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Abstract

We propose a numerical method for a fluid-structure interaction problem. Up-

dated Lagrangian method is used for the structure and fluid equations are written

in Arbitrary Lagrangian Eulerian coordinates. The global moving mesh for the

fluid-structure domain is aligned with the fluid-structure interface. At each time

step, we solve a monolithic system of unknowns velocity and pressure defined

on the global mesh. The continuity of velocity at the interface is automatically

satisfied, while the continuity of stress does not appear explicitly in the mono-

lithic fluid-structure system. At each time step we solve only one linear system.

Numerical results are presented.

1 Setting the fluid-structure interaction problem

We study a two dimensional fluid-structure interaction problem. We denote by ΩS
0

the initial structure domain and we assume that its boundary admits the decomposition
∂ΩS

0 = ΓD∪Γ0. We suppose that the initial structure domain is undeformed (stress-free).
At the time instant t, the structure occupies the domain ΩS

t bounded by ∂ΩS
t = ΓD∪Γt.

On the boundary ΓD, we impose zero displacements.
Let D be a rectangle of boundary ∂D = Σ1 ∪Σ2 ∪Σ3 ∪Σ4, with Σ1 the left, Σ2 the

bottom, Σ3 the right and Σ4 the top boundary, (see Figure 1).
We assume that the structure is completely embedded into the fluid, therefore at

the time instant t, the fluid occupies the domain ΩF
t = D \ Ω

S

t . The boundary ∂ΩS
t is

common of both domains.
We denote by US : ΩS

0 × [0, T ] → R
2 the displacement of the structure. A particle

of the structure whose initial position was the point X will occupies the position x =
X+US (X, t) in the deformed domain ΩS

t .
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Figure 1: Geometrical configuration

We denote by F (X, t) = I +∇XU
S (X, t) the gradient of the deformation, where I

is the unity matrix and we set J (X, t) = det F (X, t).
The first and the second Piola-Kirchhoff stress tensors are denoted by Π and Σ,

respectively and the following equality holds Π = FΣ. We suppose that the material of
the structure is elastic, homogeneous, isotropic.

We have assumed that the fluid is governed by the Navier-Stokes equations. For each

time instant t ∈ [0, T ], we denote the fluid velocity by vF (t) =
(
vF1 (t), v

F
2 (t)

)T
: ΩF

t → R
2

and the fluid pressure by pF (t) : ΩF
t → R. Let us remark that the fluid domain ΩF

t

depends on the position of the interface Γt, which is the image of Γ0 via the map
X → X+US (X, t).

Let ǫ
(
vF

)
= 1

2

(
∇vF +

(
∇vF

)T)
be the fluid rate of strain tensor and let σF =

−pF I+ 2µSǫ
(
vF

)
be the fluid stress tensor. In order to simplify the notation, we write

∇vF in place of ∇xv
F , when the gradients are computed with respect to the Eulerian

coordinates x.
The problem is to find the structure displacement US, the fluid velocity vF and the

fluid pressure pF such that:

ρS0 (X)
∂2US

∂t2
(X, t)−∇X · (FΣ) (X, t) = ρS0 (X)g, in ΩS

0 × (0, T ) (1)

US (X, t) = 0, on ΓD × (0, T ) (2)
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ρF
(
∂vF

∂t
+ (vF · ∇)vF

)
− 2µF∇ · ǫ

(
vF

)
+∇ pF = ρFg, ∀t ∈ (0, T ), ∀x ∈ ΩF

t (3)

∇ · vF = 0, ∀t ∈ (0, T ), ∀x ∈ ΩF
t (4)

v = vin, on Σ1 × (0, T ) (5)

σFnF = hout, on Σ3 × (0, T ) (6)

vF = 0, on Σ2 ∪ Σ4 ∪ ΓD (7)

vF
(
X+US (X, t) , t

)
=

∂US

∂t
(X, t) , on Γ0 × (0, T ) (8)

(
σFnF

)
(X+US(X,t),t)

= − (FΣ) (X, t)NS (X) , on Γ0 × (0, T ) (9)

US (X, 0) = US,0 (X) , in ΩS
0 (10)

∂US

∂t
(X, 0) = VS,0 (X) , in ΩS

0 (11)

vF (X, 0) = vF,0 (X) , in ΩF
0 (12)

where ρS0 : ΩS
0 → R is the initial mass density of the structure, g is the acceleration of

gravity vector and it is assumed to be constant, NS is the unit outer normal vector along
the boundary ∂ΩS

0 , ρ
F > 0 and µF > 0 are constants and its represent the mass density

and the viscosity of the fluid, vin is the prescribed inflow velocity, hout is prescribed
outflow boundary stress, nF is the unit outer normal vector along the boundary ∂ΩF

t .
For the structure equations (1)–(2), we have used the Lagrangian coordinates, while

for the fluid equations (3)–(7) the Eulerian coordinates have been used. The equations
(8) and (9) represent the continuity of velocity and of stress at the interface, respectively.
Initial conditions are given by (10)–(12). The governing equations for fluid-structure
interaction are (1)–(12).

2 Total Lagrangian framework for the structure ap-

proximation

Let us introduce VS the velocity of the structure in the Lagrangian coordinates. The
equation (1) is equivalent to

ρS0 (X)
∂VS

∂t
(X, t)−∇X · (FΣ) (X, t) = ρS0 (X)g, in ΩS

0 × (0, T ) (13)

∂US

∂t
(X, t) = VS (X, t) , in ΩS

0 × (0, T ). (14)
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Let N ∈ N
∗ be the number of time steps and ∆t = T/N the time step. We set tn =

n∆t for n = 0, 1, . . . , N . Let VS,n (X) and US,n (X) be approximations of VS (X, tn)
and US (X, tn). We also use following notations

Fn = I+∇XU
S,n, Σn = Σ(Fn), n ≥ 0.

The system (13)–(14) will be approached by the implicit Euler scheme

ρS0 (X)
VS,n+1 (X)−VS,n (X)

∆t
−∇X ·

(
Fn+1Σn+1

)
(X) = ρS0 (X)g, in ΩS

0 (15)

US,n+1 (X)−US,n (X)

∆t
= VS,n+1 (X) , in ΩS

0 (16)

From (16), we get Fn+1 = Fn + ∆t∇XV
S,n+1 and consequently, Fn+1 and Σn+1

depend on the velocity VS,n+1 but not in the displacement US,n+1. In other word, we
have eliminated the unknown displacement and we have now an equation of unknown
VS,n+1.

The weak form of the equation (15) is: find VS,n+1 : ΩS
0 → R

2, VS,n+1 = 0 on ΓD,
such that

∫

ΩS
0

ρS0
VS,n+1 −VS,n

∆t
·WS dX+

∫

ΩS
0

Fn+1Σn+1 : ∇XW
S dX

=

∫

ΩS
0

ρS0g ·WS dX+

∫

Γ0

Fn+1Σn+1NS ·WS dS (17)

for all WS : ΩS
0 → R

2, WS = 0 on ΓD. For instant, we have assumed that the forces
Fn+1Σn+1NS on the interface Γ0 are known.

3 Updated Lagrangian framework for the structure

approximation

We follow a similar approach that in [3], where the structure is a Neo-Hookean material.
In the present paper, the structure is governed by the linear elasticity equations. We
denote by ΩS

n the image of ΩS
0 via the map X → X+US,n (X) and we set Ω̂S = ΩS

n the
computational domain for the structure.

The map from ΩS
0 to ΩS

n+1 defined by X → x = X +US,n+1 (X) is the composition

of the map from ΩS
0 to Ω̂S defined by X → x̂ = X+US,n (X) with the map from Ω̂S to

ΩS
n+1 defined by

x̂ → x = x̂ +US,n+1 (X)−US,n (X) = x̂+ û (x̂) .
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With the notations F̂ = I+∇x̂û and Ĵ = det F̂, Jn = detFn, we obtain

Fn+1 (X) = F̂ (x̂)Fn (X) , Jn+1 (X) = Ĵ (x̂)Jn (X) . (18)

The relation between the Cauchy stress tensor of the structure σS and the second
Piola-Kirchhoff stress tensor Σ is the following σS (x, t) =

(
1
J
FΣFT

)
(X, t), where x =

X+US (X, t) . The mass conservation assumption gives ρS (x, t) =
ρS0 (X)

J(X,t)
, where ρS (x, t)

is the mass density of the structure in the Eulerian framework.
For the semi-discrete scheme, we use the notations

σS,n+1 (x) =

(
1

Jn+1
Fn+1Σn+1

(
Fn+1

)T
)
(X) , x = X+US,n+1 (X)

and ρS,n (x̂) =
ρS
0
(X)

Jn(X)
, x̂ = X+US,n (X) .

Let us introduce v̂S,n+1 : Ω̂S → R
2 and vS,n : Ω̂S → R

2 defined by v̂S,n+1 (x̂) =

VS,n+1 (X) and vS,n (x̂) = VS,n (X) . Also, for WS : ΩS
0 → R

2, we define ŵS : Ω̂S → R
2

and wS : ΩS
n+1 → R

2 by ŵS (x̂) = wS (x) = WS (X) .

Now, we rewrite the equation (17) over the domain Ω̂S . For the first term of (17),
we get ∫

ΩS
0

ρS0
VS,n+1 −VS,n

∆t
·WS dX =

∫

Ω̂S

ρS,n
v̂S,n+1 − vS,n

∆t
· ŵS dx̂

and similarly ∫

ΩS
0

ρS0g ·WS dX =

∫

Ω̂S

ρS,ng · ŵS dx̂.

Using the identity
(
∇wS (x)

)
Fn+1 (X) = ∇XW

S (X) and the definition of σS,n+1,
we get ∫

ΩS
0

Fn+1Σn+1 : ∇XW
S dX =

∫

ΩS
n+1

σS,n+1 : ∇wS dx.

Details about this kind of transformation could be found in [1], Chapter 1.2.

In order to write the above integral over the domain Ω̂S , let us introduce the tensor

Σ̂ (x̂) = Ĵ (x̂) F̂−1 (x̂)σS,n+1 (x) F̂−T (x̂) . (19)

Since
(
∇wS (x)

)
F̂ (x̂) = ∇x̂ŵ

S (x̂), see [1], Chapter 1.2 and taking into account
(19), we get ∫

ΩS
n+1

σS,n+1 : ∇wS dx =

∫

Ω̂S

F̂Σ̂ : ∇x̂ŵ
S dx̂.

Now, it is possible to present the updated Lagrangian version of (17). Knowing

US,n : ΩS
0 → R

2, Ω̂S = ΩS
n and vS,n : Ω̂S → R

2, we try to find v̂S,n+1 : Ω̂S → R
2,
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v̂S,n+1 = 0 on ΓD such that
∫

Ω̂S

ρS,n
v̂S,n+1 − vS,n

∆t
· ŵS dx̂+

∫

Ω̂S

F̂Σ̂ : ∇x̂ŵ
S dx̂

=

∫

Ω̂S

ρS,ng · ŵS dx̂+

∫

Γ0

Fn+1Σn+1NS ·WS dS (20)

for all ŵS : Ω̂S → R
2, ŵS = 0 on ΓD. We recall that the forces Fn+1Σn+1NS on the

interface Γ0 are assumed known.
Using the identity û (x̂) = US,n+1 (X)−US,n (X) = ∆tVS,n+1 (X) = ∆t v̂S,n+1 (x̂),

we obtain
F̂ = I+∆t∇x̂v̂

S,n+1. (21)

Using (18) and (19), it follows that

Σ̂ = ĴF̂−1σS,n+1F̂−T = ĴF̂−1 1

Jn+1
Fn+1Σn+1

(
Fn+1

)T
F̂−T

=
1

Jn
FnΣn+1 (Fn)T . (22)

For the linear elastic material, we have Σ(U) = λS(∇X ·U)+µS
(
∇XU + (∇XU)T

)

where λS and µS are the Lamé coefficients. We have Σn+1 = Σ(US,n+1) = Σ(US,n) +
(∆t)Σ(VS,n+1) = Σn + (∆t)Σ(VS,n+1).

We introduce Σx̂(û) = λS(∇x̂ · û) + µS
(
∇x̂û+ (∇x̂û)

T
)
and Σ(VS,n+1) could be

approached by Σx̂(v̂
S,n+1). We can approach the map v̂S,n+1 → F̂Σ̂ by the linear

application

F̂Σ̂ ≈
1

Jn
FnΣn (Fn)T +∆t∇x̂v̂

S,n+1 1

Jn
FnΣn (Fn)T +

∆t

Jn
FnΣx̂(v̂

S,n+1) (Fn)T

= σS,n +∆t∇x̂v̂
S,n+1σS,n +

∆t

Jn
FnΣx̂(v̂

S,n+1) (Fn)T .

We define ûS,n(x̂) = US,n(X) and for the small deformations, we have Fn ≈ I, Jn ≈ 1,

σS,n ≈ Σx̂(û
S,n+1). Finally, we replace the map v̂S,n+1 → F̂Σ̂ by the linear application

L̂
(
v̂S,n+1

)
= Σx̂(û

S,n) + (∆t)Σx̂(v̂
S,n+1). (23)

The linearized updated Lagrangian weak formulation of the structure is: knowing
US,n : ΩS

0 → R
2, Ω̂S = ΩS

n and vS,n : Ω̂S → R
2, find v̂S,n+1 : Ω̂S → R

2, v̂S,n+1 = 0 on
ΓD such that

∫

Ω̂S

ρS,n
v̂S,n+1 − vS,n

∆t
· ŵS dx̂+

∫

Ω̂S

L̂
(
v̂S,n+1

)
: ∇x̂ŵ

S dx̂

=

∫

Ω̂S

ρS,ng · ŵS dx̂+

∫

Γ0

Fn+1Σn+1NS ·WS dS (24)

for all ŵS : Ω̂S → R
2, ŵS = 0 on ΓD.

6



4 Monolithic algorithm for the fluid-structure equa-

tions

We have ∂ΩS
n = ΓD ∪ Γn, where Γn is a approximation of the moving interface Γtn ,

ΩF
n = D \ Ω

S

n and let us introduce the global velocity, pressure and test function

v̂n+1 : D → R
2, p̂n+1 : D → R, ŵ : D → R

2

v̂n+1 =

{
v̂F,n+1 in ΩF

n

v̂S,n+1 in ΩS
n

p̂n+1 =

{
p̂F,n+1 in ΩF

n

p̂S,n+1 in ΩS
n

ŵ =

{
ŵF in ΩF

n

ŵS in ΩS
n .

Algorithm for fluid-structure interaction
Time advancing scheme from n to n+ 1

We assume that we know the mesh T n
h , the velocity vn, the pressure pn, and the

mesh velocity ϑ
n.

Step 1: Solve the monolithic linear system and get the velocity v̂n+1 ∈ (H1 (D))
2
,

v̂n+1 = vin on Σ1, v̂
n+1 = 0 on ∂D ∪ ΓD and the pressure p̂n+1 ∈ L2 (D), p̂n+1 = 0 in

ΩS
n , such that:

∫

ΩF
n

ρF
v̂n+1

∆t
· ŵdx̂+

∫

ΩF
n

ρF
(
((vn − ϑ

n) · ∇x̂) v̂
n+1

)
· ŵdx̂

−

∫

ΩF
n

(∇x̂ · ŵ) p̂n+1dx̂+

∫

ΩF
n

2µF ǫ
(
v̂n+1

)
: ǫ (ŵ) dx̂

+

∫

ΩS
n

ρS,n
v̂n+1

∆t
· ŵ dx̂+

∫

ΩS
n

L̂
(
v̂n+1

)
: ∇x̂ŵ dx̂

=

∫

ΩF
n

ρF
vn

∆t
· ŵdx̂+

∫

ΩF
n

fF,n · ŵ dx̂+

∫

Σ3

hout · ŵ dx̂

+

∫

ΩS
n

ρS,n
vn

∆t
· ŵ dx̂+

∫

ΩS
n

ρS,ng · ŵ dx̂, (25)

∫

ΩF
n

(∇x̂ · v̂
n+1)q̂ dx̂ = 0, (26)

for all ŵ ∈ (H1 (D))
2
, ŵ = 0 on ∂D ∪ ΓD and for all q̂ ∈ L2 (D).

Step 2: Compute the mesh velocity ϑ̂
n+1

: D → R
2





∆x̂ϑ̂
n+1

= 0, D

ϑ̂
n+1

= 0, ∂D ∪ ΓD

ϑ̂
n+1

= v̂n+1, Γn.

(27)

7



We can replace in (27), the Laplacian by the linear elasticity operator in order to improve
the quality of the mesh.

Step 3: Define the map Tn : D → R
2 by:

Tn(x̂) = x̂+ (∆t)ϑ̂
n+1

(x̂)χΩF
n
(x̂) + (∆t)v̂n+1(x̂)χΩS

n
(x̂)

where χΩF
n
and χΩS

n
are the characteristic functions of fluid and structure domains.

The new mesh is Tn(T
n
h ) = T n+1

h .
Step 4: We define vn+1 : D → R

2, pn+1 : D → R and ϑ
n+1 : D → R

2 by:

vn+1(x) = v̂n+1(x̂), pn+1(x) = p̂n+1(x̂), ϑ
n+1(x) = ϑ̂

n+1
(x̂), ∀x̂ ∈ D and x = Tn(x̂).

We solve the monolithic system (25)-(26) using globally continuous finite element for
the velocity v̂n+1 ∈ (H1 (D))

2
defined all over the fluid-structure global mesh. Then the

both continuity conditions at the interface hold. For the global pressure p̂n+1 ∈ L2 (D),
we have to impose p̂n+1 = 0 in ΩS

n , more precisely we impose p̂n+1 = 0 at each node of
the structure sub-domain excepting the nodes on the interface Γn.

This algorithm is similar to [4], where the Newmark method was employed for the
structure, but the actual algorithm is not a particular case of the cited paper. In
addition, the quality of the mesh is augmented in the actual version by solving the mesh
velocity after the resolution of the monolithic linear system. Another improvement is
that we use now the facility of FreeFem++ to integrate over a sub-domain, which is faster
that using the characteristic function.

5 Numerical test. Flow around a flexible thin struc-

ture attached to a fixed cylinder

We have tested the benchmark FSI3 from [5]. The numerical tests have been produced
using FreeFem++ (see [2]).

The structure is composed by a rectangular flexible beam attached to a fixed circle,
see Figure 1. The circle center is positioned at (0.2, 0.2)mmeasured from the left bottom
corner of the channel. The circle has the radius r = 0.5 m and the rectangular beam is
of length ℓ = 0.35 m, thickness h = 0.02 m. The mass density is ρS = 1000Kg/m3, the
Young modulus is ES = 5.6× 106 Pa and the Poisson’s ratio is νS = 0.4.

The channel has the length L = 2.5 m and the width H = 0.41m. The fluid dynamic
viscosity is µF = 1 Kg/(ms) and the mass density is ρF = 1000Kg/m3.

We denote by Σ1 = {0} × [0, H ], Σ3 = {L} × [0, H ] the left and the right vertical
boundaries of the channel and by Σ2 = [0, L]× {0}, Σ4 = [0, L]× {H} the bottom and
the top boundaries, respectively.
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Figure 2: Details of the fluid-structure mesh at t = 0 and t = 6.016.

We have used the boundary condition v = vin at the inflow Σ1, where

vin(x1, x2, t) =





(
1.5U x2(H−x2)

(H/2)2
(1−cos(πt/2))

2
, 0

)
, (x1, x2) ∈ Σ1, 0 ≤ t ≤ 2(

1.5U x2(H−x2)
(H/2)2

, 0
)
, (x1, x2) ∈ Σ1, 2 ≤ t ≤ T = 8

and U = 2. At Σ2, Σ4, as well as on the boundary of the circle, we have imposed the
no-slip boundary condition v = 0. At the outflow Σ3, we have imposed the traction free
σF (v, p)nF = 0. Initially, the fluid and the structure are at rest.
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Figure 3: Time history of the vertical displacement of the point A.

We use a global mesh for the fluid-structure domain of 9382 triangles and 4859
vertices, see Figure 2. The time step is ∆t = 0.002 s and the number of time steps
is N = 4000. Using FreeFem++ [2], it is possible to construct a global fluid-structure
mesh with an “interior boundary” which is the fluid-structure interface. The global
moving mesh for the fluid-structure domain is aligned with the fluid-structure interface
and changes at at each time step. For the finite element approximation of the fluid-
structure velocity, we have used the triangular finite element P1 + bubble and we have
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Vec Value
0
0.234633
0.469267
0.7039
0.938533
1.17317
1.4078
1.64243
1.87707
2.1117
2.34633
2.58097
2.8156
3.05023
3.28487
3.5195
3.75413
3.98877
4.2234
4.45803

IsoValue
-4207.88
-3258.11
-2624.93
-1991.75
-1358.58
-725.4
-92.2223
540.955
1174.13
1807.31
2440.49
3073.66
3706.84
4340.02
4973.2
5606.37
6239.55
6872.73
7505.91
9088.85

Figure 4: Velocity and pressure at t = 6.016.

employed for the pressure the finite element P1. The linear fluid-structure system is
solved using the LU decomposition.

After an initial transient period, the system settles into periodic oscilations, Figure
3. The average frequency in the time interval [5, 8] is about 5.33 Hz. The results are
similar to [5], where the reference amplitude of the periodic oscillations is 0.034, but the
structure is a St. Venant-Kirchhoff material. The pressure in the structure domain has
no physical signification and it is fixed to zero, Figure 4, at the right.
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[1] Ciarlet PG. Élasticité tridimensionnelle, Masson, 1986.

[2] Hecht F. New development in FreeFem++. J. Numer. Math. 2012; 20(3-4), 251–
265, http://www.freefem.org.

[3] C.M. Murea, S. Sy, Updated Lagrangian/Arbitrary Lagrangian Eulerian frame-
work for interaction between a compressible Neo-Hookean structure and an incom-
pressible fluid, Int. J. Numer. Meth. Engng., published online 17 June 2016, DOI:
10.1002/nme.5302

[4] S. Sy, C.M. Murea, Algorithm for solving fluid-structure interaction problem on
a global moving mesh, Coupled Systems Mechanics, An International Journal, 1
(2012), No. 1, pp. 99–113

[5] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction
between an elastic object and laminar incompressible flow. In: Fluid-Structure In-

teraction - Modelling, Simulation, Optimization, Bungartz, H.-J., Schfer, M. (eds),
Lect. Notes Comput. Sci. Eng., 53, Springer, Berlin, 2006; 371–385.

10


