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Initial (left) and intermediate (right) geometrical

configuration
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Linear elasticity equations

We denote by u® = (u7, u25)T : Qg x [0, T] — R? the structure
displacement.
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Navier-Stokes equations

We denote by v the fluid velocity and by p© the fluid pressure.
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Interface and initial conditions
The interface I'; is the image of ¢ via the map

X — X+u’(X,t).

Interface conditions

F( s du>
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Initial conditions

w (X, t=0) = u’(X), inQ}
S

aait(x,t:m = a°(X), in QS
vi(x,t=0) = v'(x), inQf



Arbitrary Lagrangian Eulerian (ALE) framework. Notations

The reference fluid domain QF = Q,’;_, the interface I,
The velocity of the fluid mesh 9" = (97,95)7 is the solution of

A9"=0inQf 9 "=00n0Q\T,, 9"=vF"onT,
The ALE map A,,_, : O, — R?
Atn+1(3<\1,3<\2) = (/)21 + At '17,/)22 + Atﬁg)

We define Qf; = A, (QF) and M1 = Ay, (Th)
We introduce vF-"t1 - QF — R2 and pF "1 : QF — R defined by

VER) vF (), BER) = pF (),

vx e Qf, x=A,, ,(x) € QF



Time discretization of the fluid equations

Find v/l : QF - R? and pF"+1 . QF — R such that:
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Time discretization of the structure equations

Find u>ntl S+l (Sn+l. Qg — R? such that:

pSI-jS,n-i—l B v O_S(uS,n-l—l) — fS,n—i-l’ in Qg

w1l =0, onlp

o*(u>n® =0, on Ty
u’(X,0) =u’(X), in Qg

l:ls,n-i-l — l-lS,n + At|:(]. o 5)us,n + 5&5,n+1j|

1
IJS,n—l-l _ uS,n + Atl:ls’n + (At)2 |:<§ o 9) I'j5,n + 9ﬁ5,n+1] )

For § = % the Newmark scheme is of second order in time.



Interface conditions

We define T = A, 0 Ay, | -+ 0 Ay,
We have T (I'g) =Tp.

virtlom = a>m on [y x (0, T]
(cF @F" L M nf)oT = —o%(W>"™)n°, on [y x (0, T]

Remark The global system of unknowns v/ "1, pFrtl ¢S+l

a>™1 G° s implicit, but the fluid domain is computed
explicitly as the image of QF via the map

X - X+ ALO"().

This is the meaning of the term “semi-implicit” of the title.



Weak formulation of the fluid equations

wF = {WF € (H(Qf))* w" =0on Zz}, QF = LX)

Find v/l € WF and 7"+ € QF such that:

VF,n—i-l R R N
/ oF wF +/ oF (((VF,n _ ,l9n> -V) vF,n+1) W
QFf At QF
_ / (v'wF> SRl / 2uFe (VF,nH) :6(wF>
QF Qf
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Weak formulation of the structure equations.
Lagrangian coordinates

W?e = {WS € (HY(93))% w® =0 on FD}.

Find u®>™! € WS such that:

S
/ 2Lu5,n+1 . WS + 29At as(ils’"+1, WS)
Qg At

—/ (c°n°) - w® = Ls(w®), Yw® e W°,
o

where

as(u,w) = /QS V(- u)(V - w) + 205 (u) - ew)
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Weak formulation of the structure equations.
Eulerian coordinates

WS = {w € (HH(QS))% W=0on rD}.

2/)5/\5 n+1 -~ > (oS,n+1 -~
——v>"T w4 20A¢t Gs(Vv"T, W)
Qg At
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where

35(u,w) = /QS VS - u)(V - w) + 20 (u) - e(w)



Global moving domain

Q,=0fuQd
Global velocity and pressure
v Q, >R p":Q,—R
W, = {W e (H'(Q,))* w=00onTpUZ}, Qn = L3(Q)

Characteristic functions related to the fluid domain XoF Q —R
and structure domain xgos : Qr — R:

Yos = l,onﬁts Yor = 1 — Yos
@ 0, otherwise 2 2



Monolithic formulation for the fluid-structure equations

Find (v™+1 p"t1) ¢ W, x @, such that:

vt o . .
/QXflﬁpF N .w—i—/Q XQﬁpF(((v"—él).V)v"*l)-w

Xap (V-)p™ + [ xgp 2ufe (@) ()
e
At

_ /Q n
2 ~ A ~
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Finite element discretization

Triangular Py + bubble for the velocity, P; for the pressure and Py
for the characteristic functions.

The velocity, the pressure as well as the test functions are
continuous all over the global domain Q,. Consequently, the
continuity of velocity at the interface is automatically satisfied.

The integrals over the interface do not appear explicitly in the
global weak form due to the action and reaction principle.

If the solution of the monolithic is sufficiently smooth, the
continuity of stress at the interface holds in a weak sense.



Linear systems

The linear system has not an unique solution, because the pressure
p> can take any value.

A BT

0 v L
B 0 0 pFl=1]0
0 0 0 p> 0

We have added the term e/ p"1G, then the bellow system has
Q,
an unique solution and p°> =0 on Qﬁ.

A BT 0 v L
B eMf 0 pF | =10
0 0 eM® p> 0

The matrix A is not symetric due to the convection term. We have
used the GMRES algorithm for solving the linear system.



Time advancing schema from nto n+1

n 5n

We assume that we know €2,, v, u”, u".

Step 1: Compute 9"
Step 2: Solve the linear system and get v"*! and pressure p"*!
Step 3: Compute the displacement and the acceleration

_ 1 _
Gl = W4 (At)? (5—29) "4 At(1— 20" + 20At V"

~ntl 2 (A,,H ,,) n
u = —\V —V —u
At

Step 4: We define the map T, : Q, — R? by:
Tp(X) = X+ Atd" (X)xar (X) + 0" (X) — u"(X))xqs (X)

Step 5: We set Q.1 = T,(Q,). We define v?*+1: Q.. ; — R2
and p"™1: Q.1 — R? by:

v (x) =vTH(X), p"TH(x) = p"TH(X), VX € Q, and x = T,(X).



Global fluid-structure mesh (top), the structure and fluid
meshes (bottom
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The global moving mesh is compatible with the interface: a
triangle of the global mesh belongs either to the fluid region or to
the structure region.



CPU time: monolithic versus partionned procedure
algorithm

nsFS | nt nv | global Dof | CPUpmono
80 | 2426 | 1305 8767 5m25s
100 | 3916 | 2070 14042 7m18s
120 | 5039 | 2649 18016 11m34s

nsSF | ntF | nvF | ntS | nvS | DofF | DofS | CPU,, C%Z:’;‘;o
80 2106 | 1144 | 320 | 242 | 7644 | 484 | 10m49s 1.99
100 | 3538 | 1880 | 378 | 291 | 12716 | 582 | 15mb57s 2.18

120 | 4582 | 2422 | 452 | 348 | 16430 | 696 | 21m06s 1.82

CPU,p | e

m CPUnmono
3 | 10m49s 1.99
7 | 27Tm4T7s 5.12

10 | 41mQ7s 7.59




Conclusions

» Semi-implicit algorithm: the global system of unknowns v"*1,

p™1 is implicit, but the fluid domain is computed explicitly.
» The continuity of velocity at the interface is automatically

satisfied and the continuity of stress holds in a weak sense.
» The global system is solved monolithically.

» The characteristic functions permit us to choose independently
the time discretization schemes of the fluid and structure.

» The global moving mesh is obtained by gluing the fluid and
structure meshes which are matching at the interface. The
interface does not pass through the triangles.

» The CPU time is reduced compared to a particular partition
procedures strategy.



