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for Navier–Stokes equations

C. M. Murea∗,†
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SUMMARY

An algorithm that allows remeshing in the arbitrary Lagrangian Eulerian (ALE) framework is presented.
At every time step, we could triangulate the domain using either uniform size meshes or adapted meshes.
We analyze the conditions when two time-advancing algorithms based on the backward Euler scheme
provide identical approximations. Numerical results are presented for Navier–Stokes equations on moving
domain. For three academic tests presented in this paper, the uniform size mesh technique provides more
accurate results than the classical ALE method, in particular when the domain is expanding particularly
fast. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A successful method for solving numerically partial differential equations on moving domain is the
arbitrary Lagrangian Eulerian (ALE) framework [1, 2]. Most commonly, at each time step, a mesh
of the moving domain is obtained as the image by mapping of a fixed mesh of a reference domain.

Different strategies have been proposed to get a mesh of the moving domain by replacing the
interior vertices of a fixed mesh in order to accommodate the displacement of the boundary. In [3],
the displacement of an interior vertex is computed iteratively making a mean of the displacements
of the neighboring vertices. The relocation of an interior vertex is given by making a weighted
mean of the displacements of the boundary vertices in [4, p. 90]. A method based on a relaxation
technique to solve an unconstrained optimization problem is presented in [5]. In [6], the vertices
are moved by solving an elasticity problem. We emphasize that all generated meshes will have
the same number of nodes as the initial mesh and the inter-vertex connections stay unchanged.
In [7], a method to relocate the nodes of the reference mesh is proposed. In addition, a strategy to
optimize the triangulation by changing the inter-vertex connections is studied, but the number of
vertices is still constant.

In the case when the domain is expanding particularly fast, the image by mapping of a fixed
mesh will be distortioned and consequently the accuracy will be affected. The fluid domain have to
be remeshed, either locally or globally. In [8], the norm of the velocity gradient is used to point out
the zone that requires refining or corsering. When remeshing, a transfer procedure of the velocity
and pressure from the old mesh onto the new one is necessary. In [9], a dynamic programming
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algorithm is proposed in order to reconnect the nodes of the current mesh, without repositioning of
the internal nodes. Consequently, the interpolation error is reduced when the solution is transferred
from one mesh to other.

The aim of this paper is to introduce an algorithm that permits to retriangulate the computing
domain at each time step. We regenerate a mesh for the current time domain independently of the
mesh used previously, so the meshes do not have the same number of vertices during the numerical
simulation. We can use this feature in order to get meshes of uniform size or to adapt the meshes to
the computed solution. Contrary to the so-called conservative scheme [10], we keep the ALE time
derivative inside the integral sign. In this paper we present numerical results for Navier–Stokes
equations in domains with fast growth. In the case when all the meshes are obtained through the
ALE map from a fixed mesh, the error increases when the time step decreases for a particular
application. This is an undesirable phenomena. Contrary, when we employ meshes with similar
size, when the time step decreases, the error also decreases. In addition, the uniform size mesh
technique provides more accurate results for our numerical tests.

2. NAVIER–STOKES EQUATIONS IN ALE FRAMEWORK

Let �t be a two-dimensional domain depending on time parameter t ∈[0,T ]. We assume that the
evolution in time of the domain is known. We denote by �D

t a part of the boundary ��t and we
set �N

t =��t \�D
t .

The Navier–Stokes equations in moving domain are: find the velocity v(·, t) :�t →R2 and the
pressure p(·, t) :�t →R, such that

�

(
�v
�t

+(v ·∇)v
)

−∇ ·r= f ∀t ∈(0,T ) ∀x∈�t (1)

∇ ·v= 0 ∀t ∈(0,T ) ∀x∈�t (2)

v= g ∀t ∈(0,T ) ∀x∈�D
t (3)

rn= h ∀t ∈(0,T ) ∀x∈�N
t (4)

v(x,0) = v0(x) in �0 (5)

where �>0 is the mass density, �>0 is the dynamic viscosity, f=( f1, f2) are the applied volume
forces, g is the prescribed boundary velocity, h is the prescribed boundary stress, r=−pI2+2�e(v)
is the stress tensor, e(v)= 1

2 (∇v+(∇v)T) is the strain rate tensor, v0 is the initial fluid velocity.
We denote by �̂ a fixed reference domain. Let At , t ∈[0,T ] be a family of transformations such

that At (�̂)=�t , where x̂=( x̂1, x̂2 )∈ �̂ represents the ALE coordinates and x=(x1, x2)=At ( x̂)

the Eulerian coordinates. We assume that both At and its inverse A−1
t are of class C1. In addition,

we suppose that the derivative (�At/�t)( x̂) exists for all x∈ �̂. In the sequel, ĴAt stands for the
jacobian matrix of the ALE map x̂→At ( x̂), defined by

ĴAt ( x̂)= �At ( x̂)

�̂x

and ĴAt ( x̂)=det(̂JAt ( x̂)) denotes its determinant.
Let v be the velocity of the fluid in the Eulerian coordinates. The corresponding function in

the ALE framework v̂ : �̂×[0,T ]→R2 is defined by v̂(̂x, t)=v(At ( x̂), t)=v(x, t). We denote the
ALE time derivative by

�v
�t

∣∣∣∣̂
x
(x, t)= �̂v

�t
(̂x, t)
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and the domain velocity by

0(x, t)= �At

�t
( x̂)

The Navier–Stokes equations in the ALE framework (see [11]) give: find the fluid velocity v and
the fluid pressure p such that

�

(
�v
�t

∣∣∣∣̂
x
+((v−0)·∇)v

)
−2�∇ ·e(v)+∇ p = f ∀t ∈(0,T ) ∀x∈�t

∇ ·v= 0 ∀t ∈(0,T ) ∀x∈�t

The weak form of the Navier–Stokes equations is: find the velocity v=g on �D
t and the pressure

p such that ∫
�t

�
�v
�t

∣∣∣∣̂
x
·wdx+

∫
�t

�(((v−0) ·∇)v) ·wdx+a(v,w)+b(w, p) = �(w) (6)

b(v,q) = 0 (7)

for all w=0 on �D
t and for all q , where the following notation is used:

a(v,w) =
∫

�t

2�e(v) :e(w)dx

b(w,q) = −
∫

�t

(∇ ·w)q dx

�(w) =
∫

�t

f ·wdx+
∫

�N
t

h·wds

Remark 1
Following [12], the system (6)–(7) is called the non-conservative weak formulation.

Proposition 1
If �w/�t |̂x=0, then ∫

�t

�v
�t

∣∣∣∣̂
x
·wdx= d

dt

∫
�t

v ·wdx−
∫

�t

v ·w(∇ ·0)dx (8)

The proof is based on the Euler expansion formula (see [11, Lemma 7.1, p. 23]), the chain rule
and changing the variables formula.

Remark 2
If we replace in (6) the time derivative by the right-hand side of (8), we get an equivalent
weak form under the hypotheses �w/�t |̂x=0. In order to obtain the last equality, we can take
w(At ( x̂), t)= ŵ( x̂), where ŵ does not depend on t .

3. TIME-ADVANCING SCHEME

Let N ∈N∗ be the number of time steps and �t=T/N the time step. We set tn =n�t for n=
0,1, . . . ,N . We will indicate vn+1(x), pn+1(x) the approximations of v(x, tn+1), p(x, tn+1) for
x∈�F

tn+1
. We set x=Atn+1( x̂) and therefore x̂=A−1

tn+1
(x).
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1438 C. M. MUREA

The time-advancing scheme is: knowing the velocity vn :�tn →R2 at the previous time step, the
current domain �tn+1 and the domain velocity 0n+1, find the velocity vn+1 :�tn+1 →R2 verifying
vn+1=gn+1 on �D

tn+1
and the pressure pn+1 :�tn+1 →R, such that∫

�tn+1

�

(
vn+1−Vn

�t

)
·wdx+

∫
�tn+1

�(((Vn−0n+1) ·∇)vn+1) ·wdx

+
∫

�tn+1

2�e(vn+1) :e(w)dx−
∫

�tn+1

(∇ ·w)pn+1 dx

=
∫

�tn+1

fn+1 ·wdx+
∫

�N
tn+1

hn+1 ·wds ∀w=0 on �D
tn+1

(9)

−
∫

�tn+1

(∇ ·vn+1)q dx=0 ∀q (10)

where Vn(x)=vn(Atn ◦A−1
tn+1

(x)).

Remark 3
This algorithm is based on the backward Euler scheme in order to approach the time derivative
and on a semi-implicit treatment of the convective term. We will see that if we apply the backward
Euler scheme to the right-hand side of (8), we will obtain a different algorithm, in general.

In practice, the domain velocity can be approached by the first-order finite difference scheme

0n+1(x)= Atn+1 (̂x)−Atn (̂x)

�t
= x−Atn ◦A−1

tn+1
(x)

�t

Proposition 2
Let vn+1 :�tn+1 →R2, vn :�tn →R2 and ŵ : �̂→R2 be arbitrary fields. We set w(·, tn+1) :�tn+1 →
R2 and w(·, tn) :�tn →R2 as following:

w(Atn+1( x̂), tn+1)=w(Atn ( x̂), tn)= ŵ( x̂) (11)

If ĴAtn+1
= ĴAtn

and (∇ ·0n+1)=0, then∫
�tn+1

vn+1(x)−vn(Atn ◦A−1
tn+1

(x))

�t
·w(x, tn+1)dx

= 1

�t

∫
�tn+1

vn+1(x) ·w(x, tn+1)dx− 1

�t

∫
�tn

vn(y) ·w(y, tn)dx

−
∫

�tn+1

vn+1(x) ·w(x, tn+1)(∇ ·0n+1)(x)dx (12)

Proof
We denote by E the difference between the left- and right-hand sides of the equality (12). We
obtain that

E = − 1

�t

∫
�tn+1

vn(Atn ◦A−1
tn+1

(x)) ·w(x, tn+1)dx+ 1

�t

∫
�tn

vn(y) ·w(y, tn)dx

+
∫

�tn+1

vn+1(x) ·w(x, tn+1)(∇ ·0n+1)(x)dx
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Using the change of variable for the first two integrals, it follows

E = − 1

�t

∫
�̂
vn(Atn ( x̂)) ·w(Atn+1( x̂), tn+1) ĴAtn+1

d̂x

+ 1

�t

∫
�̂
vn(Atn ( x̂)) ·w(Atn ( x̂), tn) ĴAtn

d̂x

+
∫

�tn+1

vn+1(x) ·w(x, tn+1)(∇ ·0n+1)(x)dx

From the relation (11), we get

E = 1

�t

∫
�̂
vn(Atn ( x̂)) ·ŵ(̂x)(− ĴAtn+1

+ ĴAtn
) d̂x

+
∫

�tn+1

vn+1(x) ·w(x, tn+1)(∇ ·0n+1)(x)dx

We conclude that E vanishes when ĴAtn+1
= ĴAtn

and (∇ ·0n+1)=0. �

Remark 4
Left- and right-hand parts of relation (12) represent backward Euler scheme applied to the left-
and right-hand parts of equality (8), respectively. As a consequence, the algorithm presented in this
paper and that one obtained discretizing the right-hand part of equality (8) produce two different
approximations of the Navier–Stokes equations, in general. But, if the volume of the domain �t is
constant in time, then ĴAt is constant also and according to the Euler expansion formula, we obtain
that ∇ ·0=0. In this case, both algorithms produce the same approximations. If an incompressible,
homogeneous fluid is limited by an impermeable boundary, then the volume of the domain is
constant in time.

Remark 5
If either ĴAtn+1

�= ĴAtn
or (∇ ·0n+1) �=0, there exits particular flow such that the equality (12)

holds but also there exits flow such that equality (12) is violated. The last case will be illustrated
in Section 5.3. A numerical scheme satisfies so-called Discrete Geometrical Conservation Laws,
if it can reproduce a constant solution. Assuming that the solution is constant in time and space,
from (12), it follows that

1

�t

(∫
�tn+1

w(x, tn+1)dx−
∫

�tn

w(x, tn)dx

)
=
∫

�tn+1

w(x, tn+1)(∇ ·0n+1)(x)dx (13)

But the reciprocal is not truth in general: assuming that (13) holds, we do not get (12) for an
arbitrary non-constant solution.

4. FINITE ELEMENT APPROXIMATION WITH REMESHING

In the commonly used ALE framework, the triangulationTn+1 of the computational domain �tn+1

is obtained as the image of a fixed mesh T̂ of the reference domain �̂ by the ALE mapping. But,
if the domain is expanding particularly fast, the size of the mesh Tn+1 increases drastically and
consequently, the approximation looses in accuracy. This inconvenient feature disappears when we
employ the algorithm (9)–(10).

First, let us remark that the time derivative approximation appears inside the integral sign in the
first term of Equation (9). In the classical approach, the time derivative is out of the integral sign
and the shape functions have to verify the constraint �w/�t

∣∣̂
x=0. If all the meshes are obtained

from a fixed mesh of the reference domain through the ALE map, this condition holds.
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1440 C. M. MUREA

Secondly, the algorithm (9)–(10) is defined independently of the finite element triangulation of
�tn+1 . LetT

n+1 andTn be independent triangulations of�tn+1 and�tn , respectively. We emphasize
the fact that the two triangulations do not have necessary the same number of vertices or triangles.
The problem is how to define the discrete ALE map and how to compute Atn ◦A−1

tn+1
(x) which

appears in the definition of Vn(x)=vn(Atn ◦A−1
tn+1

(x)) and 0n+1(x)=(x−Atn ◦A−1
tn+1

(x))/�t .
Let �̂ be a reference domain chosen by the user. We denote by dnhn the P1 finite element

approximation of dn :�tn → �̂ verifying

�dn = 0 in �tn

dn = gn on ��tn

where gn is the displacement that moves ��tn to ��̂. The function dnhn is continuous on �tn

and linear on each triangle of Tn . In a similar way, we can construct dn+1
hn+1

piecewise linear

approximation of dn+1 :�tn+1 → �̂.
We denote by Ai the vertices of Tn and by Âi the image of Ai by the map dnhn . Let T̂

n
be the

triangulation of vertices Âi of the domain �̂. Analogous, from Tn+1 using dn+1
hn+1

, we get T̂
n+1

another triangulation of �̂. We emphasize that the two triangulations T̂
n
and T̂

n+1
of �̂ have not

the same number of vertices.
For each vertex Âi of T̂

n
, we define

(dnhn )
−1( Âi )= Âi −dnhn (Ai )

then we can define (dnhn )
−1 :T̂n →Tn by linear interpolation on each triangle of T̂

n
. If x∈�tn+1 ,

then dn+1
hn+1

(x)∈ �̂ and as a consequence, the expression (dnhn )
−1◦dn+1

hn+1
(x) is well defined. Finally,

we set

Atn ◦A−1
tn+1

(x)=(dnhn )
−1◦dn+1

hn+1
(x)

In general, dn+1
hn+1

(x) is not a vertex of T̂
n
, so in order to compute its image by (dnhn )

−1, we need

to interpolate on the mesh T̂
n
. In practice, in order to simplify the computation, we can take

�̂=�tn and we have T̂
n =Tn .

In this way, we can triangulate the domain �tn+1 independently of the mesh used at the previous
time step Tn . Using this feature, we could adopt one of the following strategies.

• Uniform size meshes. Some triangulation generator provides mesh with size controlled by the
length of the segments on the boundary of the domain. If we want a mesh size of about h, we
will approach the boundary of the domain by a polygon of about (length of ��)/h segments
of length close to h.

• Mixing meshes obtained through the ALE map with uniform size meshes. If

|length of ��̂− length of ��tn+1 |
length of ��̂

�0.1 (for example)

we can use meshes obtained from a fixed mesh of the reference domain �̂ through the ALE
map. If not, we use uniform size meshes.

• Adapted meshes. A criterion to adapt the mesh to the computed solution is proposed in [13]:
generate iteratively a mesh Th until

sup
T∈Th ,(x,y)∈T

(x− y)TH(x− y)�eps (14)

where eps is a positive parameter and H is the Hessian of the computed solution.
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5. NUMERICAL BENCHMARK

We are interested by fluid–structure interaction problems with application to hemodynamics. When
the displacement of the structure is small, such in simulating the blood flow in arteries, the classical
ALE method could be successfully employed [14, 15]. However, this method is not appropriate
in the case of large displacement of the structure such in simulating the blood flow in the left
ventricle of the heart.

A second application that we have in mind is the growth in biological development [16]. For
example, the growth of the limb bud is very important during the first seven days, so the classical
ALE method fails.

But before simulating real multiphysics applications where the fluid domain grows drastically,
it is important to test the accuracy of the ALE method with uniform size mesh on academic cases.

5.1. Test 1. All the meshes are obtained from a fixed mesh of the reference domain through the
ALE map

In order to test the time accuracy of the algorithm presented here, we will perform the benchmark
proposed in [12, pp. 92–94]. The reference domain is �̂=[0,1]×[0, L], where L=6 for instant.

We denote by �̂
N =[0,1]×{L} and �̂

D =��̂\�̂
N

the boundaries of the reference domain. The
ALE map is given by

At ( x̂1, x̂2 )=
(
x̂1,

(
1−0.4sin

(
2�t

10

))
( x̂2−0.5)+0.5

)
For the physical parameters �=1, �=1, f=( f1, f2)=(0,0), the exact solution is

v(x1, x2, t)=
(

−2V (x1−L)

(1+2V t)
,
2V (x2−0.5)

(1+2V t)

)
, p(x1, x2, t)=−

(
2V (x1−L)

(1+2V t)

)2

where V =0.2. On the top, left and bottom boundary, we have imposed the velocity profile, while
on the right boundary, we have imposed external forces

h=(h1,h2)=
(

− 4V

(1+2V t)
, 0

)
We have performed the simulation in the time interval [0,T =10], for the time steps �t=

1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 as in [12], where the time accuracy of a conservative algorithm was tested.

The reference mesh (see Figure 1) is of 696 vertices and 1250 triangles, it is unstructured
and its size is h=0.152882. The P1+bubble finite element was employed for the approx-
imation of the fluid velocity, while the fluid pressure was approximated by the P1 finite
element. The computations have been produced employing the software FreeFem++ [17].
All the meshes are images of the mesh plotted in Figure 1 through the ALE map. Conse-
quently, all the meshes have the same number of vertices, triangles and the same connections.
During the simulation, the mesh size varies from hmin=0.15 to hmax=0.212897. Video-
animations from the numerical simulation results can be found on the web site of the author
http://www.edp.lmia.uha.fr/murea/simulation.html.

Figure 1. The reference mesh.
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Figure 2. The error in the norm L2(�t ) between the computed and the exact velocity
as function of the time step at the time instant t=2 (left). The global error in the norm

L2(0,T ; L2(�t )) as function of the time step (right).
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Figure 3. The error in the norm L2(�t ) between the computed and the exact pressure
as function of the time step at the time instant t=2 (left). The global error in the norm

L2(0,T ; L2(�t )) as function of the time step (right).
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Figure 4. The errors in the norm L2(�t ) between the computed and the exact forces exerted on the
left boundary in function of the time step at the time instant t=2 (left). The global errors in the norm

L2(0,T ; L2(�t )) in function of the time step (right).

The norm of L2(0,T ; L2(�t )) was approximated by
√∑N

n=1�t‖pn‖2
L2(�tn )

. Figures 2 and 3

show good agreement between the exact and the computed velocity and pressure. In applications
like fluid–structure interaction, it is required to know the forces from the fluid acting on the wall,
given by −rn, where r=−pI2+2�e(v). Figure 4 shows that the differences are small between
the computed and the exact applied stresses on the left boundary.
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Supposing that v̂(̂x, ·) is of class C2, we have

v(x, tn+1)−v(Atn ◦A−1
tn+1

(x), tn)

�t
= v̂(̂x, tn+1)− v̂(̂x, tn)

�t
= �̂v

�t
(̂x, tn+1)+O(�t)

It follows that the algorithm is first-order accurate in time.

Remark 6
In the right plot of Figure 2, we observe that the error in velocity in function of the time step is
not a monotone function. We try to explain this phenomenon.

We have seen before that the errors between the exact and the computed solution are small, so
most probably our code is bug free. Also, we have seen that the algorithm is consistent.

In the case of a convex and fixed domain �, for the P1+bubble/P1 finite elements, we have
(see [18], for example)

‖v(n�t)−vnh‖L2(�)�O(�t)+O(h2), ‖p(n�t)− pnh‖L2(�)�O(�t)+O(h)

Consequently, when the time step decreases and the mesh size is constant, the errors diminish.
General works on Navier–Stokes approximations are [18–20]. But in our case, the size of the
meshes of the computational domain �n is not constant in time. Since the error depends on the
time step as well as on the mesh size, if the time step decreases, the error need not necessarily
decrease. We will see in the following section that, when the domain grows drastically, the space
discretization error dominates the time discretization error and the global error increases when the
time step decreases.

5.2. Test 2. Comparing the standard ALE mesh generation with the uniform size meshes strategy

In order to prove the importance of using uniform size meshes, we will take a case when the
deformation of the domain is more important. We use the same benchmark as in the previous
section, but for domain length L=0.6 and the time interval [2.5,7.5].

In the first case, all the meshes are obtained through the ALE map from a fixed mesh of 57
vertices and 88 triangles (Figure 5, the mesh at the left). During the simulation, we obtain the
mesh size: h=0.159099 at t=2.5, h=0.25 at t=5, h=0.35 at t=7.5 (see Figure 5).

In the second case, we retriangulate at each time step in order to get meshes with similar size h.
We obtain at time instant t=2.5 a mesh of 57 vertices, 88 triangles and size h=0.159099, at t=5
a mesh of 84 vertices, 134 triangles and size h=0.15298, at t=7.5 a mesh of 114 vertices, 186
triangles and size h=0.159099 (see Figure 6).

Figure 5. Meshes obtained through the ALE map from a fixed mesh at time instants:
t=2.5 (left), t=5 (middle), t=7.5 (right).
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Figure 6. Meshes obtained by retriangulation at time instants: t=2.5 (left), t=5 (middle), t=7.5 (right).

In Figure 7, we plot the error of velocity and pressure in the norm L2(0,T ; L2(�t )) and the
error of the forces exerted on the left boundary in the norm L2(0,T ; L2(�N

t )). We recall that the

norm of L2(0,T ; L2(�t )) was approximated by
√∑N

n=1�t‖pn‖2
L2(�tn )

, therefore it depends on

the time step �t . In the case when all the meshes are obtained through the ALE map from a fixed
mesh, the error increases when the time step decreases. On the contrary, when we employ meshes
with similar size, when the time step decreases, the error also decreases. We have announced
and explained this phenomenon in Remark 6. Another important point to note for our test is the
following: the uniform size mesh technique provides more accurate results than the classical ALE
framework for small time steps.

5.3. Test 3. Radial flow in a disk with exponential growth

Let �t be the disk of radius R0 exp(t). Let us consider a flow such that ∇ ·v=S is a known
function, but not necessarily the null function. The Navier–Stokes equations become (see
[21, p. 147]): find v(·, t) :�t →R2 and p(·, t) :�t →R, verifying

∫
�t

p(x1, x2, t)dx1 dx2=0,
such that

�

(
�v
�t

+(v ·∇)v
)

−2�∇ ·e(v)+∇ p = f+ 2�

3
∇ ·S ∀t ∈(0,T ) ∀x∈�t

∇ ·v= S ∀t ∈(0,T ) ∀x∈�t

v= g ∀t ∈(0,T ) ∀x∈��t

v(x,0) = v0(x) in �0

For �=1, �=1, R0=1, we compute f, S and g, such that the radial flow given by

v(x1, x2, t)=(2x1(x
2
1 +x22),2x2(x

2
1 +x22)), p(x1, x2, t)= (x21 +x22)

R0 exp(t)
− R0 exp(t)

2

is the exact solution of the Navier–Stokes equations.
The reference domain is �̂=�0 and we consider the ALE map

At ( x̂1, x̂2 )=exp(t)( x̂1, x̂2 )

We can obtain straightforwardly that

ĴAt ( x̂)=exp(2t), 0(x, t)=x, ∇ ·0(x, t)=2
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Figure 7. The error of velocity (top left), pressure (top right), forces exerted on the left boundary (bottom)
as function of the time step using the log10 scale.

Figure 8. Meshes obtained through the ALE map from a fixed mesh at time instants:
t=0 (left), t=0.5 (middle), t=1 (right).

Next, we compare the standard ALE mesh generation with the uniform size meshes strategy for
the time step �t=10−2 and t ∈[0,1].

First, all the meshes are obtained through the ALE map from a fixed mesh of 383 vertices and
701 triangles (Figure 8, the mesh at the left). During the simulation, we obtain the mesh size:
h=0.158012 at t=0, h=0.260518 at t=0.5, h=0.429522 at t=1 (see Figure 8).

In the second simulation, we retriangulate at each time step in order to get meshes with similar
size h. We obtain at time instant t=0 a mesh of 383 vertices, 701 triangles and size h=0.158012,
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Figure 9. Meshes with uniform size obtained by retriangulation at time instants:
t=0 (left), t=0.5 (middle), t=1 (right).

Figure 10. Adapted meshes at time instants: t=0 (left), t=0.5 (middle), t=1 (right).

at t=0.5 a mesh of 1006 vertices, 1906 triangles and size h=0.162088, at t=1 a mesh of 2675
vertices, 5176 triangles and size h=0.168175 (see Figure 9).

Remark 7
Contrary to the Tests 1 and 2, the exact solution of the Test 3 is non-linear in space. As done
previously, we have used P1+bubble finite element for the approximation of the fluid velocity,
while the fluid pressure was approximated by the P1 finite element. A drawback of remeshing at
each time step is the following: there is error in interpolating the computed solution from a mesh
to another. On the other hand, when the meshes are obtained through an ALE map from a fixed
mesh, we do not solve accurately because of the very coarse meshes. The error of velocity in the
norm L2(0,T ; L2(�t )) is 0.153018 when we map a fixed mesh, while it is only 0.0260057 when
we employ meshes with uniform size.

In the third simulation, we use adapted mesh. The software FreeFem++ generates iteratively
meshes adapted to the computed solution until (14) holds, where eps=0.02. Upto four adaptions are
performed at every time step. We obtain at time instant t=0 a mesh of 383 vertices, 701 triangles
and size h=0.158012, at t=0.5 a mesh of 1135 vertices, 2121 triangles and size h=0.344794,
at t=1 a mesh of 631 vertices, 1180 triangles and size h=0.565564 (see Figure 10).

The objective of mesh adoption is refining or coarsering some zones of the domain in order to
capture the behavior of the flow. Generally, the adapted mesh requires fewer number of nodes than
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Figure 11. The error of velocity in the norm L2(0,T ; L2(�t )) as a function of the time step.
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Figure 12. Time histories: the number of vertices (left) and the mesh size (right).

the non-adapted mesh, without loss of accuracy. In this example, for the time step 0.01, the error of
velocity in the norm L2(0,T ; L2(�t )) is 0.0641112, which is less than the error when the meshes
are obtained through an ALE map and greater than the error when we employ meshes with uniform
size. If we diminish eps in (14) for the adapted mesh strategy, we can obtain a smaller error but, at
some time instants, the number of nodes is more important than in the case of uniform size meshes.

In addition, we have performed simulation in the time interval [0,1], for the time steps 0.005,
0.01, 0.05, 0.1, using the three strategies: standard ALE mesh generation, uniform size meshes
and adapted meshes, where eps=0.02 in (14).

We can see in Figure 11 that, for this particular application, the uniform size mesh technique
provides more accurate results compared with two other methods. We note that for the standard
ALE mesh generation and uniform size meshes strategy, when the time step decreases, the global
error also decreases. It is not the case when adapted meshes are employed. We have explained
this phenomenon in Remark 6. We observe in Figure 12 at the right side that the mesh size, when
adapted mesh is employed, is greater than the one when the classical ALE mesh generation is used.
This situation appears because the adapted mesh is refining near the boundary, but it is coarsering
in the center.

6. CONCLUSIONS

We have presented an algorithm that allows to use meshes with uniform size in an ALE framework.
If we retriangulate the domain at every time step, an interpolation error is introduced when the
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solution is transferred from one mesh to another. In spite of this drawback, using uniform size
meshes produces more accurate results than the classical ALE method, in particular when the
domain is expanding particularly fast.

REFERENCES

1. Hughes HJR, Liu WK, Zimmermann TK. Lagrangian–Eulerian finite element formulation for incompressible
viscous flows. Computer Methods in Applied Mechanics and Engineering 1981; 29(3):329–349.

2. Donea J. Arbitrary Lagrangian Eulerian finite element methods. In Computational Methods for Transient Analysis,
Belytschko T, Hughes TJR (eds). Elsevier: Amsterdam, 1983; 473–516.

3. Batina JT. Unsteady Euler airfoil solutions using unstructured dynamic meshes. American Institute of Aeronautics
and Astronautics Journal 1990; 28(8):1381–1388.
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1991.

5. Murea CM. Dynamic meshes generation using the relaxation method with applications to fluid–structure interaction
problems. Analele Universitatii din Bucuresti Matematica 1998; 47(2):177–186.

6. Johnson AA, Tezduyar TE. Mesh update strategies in parallel finite element computations of flow problems with
moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering 1994; 119:73–94.

7. Mosler J, Ortiz M. On the numerical implementation of variational arbitrary Lagrangian–Eulerian (VALE)
formulations. International Journal for Numerical Methods in Engineering 2006; 67(9):1272–1289.

8. Saksono PH, Dettmer WG, Peric D. An adaptive remeshing strategy for flows with moving boundaries and
fluid–structure interaction. International Journal for Numerical Methods in Engineering 2007; 71:1009–1050.

9. Moyle KR, Ventikos Y. Local remeshing for large amplitude grid deformations. Journal of Computational Physics
2008; 227:2781–2793.

10. Formaggia L, Nobile F. A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements.
East–West Journal of Numerical Mathematics 1999; 8(2):105–131.

11. Quarteroni A, Formaggia L. Mathematical modelling and numerical simulation of the cardiovascular system. In
Handbook of Numerical Analysis, Ciarlet PG (ed.), vol. XII. Elsevier, North-Holland: Amsterdam, 2004; 3–127.

12. Nobile F. Numerical approximation of fluid–structure interaction problems with application to haemodynamics.
Ph.D. Thesis, EPFL, Switzerland, 2001.

13. Hecht F. A fews snags in mesh adaptation loops. The 14th International Meshing Roundtable, San Diego, 11–14
September 2005.

14. Murea CM. Numerical simulation of a pulsatile flow through a flexible channel. ESAIM: Mathematical Modeling
and Numerical Analysis 2006; 40:1101–1125.

15. Mbaye I, Murea CM. Numerical procedure with analytic derivative for unsteady fluid–structure interaction.
Communications in Numerical Methods in Engineering 2008; 24(11):1257–1275.

16. Murea CM, Hentschel HGE. A finite element method for growth in biological development. Mathematical
Biosciences and Engineering 2007; 4(2):339–353.

17. Hecht F, Pironneau O. A finite element software for PDE: FreeFem++. Available from: http://www.freefem.org.
18. Gunzburger MD. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and

Algorithms. Academic Press: New York, 1989.
19. Pironneau O. Finite Element Methods for Fluids. Wiley, Masson: Chichester, Paris, 1989.
20. Marion M, Temam R. Navier–Stokes equations: theory and approximation. In Handbook of Numerical Analysis,

Ciarlet PG, Lions JL (eds), vol. VI. Elsevier, North-Holland: Amsterdam, 1998; 96–102.
21. Batchelor GK. An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press:

Cambridge, 2000.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:1435–1448
DOI: 10.1002/cnm


