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Abstract

In this paper, we study the spatial discretization of a fluid structure
interaction problem by using mixed hybrid finite elements. The aim is to
prove that the fully discretized problem is well posed for suitable finite
elements. In order to show that the inf-sup discrete condition holds, we
construct a projection operator.
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1 INTRODUCTION

A three dimensional fluid structure interaction problem is studied under the
following hypotheses: the fluid is incompressible and limited by an elastic struc-
ture, the whole interior cavity of the structure is filled by the fluid, the structure
is thick. A part of the external boundary is fixed.

This kind of fluid structure interaction concerns many important domains:
biomechanics (blood cardiac wall interaction), aeronautical industry (the inter-
action between the tank and the fuel of the airship), energy industry (transport
of the fluid using elastic tanks).

We are interested in computing the displacement of the structure, the veloc-
ity and the pressure of the fluid and the density of the forces on the interface.

We suppose that the structure is governed by the time dependent linear
elasticity equations and the fluid is governed by the time dependent Stokes
equations.

Based on the works [1] and [2, vol. 8, p. 795] and under the hypothe-
ses above, a variational formulation is proposed in [3]. The existence and the
uniqueness of the solution of this variational problem are proved in [4]. In
this new formulation a Lagrange multiplier was used to relax the continuity of
the velocities on the interface and it permits to split the fluid equations from
the structure equations. The advantage lies in the fact that we can solve the
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fluid structure interaction via partitioned procedures. Also, this model is well
adapted for parallel computation.

In order to approximate the solution, we had first discretized in time using
Finite Difference Method. The time discretization corresponds to the implicit
Euler method for the fluid equations and Newmark method for the structure
equations. In [5] it is proved that the time discrete problem is well posed. Also
the stability in time of the semi-discrete algorithm is proved.

At each time step, we have to solve a mixed hybrid system with two Lagrange
multipliers which treat the free divergence for the fluid and the continuity of
the velocities on the interface.

In this paper we study the spatial discretization of this mixed hybrid varia-
tional problem.

The aim is to present the choice for the three dimensional mixed-hybrid finite
element and to prove that the fully discretized problem is well posed. It is not
our purpose to study the stability of the spatial discretization in this paper.

In order to approximate each component of the fluid velocity, we use the
MIDI element (piecewise linear with bubble) introduced in [6]. The discrete so-
lution for the pressure is piecewise linear. Also, each component of the structure
velocity and each component of the forces on the interface are approximated by
piecewise linear elements. All the discrete solutions are assumed to be globally
continuous.

In order to prove that the inf-sup discrete condition holds, we construct a
projection operator. The inf-sup discrete condition involves the free divergence
for the fluid and the continuity of the velocities on the interface. The inf-sup
discrete condition for the free divergence is a standard result (see for example
[7]). The proof for the inf-sup discrete condition for coupling equations was
already discussed in the papers [8], [9], [10] and [11], but unlike ours, it doesn’t
involve fluid structure interaction.

2 GOVERNING EQUATIONS

Let QF (respectively Q) be the domain in RV of the fluid (respectively of the
structure), where N = 3, such that 90 = T U TL 905 =TUXIUX? and
QFNQS =T, where I', 'Y, £! and £2 are manifolds in RV~!. The geometrical
configuration is presented in the Figure 1.

We suppose that the fluid is governed by the time-dependent Stokes equa-
tions:

pF% —urAv+Vp=f'  in QFx]0,T] (1)

dive=0  in QFx]0, T (2)
where v : QF x [0,T] — RN is the velocity vector, p : QF x [0,7] — R is the

pressure, pr > 0is the density, up > 01is the viscosity and f! : QF x[0,7] — RN
is the body force per unit mass.




Figure 1: The interface between the fluid and the structure is I'.

The structure satisfy the linear elasticity equations:

N
80
ps § : =f2, inQ°x]0,T[, i=1,...,N (3)
8t2 8xj

where u = (u1, u2, us) : Q5 x [0,7] = RV is the displacement of the structure,
ps > 0 is the density, o7} (u) = As (S ne, €xn(w))dij + 2useij(u) is the structure

stress tensor, €;;(u) = (g;" + 6“’) is the deformation tensor, Ag > 0, pug >0

are the Lamé’s coefficients and f2 = (fZ, f7, f2) : Q5 x [0,T] = RY is the body
force per unit mass

We denote by n! (respectively n?) the unit outward normal on the boundary
of QF (respectively 2°). We impose the following boundary conditions:

v=g on I'' x]0, T7, (4)
u=0 on ¥!'x]0, T, (5)
0% -n?=0 on %?x]0, T, (6)

where g is given such that frl g-n'do =0 and on the interface, we have:

= % on I'x]0, T, (7)

of -nt = —0% . n? on I'x]0, T, (8)

where o = —pI + 2y D[v] is the fluid stress tensor and D[v];; = % (3;; g;] ).
The initial conditions are:

v(-,t=0) =" in QF, 9)

u(t=0)=u"  in Q7 (10)

%(-,t:()) =/ in Q% (11)

where v° should be divergence-free, v° = g on I'* and v = 1% on T,
We are looking for the displacement of the structure u, the velocity and the
pressure of the fluid v, p, such that (1)—(11) hold.



3 TEMPORAL DISCRETIZATION

Let At be the time step size. For the fluid equations (1)—(2), we use the back-
ward Euler time discretization

,UnJrl _ ,Un

pr——g— ~ mr AT VT = f( (n+ DAY (12)

divo"™ = 0 (13)

where v"™ and p" are the approximations of v and p at time ¢t = nAt.
For the structure equation (3), we use the Newmark scheme

N 90 (unth)

psaitt = %T = fi,(n+DAY, i=1,23  (14)
=1
At
utt = w4 5 (v v (15)
n+1 n
n+1 _ v -V 1
¢ At (16)

where u”, v™ and a" are the approximations of u, %’t‘ and %té‘ at time ¢t = nAt.

Repeated application of the formula (15) enables us to write
At -
unJrl :U0+ 7 (I/O +2;V’n+yn+l> .

Finally, substituting (16) and the above formula in (14), we obtain the scheme

y”“ iaa (w0 + &L (0 +230 v+t

- = £ (5 (n+ AN

Ps
(17)

Now, we present the weak formulation of the semidiscretized problem.

In [3], a Lagrange multiplier A\ was used to relax the condition (7) which
represents the continuity of the velocities on the interface. This Lagrange mul-
tiplier has the physical signification of the density of the forces on the interface
(A = o -n! = =% - n?) and it permits to split the fluid equations from the
structure equations.

We denote respectively by

Wl o= {w'e HYQF)N, w' =0on '},
w? = {w?e H{(Q%)N, w? =0on X'},
Q = L*QF),
Moo= H* (DY,

the spaces for the velocity of the fluid, for the velocity of the structure, for the
pressure of the fluid and for the forces on the interface.



Let ap and ag be two bilinear applications, defined by:
ap : Whx W ) R,
117, _ (18)
(v,w) =2 Dv] Dw']|dz = QZ D v]i D[w")ijdzx
4,j=1

and

Z /Qs a3 (V)eij (w*)da. (19)

Remark 1 In [1] and [2, vol. 8, p. 795], it was used the bilinear form
ar(v,w') = Vv - Vuw'dz.
QF

In this case, the weak solution of the fluid beam interaction doesn’t satisfy (8)
on the interface, but

0
—pn' +,uFa—:1 =—0-n% on I'x]0,T7.

Let us denote by a and b the functions given by
a: (W' xW?) x (W x W?) — R,
a((v,y);(wll,w2)) = Kt(’U:wl)&QF + l;_iaF(anl) (20)

+A_t(y7 w2)07§25 + QPTSGS(% ’LUZ),

and
(W ><W2) (Q x M) — R,

—(d@iv w', g or — (") = 7R (w?), 1) (21)

b:
b((w',w?) ;5 (g, m))

where

12,0

Vg W — M, VBWwE— M

are the trace applications.

In [5] it was introduced a time discrete algorithm for the approximation of a
three-dimensional fluid-structure interaction. This algorithm consists in solving
at each time step a problem of the following form:

Find (v, vt prtt Antl) e W x W2 x Q x M, such that:

{a(v”+1,un+1 wh,w?) + b (whw?p" LAY = (el w?)

b (Un-i-l, Vn ,q”u) — 0, (22)



for all w* in W, w? in W2, q in Q and p in M, where
1

1
<fn+1; w17w2> = ( 1n+17w1)07QF + (fén+17w2)0,95 + E(Unawl)&QF + E(Vnan)&QS

1 At “\
- —as(u0+—(uo+2 V’),wz)
TR

In [5] it is shown that the time discrete problem is well posed and it is also
proved the stability in time of the semi-discrete algorithm.

Remark 2 At each time step, we have to solve the system with Lagrange mul-
tipliers (22). This is a Babuska-Brezzi type variational problem (see [12] and
[18]), where the Lagrange multipliers are p and A, which treat respectively the
free-divergence for the fluid and the continuity of the velocity on the interface.

4 THE CHOICE OF THE MIXED-HYBRID FI-
NITE ELEMENT

We construct four finite-dimensional spaces using mixed-hybrid finite elements,
such that the inf-sup discrete condition holds.

Let us suppose that Q¥ and QF are two bounded polyhedrons of R?.

We consider the finite element like triangulations

= | Fad®= |J K
KeTF KeT?

where each element K is an open nondegenerate tetrahedron and meshes 7,1
and 7,° are matching on the interface I' = QF N QS. The diameter of each
element is less than h > 0.

Before presenting the finite element chosen, let us recall the barycentric
coordinates of a point from R® with respect to the vertices of a tetrahedron.

Let K be a nondegenerate tetrahedron of vertices a; € R3, 1 < i < 4.

We denote by P; (respectively P, (K)) the space of all polynomials defined
on R? (respectively on K) of degree less than or equal to one.

The barycentric coordinates \; : R — R, 1 < i < 4, with respect to the
vertices a; € R, 1 <4 < 4, are defined by

NEP, 1<i<d4,

For the tetrahedron K, one can define (see [7, p. 147]) the bubble function

b : K — R,
br () = A1 () A2 (z) A3 () Mg () .



We denote
PI(K)+bK:{qK_)R7 q(:v):pl(:c)+abK(:c), D1 EPI(K)a QER}'
Let a5 denote the barycentre of K, i.e.
1
as = Z(a1+a2 +a3+a4).
Classical results assert that the following 3-uples

(Ka {a17a27a37a4}7P1 (K))a
(K7 {a17a27a37a47a5}7pl (K) +bK)

are finite elements.

If T is a non degenerate triangle in R®, we denote by P; (T') the space of all
polynomials defined on R* of degree less than or equal to one.

Now, we can introduce the finite element spaces:

Wi = {w = (w,ll’l,w,lf,w,lﬁ) ; w,ll’i ec (Q_F) ,w,ll’i k€ P (K)+bg,1 <i< 3} ,

1
h
WE = {wi = (wz’l,wi’2,wz’3) ; wi’i eCo (ﬁ) ,wz’i k€ P (K) ,wi’i l$1=0,1<i< 3} ,
Qn = {Qh ec’ (Q_F) P an k€ P (K)};
My = {pn = (ihy Hip 143) 5 1y, € C°(T), iy 7€ PL(T), 1 <i <3}
In a standard way (see for example [14, p. 27]), we have the inclusions
Wi CW!, WRCW?, QnCQ, MyCM.

The continuity of the elements of M} seems not to be appropriate, at least
when edges or corners appear. But it is necessary for the internal approximation
of Hy/*()N, that is, having discontinuous trial functions, we lose the inclusion
M, C M.

One way to check the inf-sup discrete condition is by using that the inf-sup
continuous condition holds and by constructing a bilinear operator II; from
W x W2 to Wl x W2, such that

{ Je >0,V (w',w?) € W x W2, (23)
It (@' w) e < e[ (!0 [y e
and
v (w17w2) € Wl X W27V(Qhauh) € Qh X Mh: (24)
b((w',w?) =y (w',w?); (qn, ) = 0.

Remark 3 Let us remark that in general the constant c¢ depends on the mesh
size h, which implies that the discrete problem is well posed. If the interpolation
operator Iy, is uniformly continuous with respect to h, then the stability of the
spatial discretizations holds. It is not our purpose to study the stability in this
paper.

In [5], it is proved that the inf-sup continuous condition holds. In order to

prove that the inf-sup discrete condition holds too, it is sufficient to construct
an operator with the above properties.



5 CONSTRUCTION OF THE INTERPOLA-
TION OPERATOR

In this section, we construct an interpolation operator II;, such that the equal-
ities (23) and (24) hold.
We search an operator Il of the form

I : W x W2 —» W x W7,
I, (w',w?) = (I w!, I3 et + 22w?)

where the operators

H,ll1 Wt —)W,%,
It wt - w2, 0P :w?2 - W

are linear.
The condition (24) could be rewritten as follows

vw! € W, vw? € W2, Vg, € Qn,Vun € My,

(le (u}1 - H}llwl) 7qh)O,QF - 07 (25)
(O (w' = I w") 497 (WG w') i), =0,
(7 (v - I?w?) ’/‘h)1/2,1“ = 0.

Proposition 1 If the mesh T,t is uniform, there is a linear operator II}* from
Wt to W} and a positive constant c11 independent of h, such that

vw' € Wt ||} w

S C11 ||w (26)

1 1
wt wt

and
vw' € W', Vg, € Qn, (div (w' — I} w") 2 qn) g or = 0. (27)

Proof. We can find a proof of this standard result in [6] for instance.

Before constructing the operators II7! and I132, let us introduce same nota-
tions.

We denote by
Ip = {Az}iiSiF the set of the vertex of the triangulation 7,1,
Is = {Bz}f\fls the set of the vertex of the triangulation 7,°,

Ir = {C;} 59 the set of the common vertex of 7,7 and 7,7,
Is: the set of the vertex of 7;5 nxi.

We will denote
@h:{eheco (Q_F);eh K€ Py (K),\ﬂ(eThF}. (28)

It is clear that for each vertex A; € I, there exists a unique function ¢; € O,
such that
gf),' (Aj) = (Sij, VA] € Ip.



Moreover, {d)z}f\SF represents a basis for @, (see [14, p. 107]).
We set

(P +b) (QF) = {w e’ (F) cw ke Py (K) VK € 77LF} . (29
According to the definition of the bubble function, the set {gi),}iiSlF U{bk} KeTF

is a basis for (P, +b) (QF).
We denote

U= {on €€ (7)1 = 0,9 |x€ L (K) YK €T} (30)
For each vertex B; € Is \ Ix1 there exists a unique function ; € ¥y, such that
1,[),' (Bj) = (Sij, VBj € lg.

It follows that {1/)&?515 is a basis for ¥y,
We define the set

Ty=3nec (T)nlre A (T),VT e |J (Kﬂf) . (31)
KeTF

For each vertex C; € I, there exists a unique function n; € Yj, such that
n; (CJ) = (Sij, VC] € Ir.

Moreover, {nz}i\gG represents a basis for Y.
Since 7,/ and 7,° are matching on the interface I', we have

Vie{l,...,NSGY,
AMr@)e{l,...,NSF},3 s(i) € {1,...,NSS}, such that (32)
Ci = Ay = Byy)

and
N = r(i) Ir=Vsi) I - (33)

Now, we can construct the linear operator II7!.

Proposition 2 There is a linear operator 113+ from W' to W}? and a positive
constant co1 (h) depending of h, such that

o' € W I w |y, < en(h) [lw' ]y, (34)

and
Vw! € W, Vuy, € My,

(0 (I'w!) + 7 (w! = I w!) ,Nh)1/2,r =0 (35)



Proof. We define M}, F and a by

F:H' (QF) - RVSC
F(w) = (F (w),...,Fysa (W),
Fi (w) = (7 (—w + T}'w) ’m)l/ZI
and
a: H! (QF) — RN5SG
a(w) = (a1 (w),...,ansa (w))t ,
a; (w) = M; 'F (w).
We set
71'21 cH! (QF) — Uy,
‘ NSG
Titw = 21 i (W) Ys(s)
1=
where s : {1,...,NSG} — {1,...,NSS} is the application given by (32).
Let us define
. wt - w?
12! = (W;%lwl’laWilwl’QaﬂiZLlwl’g)

where w!' = (wh!, w'?, w!?) is an element of W*.

Since the application trace and the operator II}! are linear and continuous,
the operator II7! has the same properties.

For w € H' (QF) we have

NSG
mhw =Y i (w) Py
i=1
and consequently
NSG
7 (i w) = Z i (W) Yy Ir -
i=1
From (32) we obtain
NSG
7 (i w) = Y i (w)
i=1

and it follows that

i=1

NSG
(’ylg (7r}2zlw) ;773')1/27F = (Z Qg (w) 771’;77]') ) VJ = ]-77NSG
1/2,0

10



If we write this equality in matrix form and use that M}, is symmetrical, we
have

(»}/12 (ﬂ-i%lw) 7771)1/271“

(8

(w3t w) >77N5G)1/2,F
and the equality (35) is proved. O

Proposition 3 There is a linear operator I13* from W? to W} and a positive
constant coz(h) depending on h, such that

Vw? € W2, [[I2w? ||, < caz(h) [|w?]],y. (36)
and
Vw? € W2, Yup € My,
(7I2‘ (w2 - H?L2w2) ’H’h)l/ZI =0.

Proof. We define G and 3 by

(37)

G {we H (QF) jw gm0} — RVSG
G (w) = (G1 (U)), ,Gnsa (w))",
Gi(w) = (7 ),771')1/27F

d
" B:{weH (QF);w |g1=0} — RV,
B(w) = (B (w),...,Bnsc ()",
Bi (w) = M, G (w).
We set

2 {weH! (QF) w |si=0} = ¥y,
W = Z Bi (w) )

where s: {1,...,NSG} — {1,...,NSS} is the application given by (32).
Let us define

W2 = W2
22,02 _ (2221 22 2 b o 2,3
113 (7rh w>, mrw S mrw )

where w? = (w?!, w??,w??) is an element of W? .

Accordlng to the deﬁnltlon of G, B, m3? and using the fact that the trace
operator & is linear and continuous, we obtain that the operator II3? is linear
and continuous.

For w € {w € H* () ;w |s1= 0}, we have

NSG

whw—z&

11



hence
NSG

(m7?w) Zﬁl

From (32) we obtain
NSG

7rhw ZB’

and infer that
NSG

(7I2‘ (W;lew) 77] 1/2 r (Z /81 ﬂz;’?g) ) VJ = ]-7' . 7NSG
1/2,1

Writing this equality in matrix form and using that M}, is symmetrical, we
deduce that

(02 (722w) 1), o p (O (@) 1) o
: = MEB (w) = MpM; "G (w) = :
(O (7?w) ;nnsa)y o p (7 (W), mvs@)y gy 1
and the equality (37) is proved. O

We conclude from the Propositions 1, 2 and 3 that the interpolation operator
I, verifies the conditions (23) and (24), where the constant ¢ depends on h and
consequently the discrete version of the problem (22) is well posed.

6 FINAL REMARKS

In this paper we have presented an algorithm for solving a three dimensional
fluid structure interaction problem. At each time step, we have to solve a mixed
hybrid system. We have proved that the discrete problem is well posed by
constructing an interpolation operator.

The error analysis follows a standard way as in the abstract framework for
the mixed hybrid problem, see for example [11].

Numerical tests have been performed.

At each time step, we solve numericaly the mixed hybrid linear system us-
ing the algorithm presented in [15] (which is a Uzawa like algorithm), where
the fluid and structure equations are solved separately at each iteration. The
Lagrange multiplier method was used to treat the continuity of the velocity on
the interface.

The meshes are obtained by using MODULEF [16]. The fluid mesh has 336
tetrahedrons and the structure mesh has 366 tetrahedrons. The meshes are
matching on the interface.

The fluid is solved numericaly by the software NSP1B3 [17] and the structure
by MODULEF.

The numerical tests performed by us show that the computed fluid and
structure velocities are almost equal at the interface.
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