
Mixed hybrid �nite element for a threedimensional uid struture interation problemCornel Marius MUREA � and Jean-Marie CROLETyAbstratIn this paper, we study the spatial disretization of a uid strutureinteration problem by using mixed hybrid �nite elements. The aim is toprove that the fully disretized problem is well posed for suitable �niteelements. In order to show that the inf-sup disrete ondition holds, weonstrut a projetion operator.keywords. mixed hybrid �nite element; uid struture interation1 INTRODUCTIONA three dimensional uid struture interation problem is studied under thefollowing hypotheses: the uid is inompressible and limited by an elasti stru-ture, the whole interior avity of the struture is �lled by the uid, the strutureis thik. A part of the external boundary is �xed.This kind of uid struture interation onerns many important domains:biomehanis (blood ardia wall interation), aeronautial industry (the inter-ation between the tank and the fuel of the airship), energy industry (transportof the uid using elasti tanks).We are interested in omputing the displaement of the struture, the velo-ity and the pressure of the uid and the density of the fores on the interfae.We suppose that the struture is governed by the time dependent linearelastiity equations and the uid is governed by the time dependent Stokesequations.Based on the works [1℄ and [2, vol. 8, p. 795℄ and under the hypothe-ses above, a variational formulation is proposed in [3℄. The existene and theuniqueness of the solution of this variational problem are proved in [4℄. Inthis new formulation a Lagrange multiplier was used to relax the ontinuity ofthe veloities on the interfae and it permits to split the uid equations fromthe struture equations. The advantage lies in the fat that we an solve the�Universit�e de Haute-Alsae, Laboratoire de Math�ematiques et Appliations, 4, rue desFr�eres Lumi�ere, 68093 Mulhouse Cedex, FraneyUniversit�e de Franhe-Comt�e, Equipe de Math�ematiques, 16, route de Gray, 25030 Be-san�on Cedex, Frane 1



uid struture interation via partitioned proedures. Also, this model is welladapted for parallel omputation.In order to approximate the solution, we had �rst disretized in time usingFinite Di�erene Method. The time disretization orresponds to the impliitEuler method for the uid equations and Newmark method for the strutureequations. In [5℄ it is proved that the time disrete problem is well posed. Alsothe stability in time of the semi-disrete algorithm is proved.At eah time step, we have to solve a mixed hybrid system with two Lagrangemultipliers whih treat the free divergene for the uid and the ontinuity ofthe veloities on the interfae.In this paper we study the spatial disretization of this mixed hybrid varia-tional problem.The aim is to present the hoie for the three dimensional mixed-hybrid �niteelement and to prove that the fully disretized problem is well posed. It is notour purpose to study the stability of the spatial disretization in this paper.In order to approximate eah omponent of the uid veloity, we use theMIDI element (pieewise linear with bubble) introdued in [6℄. The disrete so-lution for the pressure is pieewise linear. Also, eah omponent of the strutureveloity and eah omponent of the fores on the interfae are approximated bypieewise linear elements. All the disrete solutions are assumed to be globallyontinuous.In order to prove that the inf-sup disrete ondition holds, we onstrut aprojetion operator. The inf-sup disrete ondition involves the free divergenefor the uid and the ontinuity of the veloities on the interfae. The inf-supdisrete ondition for the free divergene is a standard result (see for example[7℄). The proof for the inf-sup disrete ondition for oupling equations wasalready disussed in the papers [8℄, [9℄, [10℄ and [11℄, but unlike ours, it doesn'tinvolve uid struture interation.2 GOVERNING EQUATIONSLet 
F (respetively 
S) be the domain in RN of the uid (respetively of thestruture), where N = 3, suh that �
F = � [ �1, �
S = � [ �1 [ �2 and
F \
S = �, where �, �1, �1 and �2 are manifolds in RN�1 . The geometrialon�guration is presented in the Figure 1.We suppose that the uid is governed by the time-dependent Stokes equa-tions: �F �v�t � �F�v +rp = f1 in 
F�℄0; T [ (1)div v = 0 in 
F�℄0; T [ (2)where v : 
F � [0; T ℄ ! RN is the veloity vetor, p : 
F � [0; T ℄ ! R is thepressure, �F > 0 is the density, �F > 0 is the visosity and f1 : 
F�[0; T ℄! RNis the body fore per unit mass. 2
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ΓFigure 1: The interfae between the uid and the struture is �.The struture satisfy the linear elastiity equations:�S �2ui�t2 � NXj=1 ��Sij(u)�xj = f2i ; in 
S�℄0; T [; i = 1; : : : ; N (3)where u = (u1; u2; u3) : 
S � [0; T ℄! RN is the displaement of the struture,�S > 0 is the density, �Sij(u) = �S�PNk=1 �kk(u)�Æij +2�S�ij(u) is the struturestress tensor, �ij(u) = 12� �ui�xj + �uj�xi � is the deformation tensor, �S � 0, �S > 0are the Lam�e's oeÆients and f2 = (f21 ; f22 ; f23 ) : 
S � [0; T ℄! RN is the bodyfore per unit mass.We denote by n1 (respetively n2) the unit outward normal on the boundaryof 
F (respetively 
S). We impose the following boundary onditions:v = g on �1�℄0; T [; (4)u = 0 on �1�℄0; T [; (5)�S � n2 = 0 on �2�℄0; T [; (6)where g is given suh that R�1 g � n1 d� = 0 and on the interfae, we have:v = �u�t on ��℄0; T [; (7)�F � n1 = ��S � n2 on ��℄0; T [; (8)where �F = �pI+2�FD[v℄ is the uid stress tensor and D[v℄ij = 12� �vi�xj + �vj�xi �.The initial onditions are:v(�; t = 0) = v0 in 
F ; (9)u(�; t = 0) = u0 in 
S ; (10)�u�t (�; t = 0) = �0 in 
S ; (11)where v0 should be divergene-free, v0 = g on �1 and v0 = �0 on �.We are looking for the displaement of the struture u, the veloity and thepressure of the uid v, p, suh that (1){(11) hold.3



3 TEMPORAL DISCRETIZATIONLet �t be the time step size. For the uid equations (1){(2), we use the bak-ward Euler time disretization�F vn+1 � vn�t � �F�vn+1 +rpn+1 = f1 (�; (n+ 1)�t) (12)div vn+1 = 0 (13)where vn and pn are the approximations of v and p at time t = n�t.For the struture equation (3), we use the Newmark sheme�S an+1i � NXj=1 ��Sij(un+1)�xj = f2i (�; (n+ 1)�t) ; i = 1; 2; 3 (14)un+1 = un + �t2 ��n + �n+1� (15)an+1 = �n+1 � �n�t (16)where un, �n and an are the approximations of u, �u�t and �2u�t2 at time t = n�t.Repeated appliation of the formula (15) enables us to writeun+1 = u0 + �t2  �0 + 2 nXi=1 �n + �n+1! :Finally, substituting (16) and the above formula in (14), we obtain the sheme�S �n+1i � �ni�t � NXj=1 ��Sij �u0 + �t2 ��0 + 2Pni=1 �n + �n+1���xj = f2i (�; (n+ 1)�t)(17)Now, we present the weak formulation of the semidisretized problem.In [3℄, a Lagrange multiplier � was used to relax the ondition (7) whihrepresents the ontinuity of the veloities on the interfae. This Lagrange mul-tiplier has the physial signi�ation of the density of the fores on the interfae(� = �F � n1 = ��S � n2) and it permits to split the uid equations from thestruture equations.We denote respetively byW 1 = �w1 2 H1(
F )N ; w1 = 0 on �1	 ;W 2 = �w2 2 H1(
S)N ; w2 = 0 on �1	 ;Q = L2(
F );M = H1=200 (�)N ;the spaes for the veloity of the uid, for the veloity of the struture, for thepressure of the uid and for the fores on the interfae.4



Let aF and aS be two bilinear appliations, de�ned by:aF :W 1 �W 1 �! R;aF (v; w1) = 2 Z
F D[v℄ : D[w1℄dx = 2 NXi;j=1 Z
F D[v℄ijD[w1℄ijdx (18)and aS :W 2 �W 2 �! R;aS(�; w2) = NXi;j=1 Z
S �Sij(�)�ij(w2)dx: (19)Remark 1 In [1℄ and [2, vol. 8, p. 795℄, it was used the bilinear formaF (v; w1) = Z
F rv � rw1dx:In this ase, the weak solution of the uid beam interation doesn't satisfy (8)on the interfae, but�p n1 + �F �v�n1 = ��S � n2; on ��℄0; T [:Let us denote by a and b the funtions given bya : �W 1 �W 2�� �W 1 �W 2� �! R;a �(v; �); (w1; w2)� = 1�t (v; w1)0;
F + �F�F aF (v; w1)+ 1�t (�; w2)0;
S + �t2�S aS(�; w2); (20)and b : �W 1 �W 2�� (Q�M) �! R;b ��w1; w2� ; (q; �)� = �(div w1; q)0;
F � �1�(w1)� 2�(w2); ��1=2;�; (21)where 1� :W 1 �!M; 2� :W 2 �!Mare the trae appliations.In [5℄ it was introdued a time disrete algorithm for the approximation of athree-dimensional uid-struture interation. This algorithm onsists in solvingat eah time step a problem of the following form:Find �vn+1; �n+1; pn+1; �n+1� 2 W 1 �W 2 �Q�M , suh that:� a �vn+1; �n+1;w1; w2�+ b �w1; w2; pn+1; �n+1� = hfn+1;w1; w2ib �vn+1; �n+1; q; �� = 0; (22)5



for all w1 in W 1, w2 in W 2, q in Q and � in M , wherehfn+1;w1; w2i = (fn+11 ; w1)0;
F + (fn+12 ; w2)0;
S + 1�t (vn; w1)0;
F + 1�t (�n; w2)0;
S� 1�S aS�u0 + �t2 (�0 + 2 nXi=1 �i); w2�In [5℄ it is shown that the time disrete problem is well posed and it is alsoproved the stability in time of the semi-disrete algorithm.Remark 2 At eah time step, we have to solve the system with Lagrange mul-tipliers (22). This is a Babuska-Brezzi type variational problem (see [12℄ and[13℄), where the Lagrange multipliers are p and �, whih treat respetively thefree-divergene for the uid and the ontinuity of the veloity on the interfae.4 THE CHOICE OF THEMIXED-HYBRID FI-NITE ELEMENTWe onstrut four �nite-dimensional spaes using mixed-hybrid �nite elements,suh that the inf-sup disrete ondition holds.Let us suppose that 
F and 
S are two bounded polyhedrons of R3 .We onsider the �nite element like triangulations
F = [K2T Fh K and 
S = [K2T Sh Kwhere eah element K is an open nondegenerate tetrahedron and meshes T Fhand T Sh are mathing on the interfae � = 
F \ 
S . The diameter of eahelement is less than h > 0.Before presenting the �nite element hosen, let us reall the baryentrioordinates of a point from R3 with respet to the verties of a tetrahedron.Let K be a nondegenerate tetrahedron of verties ai 2 R3 , 1 � i � 4.We denote by P1 (respetively P1 (K)) the spae of all polynomials de�nedon R3 (respetively on K) of degree less than or equal to one.The baryentri oordinates �i : R3 �! R, 1 � i � 4, with respet to theverties ai 2 R3 , 1 � i � 4, are de�ned by�i 2 P1; 1 � i � 4;�i (aj) = Æij ; 1 � i; j � 4:For the tetrahedron K, one an de�ne (see [7, p. 147℄) the bubble funtionbK : K �! R;bK (x) = �1 (x) �2 (x)�3 (x) �4 (x) :6



We denoteP1 (K) + bK = fq : K ! R; q (x) = p1 (x) + �bK (x) ; p1 2 P1 (K) ; � 2 Rg :Let a5 denote the baryentre of K, i.e.a5 = 14 (a1 + a2 + a3 + a4) :Classial results assert that the following 3-uples(K; fa1; a2; a3; a4g ; P1 (K)) ;(K; fa1; a2; a3; a4; a5g ; P1 (K) + bK)are �nite elements.If T is a non degenerate triangle in R3 , we denote by P1 (T ) the spae of allpolynomials de�ned on R3 of degree less than or equal to one.Now, we an introdue the �nite element spaes:W 1h = nw1h = �w1;1h ; w1;2h ; w1;3h � ; w1;ih 2 C0 �
F� ; w1;ih jK2 P1 (K) + bK ; 1 � i � 3o ;W 2h = nw2h = �w2;1h ; w2;2h ; w2;3h � ; w2;ih 2 C0 �
S� ; w2;ih jK2 P1 (K) ; w2;ih j�1= 0; 1 � i � 3o ;Qh = nqh 2 C0 �
F� ; qh jK2 P1 (K)o ;Mh = ��h = ��1h; �2h; �3h� ; �ih 2 C0 ��� ; �ih jT2 P1 (T ) ; 1 � i � 3	 :In a standard way (see for example [14, p. 27℄), we have the inlusionsW 1h �W 1; W 2h �W 2; Qh � Q; Mh �M:The ontinuity of the elements of Mh seems not to be appropriate, at leastwhen edges or orners appear. But it is neessary for the internal approximationof H1=200 (�)N , that is, having disontinuous trial funtions, we lose the inlusionMh �M .One way to hek the inf-sup disrete ondition is by using that the inf-supontinuous ondition holds and by onstruting a bilinear operator �h fromW 1 �W 2 to W 1h �W 2h , suh that� 9 > 0;8 �w1; w2� 2W 1 �W 2;�h �w1; w2�W 1�W 2 �  �w1; w2�W 1�W 2 (23)and � 8 �w1; w2� 2W 1 �W 2;8 (qh; �h) 2 Qh �Mh;b ��w1; w2���h �w1; w2� ; (qh; �h)� = 0: (24)Remark 3 Let us remark that in general the onstant  depends on the meshsize h, whih implies that the disrete problem is well posed. If the interpolationoperator �h is uniformly ontinuous with respet to h, then the stability of thespatial disretizations holds. It is not our purpose to study the stability in thispaper.In [5℄, it is proved that the inf-sup ontinuous ondition holds. In order toprove that the inf-sup disrete ondition holds too, it is suÆient to onstrutan operator with the above properties.7



5 CONSTRUCTION OF THE INTERPOLA-TION OPERATORIn this setion, we onstrut an interpolation operator �h, suh that the equal-ities (23) and (24) hold.We searh an operator �h of the form�h :W 1 �W 2 !W 1h �W 2h ;�h �w1; w2� = ��11h w1;�21h w1 +�22h w2�where the operators �11h :W 1 !W 1h ;�21h :W 1 !W 2h ; �22h : W 2 !W 2hare linear.The ondition (24) ould be rewritten as follows8>>><>>>: 8w1 2 W 1;8w2 2W 2;8qh 2 Qh;8�h 2Mh;�div �w1 ��11h w1� ; qh�0;
F = 0;�1� �w1 ��11h w1�+ 2� ��21h w1� ; �h�1=2;� = 0;�2� �w2 ��22h w2� ; �h�1=2;� = 0: (25)Proposition 1 If the mesh T Fh is uniform, there is a linear operator �11h fromW 1 to W 1h and a positive onstant 11 independent of h, suh that8w1 2W 1; �11h w1W 1 � 11 w1W 1 (26)and 8w1 2 W 1;8qh 2 Qh; �div �w1 ��11h w1� ; qh�0;
F = 0: (27)Proof. We an �nd a proof of this standard result in [6℄ for instane.Before onstruting the operators �21h and �22h , let us introdue same nota-tions.We denote byIF = fAigNSFi=1 the set of the vertex of the triangulation T Fh ,IS = fBigNSSi=1 the set of the vertex of the triangulation T Sh ,I� = fCigNSGi=1 the set of the ommon vertex of T Fh and T Fh ,I�1 the set of the vertex of T Sh \ �1.We will denote�h = n�h 2 C0 �
F� ; �h jK2 P1 (K) ;8K 2 T Fh o : (28)It is lear that for eah vertex Ai 2 IF , there exists a unique funtion �i 2 �h,suh that �i (Aj) = Æij ; 8Aj 2 IF :8



Moreover, f�igNSFi=1 represents a basis for �h (see [14, p. 107℄).We set(P1 + b) �
F � = nw 2 C0 �
F� ;w jK2 P1 (K) ;8K 2 T Fh o : (29)Aording to the de�nition of the bubble funtion, the set f�igNSFi=1 [fbKgK2T Fhis a basis for (P1 + b) �
F �.We denote	h = n h 2 C0 �
F� ; j�1= 0;  jK2 P1 (K) ;8K 2 T Sh o : (30)For eah vertex Bi 2 IS n I�1 there exists a unique funtion  i 2 	h, suh that i (Bj) = Æij ; 8Bj 2 IS :It follows that f igNSSi=1 is a basis for 	h.We de�ne the set�h =8<:� 2 C0 ��� ; � jT2 P1 (T ) ;8T 2 [K2T Fh �K\��9=; : (31)For eah vertex Ci 2 I�, there exists a unique funtion �i 2 �h, suh that�i (Cj) = Æij ; 8Cj 2 I�:Moreover, f�igNSGi=1 represents a basis for �h.Sine T Fh and T Sh are mathing on the interfae �, we have8i 2 f1; : : : ; NSGg ;9! r (i) 2 f1; : : : ; NSFg ; 9! s (i) 2 f1; : : : ; NSSg ; suh thatCi = Ar(i) = Bs(i) (32)and �i = �r(i) j�=  s(i) j� : (33)Now, we an onstrut the linear operator �21h .Proposition 2 There is a linear operator �21h from W 1 to W 2h and a positiveonstant 21(h) depending of h, suh that8w1 2W 1; �21h w1W 2 � 21(h) w1W 1 (34)and 8w1 2W 1;8�h 2Mh;�2� ��21h w1�+ 1� �w1 ��11h w1� ; �h�1=2;� = 0 (35)9



Proof. We de�ne Mh, F and � byMh 2 MNSG (R) ;Mh = (�i; �j)1=2;� ; 1 � i; j � NSG;F : H1 �
F �! RNSG ;F (w) = (F1 (w) ; : : : ; FNSG (w))t ;Fi (w) = �1� ��w +�11h w� ; �i�1=2;�and � : H1 �
F �! RNSG ;� (w) = (�1 (w) ; : : : ; �NSG (w))t ;�i (w) =M�1h F (w) :We set �21h : H1 �
F �! 	h;�21h w = NSGPi=1 �i (w) s(i)where s : f1; : : : ; NSGg ! f1; : : : ; NSSg is the appliation given by (32).Let us de�ne �21h :W 1 !W 2h�21h w1 = ��21h w1;1; �21h w1;2; �21h w1;3�where w1 = �w1;1; w1;2; w1;3� is an element of W 1.Sine the appliation trae and the operator �11h are linear and ontinuous,the operator �21h has the same properties.For w 2 H1 �
F � we have�21h w = NSGXi=1 �i (w) s(i)and onsequently 2� ��21h w� = NSGXi=1 �i (w) s(i) j� :From (32) we obtain 2� ��21h w� = NSGXi=1 �i (w) �iand it follows that�2� ��21h w� ; �j�1=2;� =  NSGXi=1 �i (w) �i; �j!1=2;� ; 8j = 1; : : : ; NSG:10



If we write this equality in matrix form and use that Mh is symmetrial, wehave 0BB� �2� ��21h w� ; �1�1=2;�...�2� ��21h w� ; �NSG�1=2;� 1CCA =M th� (w) =MhM�1h F (w) = F (w)and the equality (35) is proved. �Proposition 3 There is a linear operator �22h from W 2 to W 2h and a positiveonstant 22(h) depending on h, suh that8w2 2W 2; �22h w2W 2 � 22(h) w2W 2 (36)and 8w2 2W 2;8�h 2Mh;�2� �w2 ��22h w2� ; �h�1=2;� = 0: (37)Proof. We de�ne G and � byG : �w 2 H1 �
F � ;w j�1= 0	! RNSG ;G (w) = (G1 (w) ; : : : ; GNSG (w))t ;Gi (w) = �2� (w) ; �i�1=2;�and � : �w 2 H1 �
F � ;w j�1= 0	! RNSG ;� (w) = (�1 (w) ; : : : ; �NSG (w))t ;�i (w) =M�1h G (w) :We set �22h : �w 2 H1 �
F � ;w j�1= 0	! 	h;�22h w = NSGPi=1 �i (w) s(i)where s : f1; : : : ; NSGg ! f1; : : : ; NSSg is the appliation given by (32).Let us de�ne �22h :W 2 !W 2h�22h w2 = ��22h w2;1; �22h w2;2; �22h w2;3�where w2 = �w2;1; w2;2; w2;3� is an element of W 2 .Aording to the de�nition of G, �, �22h and using the fat that the traeoperator 2� is linear and ontinuous, we obtain that the operator �22h is linearand ontinuous.For w 2 �w 2 H1 �
F � ;w j�1= 0	, we have�22h w = NSGXi=1 �i (w) s(i);11



hene 2� ��22h w� = NSGXi=1 �i (w) s(i) j� :From (32) we obtain 2� ��21h w� = NSGXi=1 �i (w) �iand infer that�2� ��22h w� ; �j�1=2;� =  NSGXi=1 �i (w) �i; �j!1=2;� ; 8j = 1; : : : ; NSG:Writing this equality in matrix form and using that Mh is symmetrial, wededue that0BB� �2� ��22h w� ; �1�1=2;�...�2� ��22h w� ; �NSG�1=2;� 1CCA =M th� (w) =MhM�1h G (w) = 0BB� �2� (w) ; �1�1=2;�...�2� (w) ; �NSG�1=2;� 1CCAand the equality (37) is proved. �We onlude from the Propositions 1, 2 and 3 that the interpolation operator�h veri�es the onditions (23) and (24), where the onstant  depends on h andonsequently the disrete version of the problem (22) is well posed.6 FINAL REMARKSIn this paper we have presented an algorithm for solving a three dimensionaluid struture interation problem. At eah time step, we have to solve a mixedhybrid system. We have proved that the disrete problem is well posed byonstruting an interpolation operator.The error analysis follows a standard way as in the abstrat framework forthe mixed hybrid problem, see for example [11℄.Numerial tests have been performed.At eah time step, we solve numerialy the mixed hybrid linear system us-ing the algorithm presented in [15℄ (whih is a Uzawa like algorithm), wherethe uid and struture equations are solved separately at eah iteration. TheLagrange multiplier method was used to treat the ontinuity of the veloity onthe interfae.The meshes are obtained by using MODULEF [16℄. The uid mesh has 336tetrahedrons and the struture mesh has 366 tetrahedrons. The meshes aremathing on the interfae.The uid is solved numerialy by the software NSP1B3 [17℄ and the strutureby MODULEF.The numerial tests performed by us show that the omputed uid andstruture veloities are almost equal at the interfae.12
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