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A fast method for solving fluid–structure interaction problems
numerically
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SUMMARY

The paper presents a semi-implicit algorithm for solving an unsteady fluid–structure interaction prob-
lem. The algorithm for solving numerically the fluid–structure interaction problems was obtained by
combining the backward Euler scheme with a semi-implicit treatment of the convection term for the
Navier–Stokes equations and an implicit centered scheme for the structure equations. The structure is
governed either by the linear elasticity or by the non-linear St Venant–Kirchhoff elasticity models. At
each time step, the position of the interface is predicted in an explicit way. Then, an optimization problem
must be solved, such that the continuity of the velocity as well as the continuity of the stress hold at the
interface. During the Broyden, Fletcher, Goldforb, Shano (BFGS) iterations for solving the optimization
problem, the fluid mesh does not move, which reduces the computational effort. The term ‘semi-implicit’
used for the fully algorithm means that the interface position is computed explicitly, while the displacement
of the structure, velocity and the pressure of the fluid are computed implicitly. Numerical results are
presented. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider an unsteady incompressible flow through a channel with elastic wall. This kind of
fluid–structure interaction problem is of considerable interest in bio-mechanics.

A family of explicit algorithms known also as staggered was successfully employed for the
aeroelastic applications [1]. The numerical results presented in [2] show that an explicit algorithm
based on the leap-frog scheme for the structure and on the backward Euler scheme for the fluid
is unstable for simulation of blood flow in large arteries. The instability does not depend on the
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time step but on the mass densities of fluid and structure and on the geometry. The theoretical
result presented in [3] confirms that. In [4], explicit algorithms based on the generalized � method
for the structure and three backward differencing schemes for the fluid will get unstable when the
mass density ratio of fluid and structure is greater than a certain threshold.

Implicit algorithms have been developed based on fixed point strategies [2, 5, 6]. Using the
transpiration technique [7, 8], the convergence can be accelerated. Faster algorithms are obtained
when the derivative is employed. A block Newton algorithm was used in [9], where the derivative
of the operators are approached by finite differences. The Newton method was employed in [10],
where the derivative of the operator was replaced by a simpler operator and in [11] where the
gradient was computed analytically. The Newton method that incorporate the linearization of the
fully discretized model was described in [12]. Space–time finite element techniques for fluid–
structure interaction problems are presented in [13].

Other implicit algorithms based on optimal control model was investigated in [14, 15] in the
steady case. We can use the same strategy for the unsteady fluid–structure interaction problems and
at each time step, we have to solve an optimization problem. The gradient of the cost function is
approached by finite differences in [16] where it is proved the superiority of the Broyden, Fletcher,
Goldforb, Shano (BFGS) method in comparison with the modified Newton method (Newton with
line search), when moderate time step is used. The analytic formula of the gradient of the cost
function is presented in [17].

Since the implicit algorithms are very expensive in computational time, a semi-implicit strategy
based on the Chorin–Temam projection scheme for incompressible flows is introduced in [18]. The
term semi-implicit means that the interface position is computed explicitly, while the displacement
of the structure, velocity and the pressure of the fluid are computed implicitly. A related semi-
implicit algorithm is presented in [19], where the structure equation is embedded into the fluid
equations.

The aim of this paper is to present a semi-implicit algorithm based on the optimal control idea.
The numerical results prove that the computational effort is reduced in comparison with the implicit
algorithm, while the computed solutions obtained by the two methods are almost the same.

2. STATEMENT OF THE PROBLEM

Let us denote by �S the undeformed structure domain. We shall assume that its boundary admits
the decomposition ��S=�D∪�N∪�0. On �D the displacement will be prescribed and on �N the
stress is known.

The initial fluid domain �F
0 is bounded by: �1 the inlet section, �2 the bottom boundary, �3

the outlet section and �0 the top boundary (see Figure 1, at the left). The boundary �0 is common
of both domains and it represents the initial position of the fluid–structure interface.

Under the action of the fluid stress, the structure will be deformed. At the time instant t , the
fluid occupies the domain �F

t bounded by the moving interface �t and by the rigid boundary
�=�1∪�2∪�3 (see Figure 1, at the right).

We have assumed that the fluid is governed by the Navier–Stokes equations, while either linear
elasticity or non-linear St Venant–Kirchhoff elasticity models have been employed for the structure.
At each time instant t ∈[0,T ], we are interested to know: the structure displacement u=(u1,u2)T :
�S×[0,T ]→R2, the fluid domain �F

t , the fluid velocity v(t)=(v1(t),v2(t))T :�F
t →R2 and the

fluid pressure p(t) :�F
t →R.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1149–1172
DOI: 10.1002/fld



A FAST METHOD FOR FLUID–STRUCTURE INTERACTION PROBLEMS 1151

A D

Σ

CB

31Σ

2Σ

Ω
F

Ω
S

Γ0

0

A D

Σ

CB

31Σ

2Σ

Ω
F
t

Γ t

Figure 1. Initial (left) and intermediate (right) geometrical configuration.

Linear elasticity equations:

�S
�2u
�t2
−∇ ·�S= fS in �S×(0,T ) (1)

�S=�S(∇ ·u)I+2�S�(u) (2)

�(u)= 1
2 (∇u+(∇u)T) (3)

u=0 on �D×(0,T ) (4)

�SnS=0 on �N×(0,T ) (5)

where �S>0 is the mass density of the structure, �S>0 and �S>0 are the Lamé parameters,
fS :�S×(0,T )→R2 is the applied volume force per unit area, �(u) is the linearized strain tensor,
I is the identity matrix, nS is the unit outer normal vector along the boundary ��S.

Navier–Stokes equations:

�F
(

�v
�t
+(v ·∇)v

)
−∇ ·�F= fF ∀t ∈(0,T ) ∀x∈�F

t (6)

∇ ·v=0 ∀t ∈(0,T ) ∀x∈�F
t (7)

�F=−pI+2�F�(v) (8)

�FnF=hin on �1×(0,T ) (9)

�FnF=hout on �3×(0,T ) (10)

v=0 on �2×(0,T ) (11)

where �F>0 and �F>0 are the mass density and the viscosity of the fluid, fF=( f F1 , f F2 ) are the
applied volume forces, in general the gravity forces, hin :�1×(0,T )→R and hout :�3×(0,T )→R

are prescribed boundary stress, nF is the unit outer normal vector along the boundary ��F
t .

The interface �t is the image of the boundary �0 by the map

T(X)=X+u(X, t)
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Interface conditions:

v(X+u(X, t), t)= �u
�t

(X, t) ∀(X, t)∈�0×(0,T ) (12)

(�FnF)(X+u(X,t),t)=−(�SnS)(X,t) ∀(X, t)∈�0×(0,T ) (13)

Equations (12) and (13) represent the continuity of velocity and of stress at the interface, respec-
tively.

Initial conditions:

u(X, t=0)=u0(X) in �S (14)

�u
�t

(X, t=0)= u̇0(X) in �S (15)

v(x, t=0)=v0(x) in �F
0 (16)

where u0 is the initial structure displacement, u̇0 is the initial structure velocity and v0 is the initial
fluid velocity.

The governing equations for fluid–structure interaction problem are (1)–(16). The above fluid
and structure models could be considered unbalanced: on the one hand, the structure is governed
by a linear elastic constitutive law adapted for small displacements and, on the other hand, the
fluid equations are written in a moving domain. In the real life, the displacement of a segment
of human artery (6 cm length, 0.1 cm thickness, 1 cm diameter) is about 0.1 cm, therefore a linear
mathematical model for the structure could be sufficient for this particular application. Contrary
to the elastic solids, the fluids are very sensitive to a moving boundary. This is probably due
to weak intermolecular forces and even a small displacement of a boundary produces important
modifications in a fluid flow. For this reason, it is necessary to write the fluid equations in a
moving domain. Coupling Navier–Stokes equations with a linear model for the structure was used
in [2, 6, 20] where the structure is governed by the independent rings model, by Navier equation
[21] or by a linear membrane [22, 23].

Non-linear elasticity equations: In applications with large displacement of the structure, non-
linear models have to be used as in [5, 10, 13, 18] (shells), in [24] (beams), or in [25] (membrane).
In this paper, we include also the study of the interaction of the Navier–Stokes equations with a
non-linear St Venant–Kirchhoff elasticity model (see [26]). We just replace Equations (2)–(3) by

�S=�S(E11(u)+E22(u))I+2�SE(u) (17)

E(u)= 1
2 (∇u+(∇u)T+(∇u)T∇u) (18)

where E(u)=(Ei j (u))i, j=1,2, is the Green–St Venant strain tensor. The non-linear St Venant–
Kirchhoff elasticity model could be used for large displacements but small strains of the structure.

3. STRUCTURE APPROXIMATION BY CENTERED TIME ADVANCING SCHEME

We introduce the following Hilbert space:

WS={wS∈(H1(�S))2;wS=0 on �D}
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The habitual regularity of a weak solution of the linear elasticity model is u∈L2(0,T ;WS) and
du/dt ∈L2(0,T ;(H1(�S))2) (see [27, Chapter XVIII]), but for fluid–structure interaction problem,
more regularity is required (see [28]). For example, condition (12) makes sense if the structure
velocity du/dt(t) is at least in (H1(�S))2.

Multiplying Equation (1) by wS∈WS and from the Green formula, we obtain∫
�S

�S
�2u
�t2
·wS dX+aS(u,wS)=

∫
�S

fS ·wS dX+
∫

�0

(�SnS) ·wS ds ∀wS∈WS (19)

where

aS(u,wS)=
∫

�S
�S(∇ ·u)(∇ ·wS)dX+

∫
�S

2�S�(u) :�(wS)dX

in the linear case and

aS(u,wS)=
∫

�S
(�S(E11(u)+E22(u))I+2�SE(u)) :(∇wS)dX

in the non-linear case.

3.1. Modal decomposition of the linear model

For each i ∈N∗, there exists an unique eigenvalue �i>0 and an unique eigenfunction /i ∈WS,
solution of

aS(/
i ,wS)=�i

∫
�S

�S/i ·wSdX ∀wS∈WS (20)

such that ∫
�S

�S/i ·/ j dX=�i j (21)

Let us denote by �i (t)=
∫
�0

(�SnS)(t) ·/i ds. The problem (19) has a solution of the form

u(t)=∑
i�1

qi (t)/
i

where qi is the solution of the second-order differential equation

q ′′i (t)+�i qi (t)=
∫

�S
fS(t) ·/i dX+�i (t), t ∈(0,T ) (22)

qi (0)=
∫

�S
�Su0 ·/i dX (23)

q ′i (0)=
∫

�S
�Su̇0 ·/i dX (24)

The solution of problem (20)–(21) can be approached by using the finite element method. We
have to solve in this case a generalized eigenproblem of the form

KhU
i
h=�i,hMhU

i
h, (U j

h)
TMhU

i
h=I
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Remark 1
Following [29, p. 572], when the initial displacement and velocity are zero, the solution of (22) is
given by

qi (t)= 1√
�i

∫ t

0
fi (s)sin(

√
�i (t−s))ds

where fi (t)=
∫
�S fS(t) ·/i dX+�i (t). If �i is very large, the influence of qi (t) in u(t) diminishes,

therefore in practical calculation, only the first m eigenvalues will be considered

0<�1,h��2,h� · · ·��m,h

Let N ∈N∗ be the number of time steps and �t=T/N the time step. We set tn=n�t for
n=0,1, . . . ,N . We denote �ni =�i (tn) and let qni be approximation of qi (tn).

Equation (22) will be approached by the following centered scheme: knowing qn−1i and qni ,
find qn+1i such that

(qn+1i −2qni +qn−1i )

(�t)2
+�i,h(	q

n+1
i +(1−2	)qni +	qn−1i )

=
∫

�S
(	fS,n+1+(1−2	)fS,n+	fS,n−1) ·/i dX+	�n+1i +(1−2	)�ni +	�n−1i (25)

where 	 is a real parameter in (0, 12 ) and fS,n= fS(tn) are the volume forces. This scheme is of
second order in time and if 	∈[ 14 , 1

2 ], then it is unconditionally stable.
The structure displacement at time instant tn will be approached by

unh(X)=
m∑
i=1

qni /
i
h(X) ∀X∈�S

3.2. Newton’s method for the non-linear model

A second-order time advancing scheme for (19) is: find un+1∈WS an approximation of u(tn+1)
such that ∫

�S
�S

(un+1−2un+un−1)
(�t)2

·wS dX

+	aS(un+1,wS)+(1−2	)aS(un,wS)+	aS(un−1,wS)

=
∫

�S
(	fS,n+1+(1−2	)fS,n+	fS,n−1) ·wS dX

+
∫

�0

(	FS,n+1+(1−2	)FS,n+	FS,n−1) ·wS ds ∀wS∈WS (26)

where fS,n= fS(tn) are the volume forces, FS,n=(�SnS)(tn) are the surface forces acting on the
interface and 	 is a real parameter in (0, 1

2 ).
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We recall that the components of the St Venant–Kirchhoff stress tensor are

�Si j (u)=�S(E11(u)+E22(u))�i j+2�SEi j (u)

where the Green–St Venant strain tensor E(u) is given by (18). The map u→E(u) is non-linear
and we will use the Newton’s method in order to obtain un+1 the solution of (26).

Knowing the derivative with respect to u of the components of the Green–St Venant strain tensor
for an arbitrary h=(h1,h2) in WS,

dE11

du
(u)h= 1

2

(
2
�h1
�x1
+2�u1

�x1

�h1
�x1
+2�u1

�x2

�h1
�x2

)
dE22

du
(u)h= 1

2

(
2
�h2
�x2
+2�u2

�x1

�h2
�x1
+2�u2

�x2

�h2
�x2

)
dE12

du
(u)h= 1

2

(
�h1
�x2
+ �h2

�x1
+ �u2

�x1

�h1
�x1
+ �u2

�x2

�h1
�x2
+ �u1

�x1

�h2
�x1
+ �u1

�x2

�h2
�x2

)
dE21

du
(u)h= dE12

du
(u)h

we can compute easily

daS
du

(u,wS)h=
2∑

i, j=1

∫
�S

d�Si j
du

(u)h
�wS

i

�x j
dX

Newton’s method for solving (26)
Step 0: Initialization. Set k=0 and un+1,0=un . We will generate un+1,k for k=1,2, . . . .

Step 1: Find hk the solution of the linear system∫
�S

�S
hk

(�t)2
·wS dX+ daS

du
(un+1,k,wS)hk

=
∫

�S
�S

(un+1,k−2un+un−1)
(�t)2

·wS dX

+	aS(un+1,k,wS)+(1−2	)aS(un,wS)+	aS(un−1,wS)

−
∫

�S
(	fS,n+1+(1−2	)fS,n+	fS,n−1) ·wSdX

−
∫

�0

(	FS,n+1+(1−2	)FS,n+	FS,n−1) ·wS ds ∀wS∈WS (27)

Step 2: If hk is small, then stop.
Step 3: Set un+1,k+1=un+1,k−hk ; k←k+1; go to Step 1.
The variational equation (27) will be solved by the finite element method. We denote by un+1h

the displacement of the structure at the time instant tn+1.
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4. ARBITRARY LAGRANGIAN EULERIAN (ALE) FRAMEWORK FOR
APPROXIMATION OF FLUID EQUATIONS

Let �̂
F
be a reference fixed domain. Let At , t ∈[0,T ] be a family of transformations such that

At (̂x)= x̂, ∀ x̂∈�1∪�2∪�3, At (�0)=�t , At (�̂
F
)=�F

t , where x̂= (̂x1, x̂2)T∈ �̂
F
represent the

ALE coordinates and x=(x1, x2)T=At (̂x) the Eulerian coordinates.
Let v be the velocity of the fluid in the Eulerian coordinates. The corresponding function in the

ALE framework v̂ : �̂F×[0,T ]→R2 is defined by v̂(̂x, t )=v(At (̂x), t)=v(x, t). We denote the
ALE time derivative by �v/�t |̂x(x, t)=� v̂/�t( x̂, t) and the domain velocity byW (x, t)=�At/�t (̂x).

In order to obtain the existence of a weak solution of the Navier–Stokes equations in moving
domain, we assume that v(t)∈(H1(�F

t ))
2, p(t)∈L2(�F

t ) and At is C1-diffeomorphism for
each t , but for fluid–structure interaction problem, the existence is obtained in some particular
Sobolev spaces (see [28]).

The Navier–Stokes equations in the ALE framework give: find the fluid velocity v verifying (12)
and the fluid pressure p such that

�F
(

�v
�t

∣∣∣∣̂
x
+((v−W ) ·∇)v

)
−2�F∇ ·�(v)+∇ p= fF ∀t ∈(0,T ) ∀x∈�F

t

∇ ·v=0 ∀t ∈(0,T ) ∀x∈�F
t

Multiplying the above equations bywF and q , respectively, and using the Green formula, we have∫
�F
t

�F
�v
�t

∣∣∣∣̂
x
·wF dx+

∫
�F
t

�F(((v−W ) ·∇)v) ·wF dx

+aF(v,wF)+bF(wF, p)=�F(wF) ∀wF=0 on �2∪�t

bF(v,q)=0 ∀q
where

aF(v,wF)=
∫

�F
t

2�F�(v) :�(wF)dx

bF(wF,q)=−
∫

�F
t

(∇ ·wF)q dx

�F(wF)=
∫

�F
t

fF ·wF dx+
∫

�1

hin ·wF ds+
∫

�3

hout ·wF ds

For the approximation of fluid equations, we employ a time integration algorithm based on the
backward Euler scheme and a semi-implicit treatment of the convection term. In the case of a
fixed domain, this scheme has been analyzed in [30], where the unconditional stability is proved.
For the fully discrete problem in a fixed domain, a stability bound on �t/h� is required, where
�>0. This condition is less restrictive than the condition necessary for the explicit algorithm.

Knowing �F
n , �F

n+1, Vn , W n+1, find vn+1 and pn+1 such that

vn+1(X+un+1h (X))=
m∑
i=1

qn+1i −qni
�t

/ih(X) ∀X∈�0 (28)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1149–1172
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∫
�F
n+1

�F
(
vn+1−Vn

�t

)
·wF dx+

∫
�F
n+1

�F(((Vn−W n+1
) ·∇)vn+1) ·wF dx

+
∫

�F
n+1

2�F�(vn+1) :�(wF)dx−
∫

�F
n+1

(∇ ·wF)pn+1 dx

=
∫

�F
n+1

fF ·wF dx+
∫

�1

hn+1in ·wF ds+
∫

�3

hn+1out ·wF ds ∀wF=0 on �2∪�n+1 (29)

−
∫

�F
n+1

(∇ ·vn+1)q dx=0 ∀q (30)

where

Vn(x)=vn(Atn ◦A−1tn+1(x)) and W n+1
(x)=Atn+1 (̂x)−Atn (̂x)

�t
= x−Atn ◦A−1tn+1(x)

�t

The condition (28) is the discrete version of the continuity of the velocity at the interface (12).

Building the discrete ALE map

Let T0
h be a mesh of triangular finite elements for the reference domain �̂

F=�F
0.

If we know the displacement of the structure ũn+1h :�S→R2, we can compute d̃n+1 :�F
0→R2

from the following boundary value problem:

�d̃n+1=0 on �F
0 (31)

d̃n+1= ũn+1h on �0 (32)

d̃n+1=0 on �1∪�2∪�3 (33)

We can set the discrete ALE map as follows Ah,n+1(̂x)= x̂+ d̃n+1(̂x) and the mesh for the
domain at time instant tn+1 can be obtained by

T̃
n+1
h =Ah,n+1(T0

h) (34)

Sometimes, especially for non-convex domains, the ALE map obtained by harmonic extension
reverses the triangles of the reference domain and produces non-valid mesh. An alternative tech-
nique is to minimize the energy of a mechanical system formed by a set of springs that joins the
mesh nodes. A penalty term could ensure that the triangles are not reversed.

The mesh velocity is computed by the finite difference formula

W̃ n+1
(x)= d̃n+1(̂x)− d̃n (̂x)

�t
(35)

If we predict explicitly the structure displacement by the formula ũn+1h =2unh−un−1h , we can obtain
directly the mesh velocity as the solution of

�W̃ n+1=0 on �F
0

W̃ n+1= 2unh−3un−1h +un−2h

�t
on �0

W̃ n+1=0 on �1∪�2∪�3

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1149–1172
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Now, the right side part of the boundary condition on �0 depends on the displacements of the
structure obtained after solving the coupled problem at previous time steps. Other possibility used
in [18] is to prescribe the mesh velocity at the interface to be 3u̇nh− u̇n−1h /2 which is Adams–
Bashforth formula. We have denoted by u̇nh an approximation of the structure velocity at time
instant tn . Also, we can use higher order multi-step backward extrapolating schemes.

5. IMPLICIT AND SEMI-IMPLICIT TIME INTEGRATION SCHEMES

The method that we use here to solve the coupled problem uses partitioned procedure (the
fluid and structure equations are solved separately), which is very often used technique to solve
fluid–structure interaction problems. In this way, the exiting solvers for each problem can be
employed. Alternatively, the fluid–structure interaction problems could be solved by monolithic
algorithms [31].

At each time step, an optimization problem of the form

inf
a∈Rm

J (a)

has to be solved. This technique was successfully employed in [16, 17], where implicit algorithms
are presented. We will use the same least square method based on the BFGS method in order to
impose the continuity of the stress at the interface. Details on the BFGS algorithm can be found
in [32].

5.1. The structure is governed by a linear model and solved by modal decomposition

In a previous section, we have denoted by

�i (t)=
∫

�0

(�SnS)(t) ·/i ds

The stress at the fluid–structure interface (�SnS)(t) is not known. Since the stress is continuous
across the interface, we obtain that∫

�0

(�SnS)(t) ·/i ds=−
∫

�0

(�FnF)(X+u(X,t),t) ·/i ds

Consequently, if we set


i (t)=−
∫

�0

(�FnF)(X+u(X,t),t) ·/i ds (36)

we get �i (t)=
i (t), for all i�1 and t ∈[0,T ]. After the full discretization, this equality does not
hold and it will be treated by the least-squares method.

How the stress at the fluid–structure interface is computed
Method 1: The integral (36) mixes functions defined on different domains: the fluid stress

tensor defined in the fluid domain, the unit outer normal vector defined on the interface and an
eigenfunction defined in the structure domain. If vh and ph are finite element approximations of
fluid velocity and pressure, respectively, we can define �F

h the P1 interpolation of −phI+2�F�(vh).
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On every segment of the interface, we can compute the normal nFh . Let us define gh=�F
hn

F
h ,

which is a piecewise linear function on the interface, but not continuous. Without supplementary
computations, we set ĝh(X, t)=gh(X+uh(X, t), t). More precisely, in a node P of the mesh of
�0, the finite element function ĝh takes the same value as gh in the node P+uh(P, t) of the mesh
of �t . Though both the finite element functions ĝh and /ih are defined on �0, the first one use a
grid derived from the fluid mesh and the other use the structure mesh, which are not necessarily
compatible at the interface. Finally, we compute


i (t)=−
∫

�0

ĝh ·/ih ds

Method 2: Alternatively, we can approach 
i (t) by

−
∫

�t

(�F
hn

F
h) ·/ih(T−1)ds

Method 3: Let us introduce the fluid stress tensor defined on the reference domain �̂
F
of

components

�̂
F
i j=− p̂�i j+�F

(
� v̂i

� x̂ j
+ � v̂ j

� x̂i

)
We can approach 
i (t) by

−
∫

�0

(�̂
F
n̂F) ·/i ds

Contrary to the first two methods, where nF have to be computed on the moving interface, the
third one requires the computation of n̂F on the reference interface.

Method 4: In [33] was introduced a technique which is popular because the computation of the
normal vector to the interface is not necessary. The structure load is computed as the residual of
the first fluid equation.

We have employed for the numerical simulation the second and the third methods, which are
more adapted to our computational environment.

Implicit time advancing algorithm
Suppose that at the previous time steps we know: an−1,an ∈Rm and qn−1,qn ∈Rm .
Step 1: Solve by BFGS method starting from the point an the optimization problem

an+1∈arg min
a∈Rm

J (a)

where the cost function is computed as following:

(i) Solve the structure problem. We obtain qn+1 from (25), where an+1 was replaced by a.
Then set the displacement of the structure u=∑m

i=1 q
n+1
i /i .

(ii) Build a fluid mesh T depending on the displacement u.
(iii) Solve the fluid problem on the mesh T under prescribed velocity at the fluid–structure

interface in order to get the fluid velocity v and pressure p.
(iv) Compute 
i from (36) for i=1, . . . ,m.
(v) Set the cost function

J (a)= 1
2‖a−b‖2Rm
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Step 2: Save the mesh Tn+1, the structure displacement un+1, the fluid velocity vn+1, the fluid
pressure pn+1 obtained at the last iteration of the BFGS algorithm at Step 1.

Remark 2
We emphasize that in the implicit strategy, the fluid mesh changes at each call of the cost function
during the minimization process. Consequently, the fluid matrix at the step (iii) have to be assembled
and factorized at every cost function call.

Now, let us introduce the semi-implicit algorithm. The term ‘semi-implicit’ means that the
interface position is computed explicitly, while the displacement of the structure, velocity and
the pressure of the fluid are computed implicitly. This kind of algorithm was introduced in [18].
Our algorithm propose a different strategy based on the least-squares method in order to get the
continuity of the stress at the fluid–structure interface. Also, the continuity of the velocity at the
interface holds each at time step.

Semi-implicit time advancing algorithm
Step 1: Explicit prediction. Set ũn+1h =2unh−un−1h .
Step 2: Harmonic extension. Solve�d̃n+1=0 in�F

0, d̃
n+1=ũn+1 on�0, d̃n+1=0 on�1∪�2∪�3.

Step 3: Build mesh. Set Ah,n+1(̂x)= x̂+ d̃n+1(̂x). The mesh for the fluid domain at time instant

tn+1 can be obtained by T̃
n+1
h =Ah,n+1(T0

h).

Step 4: Set the mesh velocity W̃ n+1
(x)= (̃dn+1(̂x)− d̃n (̂x))/�t .

Step 5: Assembling the finite element matrix of fluid problem (29)–(30). Get a LU factorization
of this matrix.

Step 6: Solve fluid–structure coupled problem in the fixed mesh T̃
n+1
h by BFGS algorithm

starting from the point an

an+1∈arg min
a∈Rm

J (a)

where the cost function is computed as following:

(i) Solve the structure problem. We obtain qn+1 from (25), where an+1 was replaced by a.
Then set the displacement of the structure u=∑m

i=1 q
n+1
i /i .

(ii) Solve the fluid problem (29)–(30) on the mesh T̃
n+1
h under prescribed velocity at the

fluid–structure interface (28) in order to get the fluid velocity v and pressure p.
(iii) Compute 
i from (36) for i=1, . . . ,m.
(iv) Set the cost function

J (a)= 1
2‖a−b‖2Rm

The gradient of the cost function is computed by finite differences.
Step 7: Update qn−1←qn , qn←qn+1, an−1←an , an←an+1, etc.

Remark 3
The major advantage of this implementation consists in using during Step 6, the same factorized
matrix of the fluid problem obtained at Step 5. This was possible because the fluid mesh and the
left side of Equations (29)–(30) do not depend on a. Only the right side of Equation (28) contains
data (qn+1) that depends on a.
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5.2. The structure is governed by a non-linear model and solved by Newton’s method

The stress at the interface FS,n+1=(�SnS)(tn+1) in the 	-scheme (26) is unknown. We approach
the stress at the interface at the time instant tn+1 by

∑m
i=1 �n+1i wi where �n+1i have to be identified

and wi ∈(L2(�0))
2 are shape functions. The shape functions wi are not necessarily compatible

with the structure or fluid finite element functions. Possible choices for wi are polynomial functions
[15], finite element like functions [34]. In this paper we have adopted wi the solution of

aS(w
i ,wS)=�i

∫
�0

wi ·wS dX ∀wS∈WS,

∫
�0

wi ·w j dX=�i j

Let us emphasize that, contrary to the eigenfunction /i , the traces of wi are orthonormal for the
scalar product of L2(�0).

The implicit and semi-implicit time advancing algorithms when the structure is governed by a
non-linear model are the same as for the linear model, excepting the definition of the cost function.

The Step 1 in the implicit algorithm becomes: solve the optimization problem by BFGS method
starting from the point nn ,

nn+1∈arg min
n∈Rm

J (n)

where the cost function is computed as following:

(i) Solve the structure problem (26) by Newton’s method under the load FS,n+1=∑m
i=1 �iw

i

and get the structure displacement u. We recall that aS(·, ·) is non-linear in the first argument.
(ii) Build a fluid mesh T depending on the displacement u.
(iii) Solve the fluid problem on the mesh T under prescribed velocity at the fluid–structure

interface in order to get the fluid velocity v and pressure p.
(iv) Compute

�i=
∫

�0

(
m∑
j=1

� jw
j

)
·wi ds, 
i=−

∫
�0

(�FnF)(X+ũ(X,t),t) ·wi ds, i=1, . . . ,m

(vi) Set the cost function

J (a)= 1
2‖a−b‖2Rm

Similarly, Step 6 in the semi-implicit algorithm becomes: solve by BFGS the optimization
problem

nn+1∈arg min
n∈Rm

J (n)

where the cost function is computed as following:

(i) Solve the structure problem (26) by Newton’s method under the load FS,n+1=∑m
i=1 �iw

i

and get the structure displacement u. We recall that aS(·, ·) is non-linear in the first argument.

(ii) Solve the fluid problem (29)–(30) on the mesh T̃
n+1
h under prescribed velocity at the

fluid–structure interface (u−un)/�t in order to get the fluid velocity v and pressure p.
(iii) Compute

�i=
∫

�0

(
m∑
j=1

� jw
j

)
·wi ds, 
i=−

∫
�0

(�FnF)(X+ũ(X,t),t) ·wi ds, i=1, . . . ,m
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(iv) Set the cost function

J (a)= 1
2‖a−b‖2Rm

6. NUMERICAL RESULTS

The numerical tests have been produced using FreeFem++ (see [35]).
The computation has been made in a domain of length L=6cm and height H=1cm. The

viscosity of the fluid was taken to be �=0.035g/cm·s, its density �F=1g/cm3. The thickness of
the elastic wall is hS=0.1cm, the Young’s modulus E=3×106 g/cm·s2, the Poisson ratio �=0.3,
the density �S=1.1g/cm3. The Lamé parameters are computed by the formulas:

�S= �SE

(1−2�S)(1+�S)
, �S= E

2(1+�S)

The volume force in fluid and structure are fF=(0,0)T and fS=(0,0)T. The prescribed boundary
stress at the inlet is

hin(x, t)=
{

(103(1−cos(2t/0.025)),0), x∈�1, 0�t�0.025

(0,0), x∈�1, 0.025�t�T

and hout=(0,0) at the outlet.

Remark 4
The above physical parameters correspond to the human blood flow in large arteries. Similar data
were used in [2, 3] where the structure is governed by the generalized string model. The explicit
algorithm based on the leap-frog scheme for the structure and on the backward Euler scheme for
the fluid fails for this particular application (see [2]). Moreover, an implicit algorithm based on
a classical fixed point iteration is unstable. A small relaxation parameter is necessary in order to
get the stability of the fixed point iterations (see [3]). The same problem as in the present paper
has been solved in [36], where the continuity of the velocity was treated by a Lagrange multiplier.
The numerical results presented in [36] show that the continuity of the velocity is not very well
respected and a small time step is necessary.

6.1. Linear elasticity. The structure is fixed at the left and at the right sides

We have used for the structure a reference mesh of 60 triangles and 62 vertices and for the fluid
a reference mesh of 1250 triangles and 696 vertices. The meshes are not necessarily compatible
at the interface (see Figure 3). The structure is fixed at the left and at the right sides.

For the approximation of the fluid velocity and pressure we have employed the triangular finite
elements P1+bubble and P1, respectively. The finite element P1 was used in order to solve the
eigenproblem of the structure.

The first eigenvalues are: �1,h=7018.91, �2,h=50500, �3,h=193418, �4,h=529809, �5,h=
832389, �6,h=1.13276e+06, �7,h=2.12627e+06. For the physical parameters above and in view
of the Remark 1, only the first m=3 modes have been considered for instant. More modes do not
quantitatively change the value of the structure displacement.

The real parameter in the centered scheme (25) was chosen to be 	=0.25.
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Figure 2. Linear elasticity. Time history of the final values of the cost function obtained by the BFGS
method for �t=0.0005 (top, left), �t=0.001 (top, right), �t=0.0025 (bottom).

Stopping criteria and the mean number of cost function calls: We have performed the simulation
for a time duration T =0.1s, with the time step �t=0.001s and N=100 time iterations.

At each time step, the optimization problem have been solved by the BFGS algorithm. The final
values of the cost function are less than 4.5×10−10 (see Figure 2, top right). We have employed
the freefem++ implementation of the BFGS algorithm, which use the stopping criteria: ‖∇ J‖<�
or the number of iterations reaches a maximal value nbiter.We have performed the computations
with �=10−4 and nbiter=10. We set to 5 the maximal number of the iterations for the line search.

At each time step, the BFGS performs in average 6.08 iterations in the semi-implicit case and
6.24 iterations in the implicit case. At each BFGS iteration, 2.6 evaluations of the cost function
are necessary in average for the line search and one call of the gradient. In this paper, we compute
∇ J (a) by the finite differences scheme

�J
��k

(a)≈ J (a+��kek)− J (a)

��k

where ek is the kth vector of the canonical base of Rm and ��k=10−6 is the grid spacing.
Consequently, m+1=4 calls of the cost function are needed in order to compute the gradient. To
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sum up, at each time step, the BFGS performs in average 40.24 evaluations of the cost function
in the semi-implicit case and 41.61 iterations in the implicit case.

CPU time: The CPU time is 6min and 14 s for N=100 time iterations and �t=0.001s on a
computer with two processors of 3.6GHz frequency.

In order to prove the superiority of the semi-implicit time advancing algorithm, we will compare
with the CPU time obtained using implicit time advancing algorithm which is 71min and 6 s. So
the semi-implicit strategy is 11.34 times faster than the implicit one.

In the case of implicit strategy, at each evaluation of the cost function we have to solve one
structure problem, to update the fluid mesh, to assembling the finite element matrix, to factorize
it and to solve the fluid problem. We recall that, in the case of the semi-implicit time advancing
algorithm, the evaluation of the cost function needs to solve a linear system, but what is of great
practical importance consist in knowing a LU factorization of the matrix obtained at Step 5.

Computational gain on a finer fluid mesh: Also, we have performed the computations for a fluid
mesh of 1632 vertices and 3052 triangles. In this case, the CPU time is 13min and 53 s when the
semi-implicit strategy is employed and 173min and 52 s in the case of the implicit strategy, which
gives that the first one is 12.52 faster than the second.

Computational reduction when the number of eigenfunctions is m=7: The CPU times is 193min
and 35 s in the case of the implicit strategy on fluid mesh of 1250 triangles and 696 vertices, when
m=7. The semi-implicit scheme takes 14min and 30 s, therefore we get a reduction of factor
13.31.

Stability: We have performed the simulation for time steps: �t=0.0005,0.001,0.0025s. The
final values of the cost function are less than 8×10−10 (see Figure 2). The semi-implicit algorithm
has good stability properties, because the computed solution for moderate time steps are similar
to the solution obtained by implicit method.

Behavior of the computed solution: The behavior of the fluid–structure interaction problem at
different time instants is presented in Figures 3–6. A wave starts from the left side of the structure
and it will be reflected at the right side. Movies with these simulations can be found at the address:
http://www.edp.lmia.uha.fr/murea/.

Figure 3. Linear elasticity. Fluid and structure meshes at time instant t=0.015 (top),
t=0.025 (middle), and t=0.035 (bottom).
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Figure 4. Linear elasticity. Fluid pressure [dynes/cm2] at time instant t=0.015 (top),
t=0.025 (middle), and t=0.035 (bottom).

6.2. Linear elasticity. The structure is fixed at the left and free at the right

In addition, we have performed simulation in the case when the horizontal displacement of the
structure at the right side is supposed to be zero but the vertical displacement is free. In this case,
when we build the discrete ALE map, the boundary condition on �3 in problem (31)–(31) was
replaced by

d̃n+1(L , x2)=
(
0,

x2ũh,2(L ,H)

H

)
∀x2∈(0,H)

Fluid and structure meshes at different time instants are shown in Figure 7.
We have investigated the vertical displacement of three points on the interface of coordinates

x1= L/4, x1= L/2, x1=3L/4, respectively (see Figure 8). We recall that L denotes the length of
the undeformed interface.

6.3. Non-linear elasticity. The structure is fixed at the left and at the right sides

We have used for the structure a reference mesh of 60 triangles and 62 vertices and for the fluid
a reference mesh of 1250 triangles and 696 vertices. We use the same physical and numerical
parameters as in the linear case. This time, at every cost function call, the structure problem is
solved by the Newton’s method. The finite element P1 was used in order to solve the linear system
(27) at each Newton iteration.
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Figure 5. Linear elasticity. Fluid velocity [cm/s] at time instant t=0.015 (top),
t=0.025 (middle), and t=0.035 (bottom).

The CPU time is 17min and 13 s for N=100 time iterations and �t=0.001s on a computer
with two processors of 3.6GHz frequency. The CPU time obtained using implicit time advancing
algorithm which is of 102min and 26 s. So the semi-implicit strategy is 5.94 times faster than the
implicit one.

At each time step, the BFGS performs in average 7.11 iterations in the semi-implicit case and
7.34 iterations in the implicit case. At each BFGS iteration, 2.62 evaluations of the cost function
are necessary in average for the line search in the semi-implicit case and 2.60 iterations in the
implicit case. One call of the gradient is necessary at each BFGS iteration for the both semi-implicit
and implicit strategies. At each time step, the BFGS performs in average 47.10 evaluations of the
cost function in the semi-implicit case and 48.48 iterations in the implicit case. Newton’s method
performs in average two iterations at every cost function call for the both semi-implicit and implicit
strategies.

Figure 9 shows a good agreement between the solutions computed by the semi-implicit and
implicit algorithm. In addition, we have performed simulation when the prescribed boundary stress
at the inlet was magnified by a factor of 3. The maximal vertical displacement of the structure is
about 0.6 cm. The fluid velocity is plotted in Figure 10.

6.4. Discussions

The CPU time ratio of implicit and semi-implicit algorithms is 11.34 when the structure is governed
by linear elasticity model and solved by modal decomposition, while the same ratio is 5.94 when

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1149–1172
DOI: 10.1002/fld



A FAST METHOD FOR FLUID–STRUCTURE INTERACTION PROBLEMS 1167

Figure 6. Linear elasticity. Structure velocity [cm/s] at time instant t=0.015 (top),
t=0.025 (middle), and t=0.035 (bottom).

Figure 7. Linear elasticity and the left side of the structure is free. Fluid and structure meshes at time
instant t=0.050 (top), t=0.075 (middle), and t=0.100 (bottom).
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Figure 8. Linear elasticity. Time history of the vertical displacement of three points on the interface when
the left side of the structure is fixed or free. Points of horizontal coordinate x1= L/4 (top, left), x1= L/2

(top, right), x1=3L/4 (bottom).

the structure is non-linear and solved by Newton’s method. In average, we have

Total CPU time ratio= N×CPU time for one time step (implicit)

N×CPU time for one time step (semi-implicit)

= number of J calls (implicit)

number of J calls (semi-implicit)

× CPU time for one call of J (implicit)

CPU time for one call of J (semi-implicit)

In the linear case, we have

11.34= 41.61

40.24
× CPU time for one call of J (implicit)

CPU time for one call of J (semi-implicit)

= 41.61

40.24
× CPU time fluid (implicit)+CPU time structure+CPU time other

CPU time fluid (semi-implicit)+CPU time structure+CPU time other
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Figure 9. Non-linear elasticity. Time history of the vertical displacement of three points on the
interface when the left side of the structure is fixed. Points of horizontal coordinate x1= L/4 (top,
left), x1= L/2 (top, right), x1=3L/4 (bottom). We observe a good agreement between the curves

obtained by the implicit and semi-implicit algorithms.

and in the non-linear case, we have

5.94= 48.48

47.10
× CPU time fluid (implicit)+CPU time structure+CPU time other

CPU time fluid (semi-implicit)+CPU time structure+CPU time other

Since the CPU time fluid (implicit) is greater that the CPU time fluid (semi-implicit), the function

x→ CPU time fluid (implicit)+x+CPU time other

CPU time fluid (semi-implicit)+x+CPU time other

is decreasing for x>0. This explains why in our application the ratio of the total CPU time
decreases when the CPU time structure is longer, for example in the non-linear case.

The ratio of the total CPU time depends also on the ratio of the number of the cost function
calls. In our application, we have employed the same BFGS method in order to solve the coupled
fluid–structure problem at every time step. The ratio of the number of the cost function calls is
41.61
40.24 for a linear structure and 48.48

47.10 in the non-linear case. But, if we employ a better method for
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Figure 10. Non-linear elasticity. Fluid velocity [cm/s] at time instant t=0.015 (top),
t=0.025 (middle), and t=0.035 (bottom).

solving the coupled fluid–structure problem in the semi-implicit algorithm, the denominators of
the previous ratios decrease and then the ratio of the total CPU time increases.

A straightforward calculation leads to

CPU time fluid (implicit)

CPU time fluid (semi-implicit)

>
CPU time fluid (implicit)+CPU time structure+CPU time other

CPU time fluid (semi-implicit)+CPU time structure+CPU time other

=11.34× 40.24

41.61
=11.06

which proves that the CPU time fluid is considerably reduced when the semi-implicit strategy is
adopted to solve our particular application.

7. CONCLUSIONS

A semi-implicit algorithm for solving numerically an unsteady fluid–structure interaction problem
was presented. At each time step, the position of the interface is predicted in a explicit way. The
displacement of the structure, velocity and the pressure of the fluid are computed implicitly by
solving at each time step an optimization problem such that the continuity of the velocity as well
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as the continuity of the stress hold at the interface. During the optimization process, the fluid mesh
does not move, which reduces the computational effort. The semi-implicit algorithm has good
stability properties even if the interface was computed explicitly.
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