
Mixed hybrid �nite element for a threedimensional 
uid stru
ture intera
tion problemCornel Marius MUREA � and Jean-Marie CROLETyAbstra
tIn this paper, we study the spatial dis
retization of a 
uid stru
tureintera
tion problem by using mixed hybrid �nite elements. The aim is toprove that the fully dis
retized problem is well posed for suitable �niteelements. In order to show that the inf-sup dis
rete 
ondition holds, we
onstru
t a proje
tion operator.keywords. mixed hybrid �nite element; 
uid stru
ture intera
tion1 INTRODUCTIONA three dimensional 
uid stru
ture intera
tion problem is studied under thefollowing hypotheses: the 
uid is in
ompressible and limited by an elasti
 stru
-ture, the whole interior 
avity of the stru
ture is �lled by the 
uid, the stru
tureis thi
k. A part of the external boundary is �xed.This kind of 
uid stru
ture intera
tion 
on
erns many important domains:biome
hani
s (blood 
ardia
 wall intera
tion), aeronauti
al industry (the inter-a
tion between the tank and the fuel of the airship), energy industry (transportof the 
uid using elasti
 tanks).We are interested in 
omputing the displa
ement of the stru
ture, the velo
-ity and the pressure of the 
uid and the density of the for
es on the interfa
e.We suppose that the stru
ture is governed by the time dependent linearelasti
ity equations and the 
uid is governed by the time dependent Stokesequations.Based on the works [1℄ and [2, vol. 8, p. 795℄ and under the hypothe-ses above, a variational formulation is proposed in [3℄. The existen
e and theuniqueness of the solution of this variational problem are proved in [4℄. Inthis new formulation a Lagrange multiplier was used to relax the 
ontinuity ofthe velo
ities on the interfa
e and it permits to split the 
uid equations fromthe stru
ture equations. The advantage lies in the fa
t that we 
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uid stru
ture intera
tion via partitioned pro
edures. Also, this model is welladapted for parallel 
omputation.In order to approximate the solution, we had �rst dis
retized in time usingFinite Di�eren
e Method. The time dis
retization 
orresponds to the impli
itEuler method for the 
uid equations and Newmark method for the stru
tureequations. In [5℄ it is proved that the time dis
rete problem is well posed. Alsothe stability in time of the semi-dis
rete algorithm is proved.At ea
h time step, we have to solve a mixed hybrid system with two Lagrangemultipliers whi
h treat the free divergen
e for the 
uid and the 
ontinuity ofthe velo
ities on the interfa
e.In this paper we study the spatial dis
retization of this mixed hybrid varia-tional problem.The aim is to present the 
hoi
e for the three dimensional mixed-hybrid �niteelement and to prove that the fully dis
retized problem is well posed. It is notour purpose to study the stability of the spatial dis
retization in this paper.In order to approximate ea
h 
omponent of the 
uid velo
ity, we use theMIDI element (pie
ewise linear with bubble) introdu
ed in [6℄. The dis
rete so-lution for the pressure is pie
ewise linear. Also, ea
h 
omponent of the stru
turevelo
ity and ea
h 
omponent of the for
es on the interfa
e are approximated bypie
ewise linear elements. All the dis
rete solutions are assumed to be globally
ontinuous.In order to prove that the inf-sup dis
rete 
ondition holds, we 
onstru
t aproje
tion operator. The inf-sup dis
rete 
ondition involves the free divergen
efor the 
uid and the 
ontinuity of the velo
ities on the interfa
e. The inf-supdis
rete 
ondition for the free divergen
e is a standard result (see for example[7℄). The proof for the inf-sup dis
rete 
ondition for 
oupling equations wasalready dis
ussed in the papers [8℄, [9℄, [10℄ and [11℄, but unlike ours, it doesn'tinvolve 
uid stru
ture intera
tion.2 GOVERNING EQUATIONSLet 
F (respe
tively 
S) be the domain in RN of the 
uid (respe
tively of thestru
ture), where N = 3, su
h that �
F = � [ �1, �
S = � [ �1 [ �2 and
F \
S = �, where �, �1, �1 and �2 are manifolds in RN�1 . The geometri
al
on�guration is presented in the Figure 1.We suppose that the 
uid is governed by the time-dependent Stokes equa-tions: �F �v�t � �F�v +rp = f1 in 
F�℄0; T [ (1)div v = 0 in 
F�℄0; T [ (2)where v : 
F � [0; T ℄ ! RN is the velo
ity ve
tor, p : 
F � [0; T ℄ ! R is thepressure, �F > 0 is the density, �F > 0 is the vis
osity and f1 : 
F�[0; T ℄! RNis the body for
e per unit mass. 2
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ΓFigure 1: The interfa
e between the 
uid and the stru
ture is �.The stru
ture satisfy the linear elasti
ity equations:�S �2ui�t2 � NXj=1 ��Sij(u)�xj = f2i ; in 
S�℄0; T [; i = 1; : : : ; N (3)where u = (u1; u2; u3) : 
S � [0; T ℄! RN is the displa
ement of the stru
ture,�S > 0 is the density, �Sij(u) = �S�PNk=1 �kk(u)�Æij +2�S�ij(u) is the stru
turestress tensor, �ij(u) = 12� �ui�xj + �uj�xi � is the deformation tensor, �S � 0, �S > 0are the Lam�e's 
oeÆ
ients and f2 = (f21 ; f22 ; f23 ) : 
S � [0; T ℄! RN is the bodyfor
e per unit mass.We denote by n1 (respe
tively n2) the unit outward normal on the boundaryof 
F (respe
tively 
S). We impose the following boundary 
onditions:v = g on �1�℄0; T [; (4)u = 0 on �1�℄0; T [; (5)�S � n2 = 0 on �2�℄0; T [; (6)where g is given su
h that R�1 g � n1 d� = 0 and on the interfa
e, we have:v = �u�t on ��℄0; T [; (7)�F � n1 = ��S � n2 on ��℄0; T [; (8)where �F = �pI+2�FD[v℄ is the 
uid stress tensor and D[v℄ij = 12� �vi�xj + �vj�xi �.The initial 
onditions are:v(�; t = 0) = v0 in 
F ; (9)u(�; t = 0) = u0 in 
S ; (10)�u�t (�; t = 0) = �0 in 
S ; (11)where v0 should be divergen
e-free, v0 = g on �1 and v0 = �0 on �.We are looking for the displa
ement of the stru
ture u, the velo
ity and thepressure of the 
uid v, p, su
h that (1){(11) hold.3



3 TEMPORAL DISCRETIZATIONLet �t be the time step size. For the 
uid equations (1){(2), we use the ba
k-ward Euler time dis
retization�F vn+1 � vn�t � �F�vn+1 +rpn+1 = f1 (�; (n+ 1)�t) (12)div vn+1 = 0 (13)where vn and pn are the approximations of v and p at time t = n�t.For the stru
ture equation (3), we use the Newmark s
heme�S an+1i � NXj=1 ��Sij(un+1)�xj = f2i (�; (n+ 1)�t) ; i = 1; 2; 3 (14)un+1 = un + �t2 ��n + �n+1� (15)an+1 = �n+1 � �n�t (16)where un, �n and an are the approximations of u, �u�t and �2u�t2 at time t = n�t.Repeated appli
ation of the formula (15) enables us to writeun+1 = u0 + �t2  �0 + 2 nXi=1 �n + �n+1! :Finally, substituting (16) and the above formula in (14), we obtain the s
heme�S �n+1i � �ni�t � NXj=1 ��Sij �u0 + �t2 ��0 + 2Pni=1 �n + �n+1���xj = f2i (�; (n+ 1)�t)(17)Now, we present the weak formulation of the semidis
retized problem.In [3℄, a Lagrange multiplier � was used to relax the 
ondition (7) whi
hrepresents the 
ontinuity of the velo
ities on the interfa
e. This Lagrange mul-tiplier has the physi
al signi�
ation of the density of the for
es on the interfa
e(� = �F � n1 = ��S � n2) and it permits to split the 
uid equations from thestru
ture equations.We denote respe
tively byW 1 = �w1 2 H1(
F )N ; w1 = 0 on �1	 ;W 2 = �w2 2 H1(
S)N ; w2 = 0 on �1	 ;Q = L2(
F );M = H1=200 (�)N ;the spa
es for the velo
ity of the 
uid, for the velo
ity of the stru
ture, for thepressure of the 
uid and for the for
es on the interfa
e.4



Let aF and aS be two bilinear appli
ations, de�ned by:aF :W 1 �W 1 �! R;aF (v; w1) = 2 Z
F D[v℄ : D[w1℄dx = 2 NXi;j=1 Z
F D[v℄ijD[w1℄ijdx (18)and aS :W 2 �W 2 �! R;aS(�; w2) = NXi;j=1 Z
S �Sij(�)�ij(w2)dx: (19)Remark 1 In [1℄ and [2, vol. 8, p. 795℄, it was used the bilinear formaF (v; w1) = Z
F rv � rw1dx:In this 
ase, the weak solution of the 
uid beam intera
tion doesn't satisfy (8)on the interfa
e, but�p n1 + �F �v�n1 = ��S � n2; on ��℄0; T [:Let us denote by a and b the fun
tions given bya : �W 1 �W 2�� �W 1 �W 2� �! R;a �(v; �); (w1; w2)� = 1�t (v; w1)0;
F + �F�F aF (v; w1)+ 1�t (�; w2)0;
S + �t2�S aS(�; w2); (20)and b : �W 1 �W 2�� (Q�M) �! R;b ��w1; w2� ; (q; �)� = �(div w1; q)0;
F � �
1�(w1)� 
2�(w2); ��1=2;�; (21)where 
1� :W 1 �!M; 
2� :W 2 �!Mare the tra
e appli
ations.In [5℄ it was introdu
ed a time dis
rete algorithm for the approximation of athree-dimensional 
uid-stru
ture intera
tion. This algorithm 
onsists in solvingat ea
h time step a problem of the following form:Find �vn+1; �n+1; pn+1; �n+1� 2 W 1 �W 2 �Q�M , su
h that:� a �vn+1; �n+1;w1; w2�+ b �w1; w2; pn+1; �n+1� = hfn+1;w1; w2ib �vn+1; �n+1; q; �� = 0; (22)5



for all w1 in W 1, w2 in W 2, q in Q and � in M , wherehfn+1;w1; w2i = (fn+11 ; w1)0;
F + (fn+12 ; w2)0;
S + 1�t (vn; w1)0;
F + 1�t (�n; w2)0;
S� 1�S aS�u0 + �t2 (�0 + 2 nXi=1 �i); w2�In [5℄ it is shown that the time dis
rete problem is well posed and it is alsoproved the stability in time of the semi-dis
rete algorithm.Remark 2 At ea
h time step, we have to solve the system with Lagrange mul-tipliers (22). This is a Babuska-Brezzi type variational problem (see [12℄ and[13℄), where the Lagrange multipliers are p and �, whi
h treat respe
tively thefree-divergen
e for the 
uid and the 
ontinuity of the velo
ity on the interfa
e.4 THE CHOICE OF THEMIXED-HYBRID FI-NITE ELEMENTWe 
onstru
t four �nite-dimensional spa
es using mixed-hybrid �nite elements,su
h that the inf-sup dis
rete 
ondition holds.Let us suppose that 
F and 
S are two bounded polyhedrons of R3 .We 
onsider the �nite element like triangulations
F = [K2T Fh K and 
S = [K2T Sh Kwhere ea
h element K is an open nondegenerate tetrahedron and meshes T Fhand T Sh are mat
hing on the interfa
e � = 
F \ 
S . The diameter of ea
helement is less than h > 0.Before presenting the �nite element 
hosen, let us re
all the bary
entri

oordinates of a point from R3 with respe
t to the verti
es of a tetrahedron.Let K be a nondegenerate tetrahedron of verti
es ai 2 R3 , 1 � i � 4.We denote by P1 (respe
tively P1 (K)) the spa
e of all polynomials de�nedon R3 (respe
tively on K) of degree less than or equal to one.The bary
entri
 
oordinates �i : R3 �! R, 1 � i � 4, with respe
t to theverti
es ai 2 R3 , 1 � i � 4, are de�ned by�i 2 P1; 1 � i � 4;�i (aj) = Æij ; 1 � i; j � 4:For the tetrahedron K, one 
an de�ne (see [7, p. 147℄) the bubble fun
tionbK : K �! R;bK (x) = �1 (x) �2 (x)�3 (x) �4 (x) :6



We denoteP1 (K) + bK = fq : K ! R; q (x) = p1 (x) + �bK (x) ; p1 2 P1 (K) ; � 2 Rg :Let a5 denote the bary
entre of K, i.e.a5 = 14 (a1 + a2 + a3 + a4) :Classi
al results assert that the following 3-uples(K; fa1; a2; a3; a4g ; P1 (K)) ;(K; fa1; a2; a3; a4; a5g ; P1 (K) + bK)are �nite elements.If T is a non degenerate triangle in R3 , we denote by P1 (T ) the spa
e of allpolynomials de�ned on R3 of degree less than or equal to one.Now, we 
an introdu
e the �nite element spa
es:W 1h = nw1h = �w1;1h ; w1;2h ; w1;3h � ; w1;ih 2 C0 �
F� ; w1;ih jK2 P1 (K) + bK ; 1 � i � 3o ;W 2h = nw2h = �w2;1h ; w2;2h ; w2;3h � ; w2;ih 2 C0 �
S� ; w2;ih jK2 P1 (K) ; w2;ih j�1= 0; 1 � i � 3o ;Qh = nqh 2 C0 �
F� ; qh jK2 P1 (K)o ;Mh = ��h = ��1h; �2h; �3h� ; �ih 2 C0 ��� ; �ih jT2 P1 (T ) ; 1 � i � 3	 :In a standard way (see for example [14, p. 27℄), we have the in
lusionsW 1h �W 1; W 2h �W 2; Qh � Q; Mh �M:The 
ontinuity of the elements of Mh seems not to be appropriate, at leastwhen edges or 
orners appear. But it is ne
essary for the internal approximationof H1=200 (�)N , that is, having dis
ontinuous trial fun
tions, we lose the in
lusionMh �M .One way to 
he
k the inf-sup dis
rete 
ondition is by using that the inf-sup
ontinuous 
ondition holds and by 
onstru
ting a bilinear operator �h fromW 1 �W 2 to W 1h �W 2h , su
h that� 9
 > 0;8 �w1; w2� 2W 1 �W 2;

�h �w1; w2�

W 1�W 2 � 
 

�w1; w2�

W 1�W 2 (23)and � 8 �w1; w2� 2W 1 �W 2;8 (qh; �h) 2 Qh �Mh;b ��w1; w2���h �w1; w2� ; (qh; �h)� = 0: (24)Remark 3 Let us remark that in general the 
onstant 
 depends on the meshsize h, whi
h implies that the dis
rete problem is well posed. If the interpolationoperator �h is uniformly 
ontinuous with respe
t to h, then the stability of thespatial dis
retizations holds. It is not our purpose to study the stability in thispaper.In [5℄, it is proved that the inf-sup 
ontinuous 
ondition holds. In order toprove that the inf-sup dis
rete 
ondition holds too, it is suÆ
ient to 
onstru
tan operator with the above properties.7



5 CONSTRUCTION OF THE INTERPOLA-TION OPERATORIn this se
tion, we 
onstru
t an interpolation operator �h, su
h that the equal-ities (23) and (24) hold.We sear
h an operator �h of the form�h :W 1 �W 2 !W 1h �W 2h ;�h �w1; w2� = ��11h w1;�21h w1 +�22h w2�where the operators �11h :W 1 !W 1h ;�21h :W 1 !W 2h ; �22h : W 2 !W 2hare linear.The 
ondition (24) 
ould be rewritten as follows8>>><>>>: 8w1 2 W 1;8w2 2W 2;8qh 2 Qh;8�h 2Mh;�div �w1 ��11h w1� ; qh�0;
F = 0;�
1� �w1 ��11h w1�+ 
2� ��21h w1� ; �h�1=2;� = 0;�
2� �w2 ��22h w2� ; �h�1=2;� = 0: (25)Proposition 1 If the mesh T Fh is uniform, there is a linear operator �11h fromW 1 to W 1h and a positive 
onstant 
11 independent of h, su
h that8w1 2W 1; 

�11h w1

W 1 � 
11 

w1

W 1 (26)and 8w1 2 W 1;8qh 2 Qh; �div �w1 ��11h w1� ; qh�0;
F = 0: (27)Proof. We 
an �nd a proof of this standard result in [6℄ for instan
e.Before 
onstru
ting the operators �21h and �22h , let us introdu
e same nota-tions.We denote byIF = fAigNSFi=1 the set of the vertex of the triangulation T Fh ,IS = fBigNSSi=1 the set of the vertex of the triangulation T Sh ,I� = fCigNSGi=1 the set of the 
ommon vertex of T Fh and T Fh ,I�1 the set of the vertex of T Sh \ �1.We will denote�h = n�h 2 C0 �
F� ; �h jK2 P1 (K) ;8K 2 T Fh o : (28)It is 
lear that for ea
h vertex Ai 2 IF , there exists a unique fun
tion �i 2 �h,su
h that �i (Aj) = Æij ; 8Aj 2 IF :8



Moreover, f�igNSFi=1 represents a basis for �h (see [14, p. 107℄).We set(P1 + b) �
F � = nw 2 C0 �
F� ;w jK2 P1 (K) ;8K 2 T Fh o : (29)A

ording to the de�nition of the bubble fun
tion, the set f�igNSFi=1 [fbKgK2T Fhis a basis for (P1 + b) �
F �.We denote	h = n h 2 C0 �
F� ; j�1= 0;  jK2 P1 (K) ;8K 2 T Sh o : (30)For ea
h vertex Bi 2 IS n I�1 there exists a unique fun
tion  i 2 	h, su
h that i (Bj) = Æij ; 8Bj 2 IS :It follows that f igNSSi=1 is a basis for 	h.We de�ne the set�h =8<:� 2 C0 ��� ; � jT2 P1 (T ) ;8T 2 [K2T Fh �K\��9=; : (31)For ea
h vertex Ci 2 I�, there exists a unique fun
tion �i 2 �h, su
h that�i (Cj) = Æij ; 8Cj 2 I�:Moreover, f�igNSGi=1 represents a basis for �h.Sin
e T Fh and T Sh are mat
hing on the interfa
e �, we have8i 2 f1; : : : ; NSGg ;9! r (i) 2 f1; : : : ; NSFg ; 9! s (i) 2 f1; : : : ; NSSg ; su
h thatCi = Ar(i) = Bs(i) (32)and �i = �r(i) j�=  s(i) j� : (33)Now, we 
an 
onstru
t the linear operator �21h .Proposition 2 There is a linear operator �21h from W 1 to W 2h and a positive
onstant 
21(h) depending of h, su
h that8w1 2W 1; 

�21h w1

W 2 � 
21(h) 

w1

W 1 (34)and 8w1 2W 1;8�h 2Mh;�
2� ��21h w1�+ 
1� �w1 ��11h w1� ; �h�1=2;� = 0 (35)9



Proof. We de�ne Mh, F and � byMh 2 MNSG (R) ;Mh = (�i; �j)1=2;� ; 1 � i; j � NSG;F : H1 �
F �! RNSG ;F (w) = (F1 (w) ; : : : ; FNSG (w))t ;Fi (w) = �
1� ��w +�11h w� ; �i�1=2;�and � : H1 �
F �! RNSG ;� (w) = (�1 (w) ; : : : ; �NSG (w))t ;�i (w) =M�1h F (w) :We set �21h : H1 �
F �! 	h;�21h w = NSGPi=1 �i (w) s(i)where s : f1; : : : ; NSGg ! f1; : : : ; NSSg is the appli
ation given by (32).Let us de�ne �21h :W 1 !W 2h�21h w1 = ��21h w1;1; �21h w1;2; �21h w1;3�where w1 = �w1;1; w1;2; w1;3� is an element of W 1.Sin
e the appli
ation tra
e and the operator �11h are linear and 
ontinuous,the operator �21h has the same properties.For w 2 H1 �
F � we have�21h w = NSGXi=1 �i (w) s(i)and 
onsequently 
2� ��21h w� = NSGXi=1 �i (w) s(i) j� :From (32) we obtain 
2� ��21h w� = NSGXi=1 �i (w) �iand it follows that�
2� ��21h w� ; �j�1=2;� =  NSGXi=1 �i (w) �i; �j!1=2;� ; 8j = 1; : : : ; NSG:10



If we write this equality in matrix form and use that Mh is symmetri
al, wehave 0BB� �
2� ��21h w� ; �1�1=2;�...�
2� ��21h w� ; �NSG�1=2;� 1CCA =M th� (w) =MhM�1h F (w) = F (w)and the equality (35) is proved. �Proposition 3 There is a linear operator �22h from W 2 to W 2h and a positive
onstant 
22(h) depending on h, su
h that8w2 2W 2; 

�22h w2

W 2 � 
22(h) 

w2

W 2 (36)and 8w2 2W 2;8�h 2Mh;�
2� �w2 ��22h w2� ; �h�1=2;� = 0: (37)Proof. We de�ne G and � byG : �w 2 H1 �
F � ;w j�1= 0	! RNSG ;G (w) = (G1 (w) ; : : : ; GNSG (w))t ;Gi (w) = �
2� (w) ; �i�1=2;�and � : �w 2 H1 �
F � ;w j�1= 0	! RNSG ;� (w) = (�1 (w) ; : : : ; �NSG (w))t ;�i (w) =M�1h G (w) :We set �22h : �w 2 H1 �
F � ;w j�1= 0	! 	h;�22h w = NSGPi=1 �i (w) s(i)where s : f1; : : : ; NSGg ! f1; : : : ; NSSg is the appli
ation given by (32).Let us de�ne �22h :W 2 !W 2h�22h w2 = ��22h w2;1; �22h w2;2; �22h w2;3�where w2 = �w2;1; w2;2; w2;3� is an element of W 2 .A

ording to the de�nition of G, �, �22h and using the fa
t that the tra
eoperator 
2� is linear and 
ontinuous, we obtain that the operator �22h is linearand 
ontinuous.For w 2 �w 2 H1 �
F � ;w j�1= 0	, we have�22h w = NSGXi=1 �i (w) s(i);11



hen
e 
2� ��22h w� = NSGXi=1 �i (w) s(i) j� :From (32) we obtain 
2� ��21h w� = NSGXi=1 �i (w) �iand infer that�
2� ��22h w� ; �j�1=2;� =  NSGXi=1 �i (w) �i; �j!1=2;� ; 8j = 1; : : : ; NSG:Writing this equality in matrix form and using that Mh is symmetri
al, wededu
e that0BB� �
2� ��22h w� ; �1�1=2;�...�
2� ��22h w� ; �NSG�1=2;� 1CCA =M th� (w) =MhM�1h G (w) = 0BB� �
2� (w) ; �1�1=2;�...�
2� (w) ; �NSG�1=2;� 1CCAand the equality (37) is proved. �We 
on
lude from the Propositions 1, 2 and 3 that the interpolation operator�h veri�es the 
onditions (23) and (24), where the 
onstant 
 depends on h and
onsequently the dis
rete version of the problem (22) is well posed.6 FINAL REMARKSIn this paper we have presented an algorithm for solving a three dimensional
uid stru
ture intera
tion problem. At ea
h time step, we have to solve a mixedhybrid system. We have proved that the dis
rete problem is well posed by
onstru
ting an interpolation operator.The error analysis follows a standard way as in the abstra
t framework forthe mixed hybrid problem, see for example [11℄.Numeri
al tests have been performed.At ea
h time step, we solve numeri
aly the mixed hybrid linear system us-ing the algorithm presented in [15℄ (whi
h is a Uzawa like algorithm), wherethe 
uid and stru
ture equations are solved separately at ea
h iteration. TheLagrange multiplier method was used to treat the 
ontinuity of the velo
ity onthe interfa
e.The meshes are obtained by using MODULEF [16℄. The 
uid mesh has 336tetrahedrons and the stru
ture mesh has 366 tetrahedrons. The meshes aremat
hing on the interfa
e.The 
uid is solved numeri
aly by the software NSP1B3 [17℄ and the stru
tureby MODULEF.The numeri
al tests performed by us show that the 
omputed 
uid andstru
ture velo
ities are almost equal at the interfa
e.12
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