit vector in the x2 direction.
The displacement of the structure depends on the vertical
component of the stresses exerced by the fluid on the interface.
The movement of the structure changes the domain where the
fluid equations must be solved. Also, on the interface we have to
impose the equality between the fluid and structure velocity.



Natural frequencies and normal mode shapes

For each i ∈ N there exists an unique normal mode shape
φi ∈ C4 ([0, L]) such that

φ′′′′
i (x1) = (ai)

4φi (x1), x1 ∈ (0, L)

φi (0) =
∂φi

∂x1
(0) = 0,

φi (L) =
∂φi

∂x1
(L) = 0,

∫ L

0
φ2

i (x1) dx1 = 1.



The normal mode shapes φi for i ∈ N form an orthogonal basis of
L2(0, L).

η(x1, t) =
∑

i≥0

αi (t)φi (x1), u(x1, t) =
∑

i≥0

qi (t)φi (x1)

where qi is the solution of the second order differential equation

q′′
i (t) + ω2

i qi(t) =
1

ρShS
αi (t), t ∈ (0,T )

qi(0) =

∫ L

0
u0(x1)φi (x1) dx1

q′
i(0) =

∫ L

0
u̇0(x1)φi (x1) dx1.



Newmark method

Knowing qn
i , q̇n

i , q̈n
i and αn+1

i , find qn+1
i , q̇n+1

i , q̈n+1
i such that:

q̈n+1
i + ω2

i q
n+1
i =

1

ρShS
αn+1

i ,

q̇n+1
i = q̇n

i + ∆t
[
(1 − δ)q̈n

i + δq̈n+1
i

]
,

qn+1
i = qn

i + ∆tq̇n
i + (∆t)2

[(
1

2
− θ

)
q̈n

i + θq̈n+1
i

]

where δ and θ are two real parameters.
This method is unconditional stable for 2θ ≥ δ ≥ 1/2. It is first
order accuracy if δ 6= 1/2. If δ = 1/2, it is second order accuracy in
the case θ 6= 1/12 and forth order accuracy is achieved if θ = 1/12.



Arbitrary Lagrangian Eulerian (ALE) coordinates

Ω̂F = (0, L) × (0,H), Γ̂ = (0, L) × {H}

At (x̂1, x̂2) =

(
x̂1,

H + u (x̂1, t)

H
x̂2

)T

x = At (x̂) , v̂(x̂, t) = v (At(x̂), t)

∂v

∂t
(x, t) =

∂v̂

∂t
(x̂, t) −

(
∂At

∂t
(x̂) · ∇

)
v (x, t)

DAv

Dt
(x, t)

def
=

∂v̂

∂t
(x̂, t)



Approximation of the ALE derivative

∂ �v
∂t

(x̂, tn+1) ≈
�v(�x,tn+1)−�v(�x,tn)

∆t
=

v(Atn+1 (�x),tn+1)−v(Atn (�x),tn)
∆t

=
v(x,tn+1)−v

�
Atn◦A

−1
tn+1

(x),tn �
∆t

≈
vn+1(x)−vn

�
Atn◦A

−1
tn+1

(x) �
∆t

.

ϑn+1(x)
def
=

∂At

∂t
(x̂)|t=tn+1 =

(
0,

∂u

∂t
(x1, tn+1)

x2

H + u (x1, tn+1)

)T

∂v

∂t
(x, tn+1) ≈

vn+1(x) − vn
(
Atn ◦ A

−1
tn+1

(x)
)

∆t
−

(
ϑn+1(x) · ∇

)
vn+1(x)

Vn(x) = vn
(
Atn ◦ A

−1
tn+1

(x)
)



ρF

(
vn+1

∆t
+

(
(Vn − ϑn+1) · ∇

)
vn+1

)

−µ∆vn+1 + ∇pn+1 = ρF Vn

∆t
+ fF

in ΩF
tn+1

∇ · vn+1 = 0 in ΩF
tn+1

vn+1 × n = 0 on Σ1

pn+1 = Pin(·, tn+1) on Σ1

vn+1 = g(·, tn+1) on Σ2

vn+1 × n = 0 on Σ3

pn+1 = Pout (·, tn+1) on Σ3

vn+1 (x1,H + u(x1, tn+1), t) =

(
0,

∂u

∂t
(x1, tn+1)

)T

,

0 < x1 < L.



Mixed Finite Element

W n+1 =

{
w ∈

(
H1

(
ΩF

tn+1

))2
;

w × n = 0 on Σ1 ∪ Σ3, w = 0 on Σ2 ∪ Γtn+1

}
,

Qn+1 = L2
(
ΩF

tn+1

)
.

Find the velocity vn+1 and the pressure pn+1 such that

{
an+1
F

(
vn+1,w

)
+ dn+1

F

(
vn+1,w

)
+ bn+1

F

(
w, pn+1

)
= `n+1 (w) ,∀w

bn+1
F

(
vn+1, q

)
= 0,∀q



an+1
F

(
vn+1,w

)
=

ρF

∆t

(
vn+1,w

)

+µ
(
∇× vn+1,∇× w

)
+ µ

(
∇ · vn+1,∇ · w

)

dn+1
F

(
vn+1,w

)
= ρF

((
(Vn − ϑn+1) · ∇

)
vn+1,w

)

bn+1
F (w, q) = − (∇ · w, q)

`n+1 (w) =
ρF

∆t
(Vn,w) +

(
fF ,w

)

−

∫

Σ1

Pin(·, tn+1)n · w dγ

−

∫

Σ3

Pout(·, tn+1)n · w dγ



Weak form of time derivative

Time derivative inside the integral

∫

ΩF
t

DAv

Dt
(x, t) · w (x, t) dx, ∀w (·, t) ∈

(
H1

(
ΩF

t

))2

Time derivative outside the integral

=
d

dt

∫

ΩF
t

v (x, t) · w (x, t) dx −

∫

ΩF
t

v (x, t) · w (x, t)∇ · ϑ (x, t) dx,

forall w such that ∂ �w
∂t

(x̂, t) = 0.

For example, we can take w (x, t) = ŵ
(
A−1

t (x)
)
, where

ŵ ∈
(
H1

(
Ω̂F

))2
.



Strategies for solving at each time step the coupled

problem

The fixed point and the root finding frameworks:

F ◦ S(α) = α, F ◦ S(α) − α = 0.

Fixed point (with eventually a relaxation parameter):
- Nobile 2001, Formaggia et al 2001

Block Newton:
- Steindorf and Matthies 2002, the derivative are approached by
finite differences
- Gerbeau, Vidrascu 2003, the tangent operator is approached
- Fernandez and Moubachir 2004, the derivative was computed
exactly



The optimization approach

If the starting point is not chosen “sufficiently close” to the
solution, fixed point or Newton like methods diverge.

The continuity of the stresses on the interface will be treated by
the Least Square Method and at each time step we have to solve
an optimization problem which is less sensitive to the choice of the
starting point. This is the main advantage of this approach.
Our approach is to minimize

Jn+1(α) =
1

2
‖α − β‖2

2 =
1

2
‖α −F ◦ S(α)‖2

2



Identification of the stresses on the interface using the

Least Squares Method

The stresses on the interface at the current time step tn+1 will be
approached by ηn+1

m (x1) =
∑m−1

i=0 αn+1
i φi(x1).

The parameters αn+1
i for 0 ≤ i ≤ m − 1 will be “identified” solving

an optimization problem

αn+1 def
=

(
αn+1

0 , . . . , αn+1
m−1

)
∈ arg min

�
∈

�
m

Jn+1(α).

Structure sub-problem

Knowing qn
i , q̇n

i , q̈n
i , find Qi , Q̇i , Q̈i by Newmark method.

Set

U(x1) =

m−1∑

i=0

Qiφi (x1), U̇(x1) =

m−1∑

i=0

Q̇iφi(x1), Ü(x1) =

m−1∑

i=0

Q̈iφi (x1).



Mesh construction

Let T̂h be a mesh with triangular elements of the reference domain
Ω̂F .

We define the mesh with triangular elements Th by moving each
node of T̂h using the map

AU (x̂1, x̂2) =

(
x̂1,

H + U (x̂1)

H
x̂2

)T

.



Fluid sub-problem

Wh =

{
wh ∈

(
C 0

(
Ω

F

h

))2
; ∀K ∈ Th, wh|K ∈ P1 + bubble,

wh × n = 0 on Σ1 ∪ Σ3, wh = 0 on Σ2 ∪ Γh} ,

Qh =
{

qh ∈ C 0
(
Ω

F

h

)
; ∀K ∈ Th, qh|K ∈ P1

}
.

Find the velocity vh satisfies the boundary conditions

vh × n = 0, on each vertex of Σ1 ∪ Σ3,

vh = g(·, tn+1), on each vertex of Σ2,

vh =
(
0, U̇

)T

, on each vertex of the top boundary Γh

and the pressure ph ∈ Qh such that

{
an+1
F (vh,wh) + dn+1

F (vh,wh) + bn+1
F (wh, ph) = `n+1 (wh)

bn+1
F (vh, qh) = 0



Definition of the cost function

βi = −

∫ L

0
φi (x1)

(
σF (vh, ph) n · e2

)
(x1,H+U(x1))

√

1 +

(
∂U

∂x1
(x1)

)2

βi =

∫ L

0
φi (x1)

(
ph + µ

(
∂vh,1

∂x2
+

∂vh,2

∂x1

)
∂U

∂x1
− 2µ

∂vh,2

∂x2

)

(x1,H+U(x1))

Set the cost function

Jn+1(α) =
1

2

m−1∑

i=0

(αi − βi )
2 .

βi =

∫ L

0
φi (x1)ph (x1,H + U(x1)) dx1, i = 0, . . . ,m − 1.



BFGS scheme
Step 0 Choose a starting point α0 ∈ R

m, an m × m symmetric
positive matrix H0 and a positive scalar ε. Set k = 0.
Step 1 Compute ∇J(αk ).
Step 2 If

∥∥∇J(αk )
∥∥ < ε stop.

Step 3 Set dk = −Hk∇J(αk ).
Step 4 Determine αk+1 = αk + θkd

k , θk > 0 by means of an
approximate minimization

J(αk+1) ≈ min
θ≥0

J(αk + θdk).

Step 5 Compute δk = αk+1 − αk .
Step 6 Compute ∇J(αk+1) and γk = ∇J(αk+1) −∇J(αk ).
Step 7 Compute

Hk+1 = Hk +

(
1 +

γT
k Hkγk

δT
k γk

)
δkδT

k

δT
k γk

−
δkγT

k Hk + HkγkδT
k

δT
k γk

Step 8 Update k = k + 1 and go to the Step 2.



The matrices Hk approach the inverse of the hessian of J.

For the inaccurate line search at the Step 4, the methods of
Goldstein and Armijo were used.

We compute ∇J(α) by the Finite Differences Method

∂J

∂αk

(α) ≈
J(α + ∆αkek) − J(α)

∆αk

where ek is the k-th vector of the canonical base of R
m and

∆αk > 0 is the grid spacing.



Fixed point, Newton and BFGS Methods

G : R
m → R

m, G (α)
def
= F ◦ S(α)

�
Fixed point iterations

G (α) = α, αk+1 = G (αk)

�
Newton method

F (α)
def
= α−G (α) = 0, αk+1 = αk−

(
∇F (αk)T

)−1
F (αk)

�
BFGS method

inf
�
∈

�
m

J(α) =
1

2
‖F (α)‖2 , ∇J(α) = (∇F (α)) F (α)



Local minimizer and zero residual

If α∗ is a local minimizer, then (∇F (α∗)) F (α∗) = 0.

What is most surprising is the fact that if the Jacobian matrix
∇F (α∗)T is nonsingular, we obtain that F (α∗) = 0!

In other words, a local minimizer α∗, with nonsingular Jacobian
matrix ∇F (α∗)T , is a global minimizer of zero residual, i.e.
J(α∗) = 0.

Only in the case when ∇F (α∗)T is singular and F (α∗) 6= 0, the
solution computed by the BFGS Method is not a solution of the
fluid-structure coupled problem.

We have to recall that the Newton method fails if ∇F (α∗)T is
nonsingular.



Numerical results

�
The computation has been made in a domain of length
L = 6 cm and height H = 1 cm.

�
The viscosity of the blood was taken to be µ = 0.035 g

cm·s
, its

density ρF = 1 g
cm3 .

�
The thickness of the vessel is h = 0.1 cm, the Poisson ratio
ν = 0.5, the density ρS = 1.1 g

cm3 .
�

The number of the normal mode shapes is m = 5.
�

The gradient of the cost function was approached by the
Finite Difference Method with the grid spacing ∆αk = 0.001.

The numerical tests have been produced using FreeFem++.



Input pressure

 1000
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P
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Pin 2

1) Young modulus E = 0.75 · 106 g
cm·s2 , Final time T = 0.25 s

2) Young modulus E = 3 · 106 g
cm·s2 , Final time T = 0.1 s



Case of an impulsive pressure wave in a higher compliant

channel

For the boundary conditions we have used:

Pin(x, t) =

{
103(1 − cos(2πt/0.005)), x ∈ Σ1, 0 ≤ t ≤ 0.005
0, x ∈ Σ1, 0.005 ≤ t ≤ T

g(x, t) = 0, x ∈ Σ2, 0 ≤ t ≤ T

Pout(x, t) = 0, x ∈ Σ3, 0 ≤ t ≤ T

∆t mesh size h no. triangles no. vertices

0.0005 h1 = 0.25 196 127

0.0005 h2 = 0.17 226 448

0.0005 h3 = 0.10 1250 696

We have performed the simulation for N = 500 time steps.
At each time step, we have performed 8 iterations of the BFGS
algorithm and 4 iterations in the method for the line search.



Starting values of the cost function during the pressure

impulse (at the left) and after (at the right)
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Displacements of the top wall and fluid velocity
t= 0.0150

t= 0.0300

t= 0.0450



Case of a sine wave of the pressure input in a less

compliant vessel

The Young modulus: E = 3 · 106 g
cm·s2 .

The pressure at the inflow:

Pin(x, t) =

{
103(1 − cos(2πt/0.025)), x ∈ Σ1, 0 ≤ t ≤ 0.025
0, x ∈ Σ1, 0.025 ≤ t ≤ T

∆t h N T

0.0005 0.17 200 0.1

0.0010 0.17 100 0.1

0.0025 0.17 40 0.1

We have performed 10 iterations of the BFGS algorithm and 5
iterations in the method for the line search.



Starting (left) and final (right) values of the cost function
for ∆t = 0.0005
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Starting (left) and final (right) values of the cost function
for ∆t = 0.0010
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Starting (left) and final (right) values of the cost function
for ∆t = 0.0025
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Displacements of the top wall and fluid velocity

t= 0.0150
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Conclusions

�
The continuity of the stresses at the interface was treated by
the Least Squares Method and at each time step we have to
solve an optimization problem which is less sensitive to the
choice of the starting point and it permits us to use moderate
time step. This is the main advantage of this approach.

�
In order to solve the optimization problem, we have employed
the BFGS method which is successful from farther starting
point. The gradient of the cost function was approached by
the Finite Difference Method.

�
The coupled fluid-structure algorithm has good stability
properties.


