A monolithic semi-implicit algorithm for fluid-structure interaction problem at small structural displacements Cornel Marius MUREA, joint work with Soyibou SY Laboratoire de Mathématiques, Informatique et Applications, Université de Haute-Alsace e-mail: cornel.murea@uha.fr http://www.edp.lmia.uha.fr/murea/ FreeFem++ Workshop, Paris, September 15, 2009 # Initial (left) and intermediate (right) geometrical configuration $$\partial\Omega_0^F = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Gamma_0, \qquad \partial\Omega_t^F = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Gamma_t.$$ ### Linear elasticity equations We denote by $\mathbf{u}^S = \left(u_1^S, u_2^S\right)^T : \Omega_0^S \times [0, T] \to \mathbb{R}^2$ the structure displacement. $$\rho^{S} \frac{\partial^{2} \mathbf{u}^{S}}{\partial t^{2}} - \nabla \cdot \sigma^{S} = \mathbf{f}^{S}, \quad \text{in } \Omega_{0}^{S} \times (0, T)$$ $$\sigma^{S} = \lambda^{S} \left(\nabla \cdot \mathbf{u}^{S} \right) \mathbf{I} + 2\mu^{S} \epsilon \left(\mathbf{u}^{S} \right)$$ $$\epsilon \left(\mathbf{u}^{S} \right) = \frac{1}{2} \left(\nabla \mathbf{u}^{S} + \left(\nabla \mathbf{u}^{S} \right)^{T} \right)$$ $$\mathbf{u}^{S} = 0, \quad \text{on } \Gamma_{D} \times (0, T)$$ $$\sigma^{S} \mathbf{n}^{S} = 0, \quad \text{on } \Gamma_{N} \times (0, T)$$ $$\Gamma_D = [AB] \cup [CD], \quad \Gamma_N = [DA].$$ #### Navier-Stokes equations We denote by \mathbf{v}^F the fluid velocity and by p^F the fluid pressure. $$\begin{split} \rho^F \left(\frac{\partial \mathbf{v}^F}{\partial t} + (\mathbf{v}^F \cdot \nabla) \mathbf{v}^F \right) - \nabla \cdot \sigma^F &=& \mathbf{f}^F, \quad \forall t \in (0,T), \forall \mathbf{x} \in \Omega^F_t \\ \nabla \cdot \mathbf{v}^F &=& 0, \quad \forall t \in (0,T), \forall \mathbf{x} \in \Omega^F_t \\ \sigma^F &=& -p^F \mathbf{I} + 2\mu^F \epsilon \left(\mathbf{v}^F \right) \\ \sigma^F \mathbf{n}^F &=& \mathbf{h}_{in}, \quad \text{on } \Sigma_1 \times (0,T) \\ \sigma^F \mathbf{n}^F &=& \mathbf{h}_{out}, \quad \text{on } \Sigma_3 \times (0,T) \\ \mathbf{v}^F &=& 0, \quad \text{on } \Sigma_2 \times (0,T) \end{split}$$ #### Interface and initial conditions The interface Γ_t is the image of Γ_0 via the map $$X \rightarrow X + u^{S}(X, t)$$. #### Interface conditions $$\mathbf{v}^{F}\left(\mathbf{X} + \mathbf{u}^{S}\left(\mathbf{X}, t\right), t\right) = \frac{\partial \mathbf{u}^{S}}{\partial t}(\mathbf{X}, t), \ \forall \left(\mathbf{X}, t\right) \in \Gamma_{0} \times (0, T)$$ $$\left(\sigma^{F} \mathbf{n}^{F}\right)_{\left(\mathbf{X} + \mathbf{u}^{S}\left(\mathbf{X}, t\right), t\right)} = -\left(\sigma^{S} \mathbf{n}^{S}\right)_{\left(\mathbf{X}, t\right)}, \ \forall \left(\mathbf{X}, t\right) \in \Gamma_{0} \times (0, T)$$ #### Initial conditions $$\begin{aligned} \mathbf{u}^{S}\left(\mathbf{X},t=0\right) &=& \mathbf{u}^{0}\left(\mathbf{X}\right), \text{ in } \Omega_{0}^{S} \\ \frac{\partial \mathbf{u}^{S}}{\partial t}\left(\mathbf{X},t=0\right) &=& \dot{\mathbf{u}}^{0}\left(\mathbf{X}\right), \text{ in } \Omega_{0}^{S} \\ \mathbf{v}^{F}\left(\mathbf{x},t=0\right) &=& \mathbf{v}^{0}\left(\mathbf{x}\right), \text{ in } \Omega_{0}^{F} \end{aligned}$$ ## Arbitrary Lagrangian Eulerian (ALE) framework. Notations The reference fluid domain $\widehat{\Omega}^F = \Omega_n^F$, the interface Γ_n The velocity of the fluid mesh $\vartheta^n = (\vartheta_1^n, \vartheta_2^n)^T$ is the solution of $$\Delta \boldsymbol{\vartheta}^n = 0 \text{ in } \Omega_n^F, \quad \boldsymbol{\vartheta}^n = 0 \text{ on } \partial \Omega_n^F \setminus \Gamma_n, \quad \boldsymbol{\vartheta}^n = \boldsymbol{\mathsf{v}}^{F,n} \text{ on } \Gamma_n$$ The ALE map $\mathcal{A}_{t_{n+1}}:\overline{\Omega}_n^{ extit{ iny F}} o\mathbb{R}^2$ $$\mathcal{A}_{t_{n+1}}(\widehat{x}_1,\widehat{x}_2) = (\widehat{x}_1 + \Delta t \vartheta_1^n, \widehat{x}_2 + \Delta t \vartheta_2^n).$$ We define $\Omega_{n+1}^F = \mathcal{A}_{t_{n+1}}(\Omega_n^F)$ and $\Gamma_{n+1} = \mathcal{A}_{t_{n+1}}(\Gamma_n)$ We introduce $\widehat{\mathbf{v}}^{F,n+1}: \Omega_n^F \to \mathbb{R}^2$ and $\widehat{\rho}^{F,n+1}: \Omega_n^F \to \mathbb{R}$ defined by $$\widehat{\mathbf{v}}^{F,n+1}(\widehat{\mathbf{x}}) = \mathbf{v}^{F,n+1}(\mathbf{x}), \quad \widehat{p}^{F,n+1}(\widehat{\mathbf{x}}) = p^{F,n+1}(\mathbf{x}),$$ $$\forall \widehat{\mathbf{x}} \in \Omega_{n}^{F}, \ \mathbf{x} = \mathcal{A}_{t_{n+1}}(\widehat{\mathbf{x}}) \in \Omega_{n+1}^{F}$$ #### Time discretization of the fluid equations Find $\widehat{\mathbf{v}}^{F,n+1}:\Omega_n^F \to \mathbb{R}^2$ and $\widehat{p}^{F,n+1}:\Omega_n^F \to \mathbb{R}$ such that: $$\begin{split} & \rho^F \left(\frac{\widehat{\mathbf{v}}^{F,n+1} - \mathbf{v}^{F,n}}{\Delta t} + \left(\left(\mathbf{v}^{F,n} - \vartheta^n \right) \cdot \nabla \right) \widehat{\mathbf{v}}^{F,n+1} \right) \\ & - 2 \mu^F \nabla \cdot \epsilon \left(\widehat{\mathbf{v}}^{F,n+1} \right) + \nabla \widehat{\rho}^{F,n+1} = \widehat{\mathbf{f}}^{F,n+1}, \text{ in } \Omega_n^F \\ & \nabla \cdot \widehat{\mathbf{v}}^{F,n+1} = 0, \text{ in } \Omega_n^F \\ & \sigma^F (\widehat{\mathbf{v}}^{F,n+1}, \widehat{\rho}^{F,n+1}) \cdot \mathbf{n}^F = \mathbf{h}_{in}^{n+1}, \text{ on } \Sigma_1 \\ & \sigma^F (\widehat{\mathbf{v}}^{F,n+1}, \widehat{\rho}^{F,n+1}) \cdot \mathbf{n}^F = \mathbf{h}_{out}^{n+1}, \text{ on } \Sigma_3 \\ & \widehat{\mathbf{v}}^{F,n+1} = 0, \text{ on } \Sigma_2 \\ & \mathbf{v}^F (X,0) = \mathbf{v}^0(X), \text{ in } \Omega_0^F. \end{split}$$ ### Time discretization of the structure equations Find $$\mathbf{u}^{S,n+1}$$, $\dot{\mathbf{u}}^{S,n+1}$, $\ddot{\mathbf{u}}^{S,n+1}$: $\Omega_0^S \to \mathbb{R}^2$ such that: $$\rho^S \ddot{\mathbf{u}}^{S,n+1} - \nabla \cdot \sigma^S (\mathbf{u}^{S,n+1}) = \mathbf{f}^{S,n+1}, \quad \text{in } \Omega_0^S$$ $$\mathbf{u}^{S,n+1} = 0, \quad \text{on } \Gamma_D$$ $$\sigma^S (\mathbf{u}^{S,n+1}) \mathbf{n}^S = 0, \quad \text{on } \Gamma_N$$ $$\mathbf{u}^S (X,0) = \mathbf{u}^0 (X), \quad \text{in } \Omega_0^S$$ $$\begin{split} &\dot{\mathbf{u}}^{S,n+1} = \dot{\mathbf{u}}^{S,n} + \Delta t \Big[(1 - \delta) \ddot{\mathbf{u}}^{S,n} + \delta \ddot{\mathbf{u}}^{S,n+1} \Big] \\ &\mathbf{u}^{S,n+1} = \mathbf{u}^{S,n} + \Delta t \dot{\mathbf{u}}^{S,n} + (\Delta t)^2 \Big[\Big(\frac{1}{2} - \theta \Big) \ddot{\mathbf{u}}^{S,n} + \theta \ddot{\mathbf{u}}^{S,n+1} \Big]. \end{split}$$ For $\delta = \frac{1}{2}$, the Newmark scheme is of second order in time. #### Interface conditions We define $\mathbb{T} = \mathcal{A}_{t_n} \circ \mathcal{A}_{t_{n-1}} \cdots \circ \mathcal{A}_{t_1}$. We have $\mathbb{T}(\Gamma_0) = \Gamma_n$. $$\widehat{\mathbf{v}}^{F,n+1} \circ \mathbb{T} = \dot{\mathbf{u}}^{S,n+1}, \text{ on } \Gamma_0 \times (0,T]$$ $$(\sigma^F(\widehat{\mathbf{v}}^{F,n+1}, \widehat{p}^{F,n+1})\mathbf{n}^F) \circ \mathbb{T} = -\sigma^S(\mathbf{u}^{S,n+1})\mathbf{n}^S, \text{ on } \Gamma_0 \times (0,T]$$ **Remark** The global system of unknowns $\hat{\mathbf{v}}^{F,n+1}$, $\hat{p}^{F,n+1}$, $\mathbf{u}^{S,n+1}$, $\dot{\mathbf{u}}^{S,n+1}$, $\ddot{\mathbf{u}}^{S,n+1}$, is implicit, but the fluid domain is computed explicitly as the image of Ω_n^F via the map $$\widehat{\mathbf{x}} \to \widehat{\mathbf{x}} + \Delta t \, \vartheta^n(\widehat{\mathbf{x}}).$$ This is the meaning of the term "semi-implicit" of the title. ### Weak formulation of the fluid equations $$\widehat{W}_n^F = \left\{ \widehat{\mathbf{w}}^F \in (H^1(\Omega_n^F))^2; \ \widehat{\mathbf{w}}^F = 0 \ \text{on} \ \Sigma_2 \right\}, \quad \widehat{Q}_n^F = L^2(\Omega_n^F)$$ Find $\widehat{\mathbf{v}}^{F,n+1} \in \widehat{W}_n^F$ and $\widehat{p}^{F,n+1} \in \widehat{Q}_n^F$ such that: $$\begin{split} &\int_{\Omega_{n}^{F}} \rho^{F} \frac{\widehat{\mathbf{v}}^{F,n+1}}{\Delta t} \cdot \widehat{\mathbf{w}}^{F} + \int_{\Omega_{n}^{F}} \rho^{F} \left(\left(\left(\mathbf{v}^{F,n} - \vartheta^{n} \right) \cdot \nabla \right) \widehat{\mathbf{v}}^{F,n+1} \right) \cdot \widehat{\mathbf{w}}^{F} \\ &- \int_{\Omega_{n}^{F}} \left(\nabla \cdot \widehat{\mathbf{w}}^{F} \right) \widehat{\rho}^{F,n+1} + \int_{\Omega_{n}^{F}} 2\mu^{F} \epsilon \left(\widehat{\mathbf{v}}^{F,n+1} \right) : \epsilon \left(\widehat{\mathbf{w}}^{F} \right) \\ &- \int_{\Gamma_{n}} \left(\sigma^{F} \mathbf{n}^{F} \right) \cdot \widehat{\mathbf{w}}^{F} = \mathcal{L}_{F}(\widehat{\mathbf{w}}^{F}), \quad \forall \widehat{\mathbf{w}}^{F} \in \widehat{W}_{n}^{F} \\ &\int_{\Omega_{n}^{F}} \widehat{q} (\nabla \cdot \widehat{\mathbf{v}}^{F,n+1}) = 0, \quad \forall \widehat{q} \in \widehat{Q}_{n}^{F} \end{split}$$ # Weak formulation of the structure equations. Lagrangian coordinates $$W^S = \left\{ \mathbf{w}^S \in (H^1(\Omega_0^S))^2; \ \mathbf{w}^S = 0 \ \text{on} \ \Gamma_D ight\}.$$ Find $\dot{\mathbf{u}}^{S,n+1} \in W^S$ such that: $$\begin{split} & \int_{\Omega_0^S} \frac{2\rho^S}{\Delta t} \dot{\mathbf{u}}^{S,n+1} \cdot \mathbf{w}^S + 2\theta \Delta t \, a_S(\dot{\mathbf{u}}^{S,n+1}, \mathbf{w}^S) \\ & - \int_{\Gamma_0} (\sigma^S \mathbf{n}^S) \cdot \mathbf{w}^S = \mathcal{L}_S(\mathbf{w}^S), \quad \forall \mathbf{w}^S \in W^S, \end{split}$$ where $$a_{\mathcal{S}}(\mathbf{u}, \mathbf{w}) = \int_{\Omega_0^{\mathcal{S}}} \left[\lambda^{\mathcal{S}}(\nabla \cdot \mathbf{u})(\nabla \cdot \mathbf{w}) + 2\mu^{\mathcal{S}} \epsilon(\mathbf{u}) : \epsilon(\mathbf{w}) \right]$$ # Weak formulation of the structure equations. Eulerian coordinates $$\begin{split} \widehat{W}_{n}^{S} &= \left\{ \widehat{\mathbf{w}} \in (H^{1}(\Omega_{n}^{S}))^{2}; \quad \widehat{\mathbf{w}} = 0 \text{ on } \Gamma_{D} \right\}. \\ \\ &\int_{\Omega_{n}^{S}} \frac{2\rho^{S}}{\Delta t} \widehat{\mathbf{v}}^{S,n+1} \cdot \widehat{\mathbf{w}} + 2\theta \Delta t \ \widetilde{a}_{S}(\widehat{\mathbf{v}}^{S,n+1}, \widehat{\mathbf{w}}) \\ \\ &- \int_{\Gamma_{n}} (\sigma^{S} \mathbf{n}^{S}) \cdot \widehat{\mathbf{w}} = \widetilde{\mathcal{L}}_{S}(\widehat{\mathbf{w}}), \quad \forall \widehat{\mathbf{w}} \in \widehat{W}_{n}^{S}, \end{split}$$ where $$\tilde{a}_{S}(\mathbf{u}, \mathbf{w}) = \int_{\Omega_{2}^{S}} \left[\lambda^{S}(\nabla \cdot \mathbf{u})(\nabla \cdot \mathbf{w}) + 2\mu^{S} \epsilon(\mathbf{u}) : \epsilon(\mathbf{w}) \right]$$ ### Global moving domain $$\Omega_n = \Omega_n^F \cup \Omega_n^S$$ Global velocity and pressure $$\mathbf{v}^n:\Omega_n\to\mathbb{R}^2,\quad p^n:\Omega_n\to\mathbb{R}$$ $$\widehat{W}_n = \left\{ \widehat{\mathbf{w}} \in (H^1(\Omega_n))^2; \ \widehat{\mathbf{w}} = 0 \ \text{on} \ \Gamma_D \cup \Sigma_2 \right\}, \quad \widehat{Q}_n = L^2(\Omega_n)$$ Characteristic functions related to the fluid domain $\chi_{\Omega_t^F}: \overline{\Omega}_t \to \mathbb{R}$ and structure domain $\chi_{\Omega_t^S}: \overline{\Omega}_t \to \mathbb{R}$: $$\chi_{\Omega_t^S} = \left\{ \begin{array}{l} 1, \text{ on } \overline{\Omega}_t^S \\ 0, \text{ otherwise} \end{array} \right. \qquad \chi_{\Omega_t^F} = 1 - \chi_{\Omega_t^S}.$$ ### Monolithic formulation for the fluid-structure equations Find $(\widehat{\mathbf{v}}^{n+1},\widehat{p}^{n+1}) \in \widehat{W}_n \times \widehat{Q}_n$ such that: $$\begin{split} &\int_{\Omega_{n}}\chi_{\Omega_{n}^{F}}\,\rho^{F}\frac{\widehat{\mathbf{v}}^{n+1}}{\Delta t}\cdot\widehat{\mathbf{w}}+\int_{\Omega_{n}}\chi_{\Omega_{n}^{F}}\,\rho^{F}\left(\left(\left(\mathbf{v}^{n}-\widetilde{\boldsymbol{\vartheta}}^{n}\right)\cdot\nabla\right)\widehat{\mathbf{v}}^{n+1}\right)\cdot\widehat{\mathbf{w}}\\ &-\int_{\Omega_{n}}\chi_{\Omega_{n}^{F}}\left(\nabla\cdot\widehat{\mathbf{w}}\right)\widehat{\rho}^{n+1}+\int_{\Omega_{n}}\chi_{\Omega_{n}^{F}}\,2\mu^{F}\epsilon\left(\widehat{\mathbf{v}}^{n+1}\right):\epsilon\left(\widehat{\mathbf{w}}\right)\\ &+\int_{\Omega_{n}}\chi_{\Omega_{n}^{S}}\frac{2\rho^{S}}{\Delta t}\widehat{\mathbf{v}}^{n+1}\cdot\widehat{\mathbf{w}}+2\theta\Delta t\,\widetilde{a}_{S}(\widehat{\mathbf{v}}^{n+1},\widehat{\mathbf{w}})\\ &=\widetilde{\mathcal{L}}_{F}(\widehat{\mathbf{w}})+\widetilde{\mathcal{L}}_{S}(\widehat{\mathbf{w}}),\quad\forall\widehat{\mathbf{w}}\in\widehat{W}_{n}\\ &\int_{\Omega_{n}}\chi_{\Omega_{n}^{F}}\,\widehat{q}(\nabla\cdot\widehat{\mathbf{v}}^{n+1})=0,\quad\forall\widehat{q}\in\widehat{Q}_{n}. \end{split}$$ #### Finite element discretization Triangular $\mathbb{P}_1 + bubble$ for the velocity, \mathbb{P}_1 for the pressure and \mathbb{P}_0 for the characteristic functions. The velocity, the pressure as well as the test functions are continuous all over the global domain Ω_n . Consequently, the continuity of velocity at the interface is automatically satisfied. The integrals over the interface do not appear explicitly in the global weak form due to the action and reaction principle. If the solution of the monolithic is sufficiently smooth, the continuity of stress at the interface holds in a weak sense. #### Linear systems The linear system has not an unique solution, because the pressure p^S can take any value. $$\begin{bmatrix} A & B^T & 0 \\ B & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ p^F \\ p^S \end{bmatrix} = \begin{bmatrix} \mathcal{L} \\ 0 \\ 0 \end{bmatrix}$$ We have added the term $\epsilon\int_{\Omega_n}\widehat{p}^{n+1}\widehat{q}$, then the bellow system has an unique solution and $p^S=0$ on Ω_n^S . $$\begin{bmatrix} A & B^T & 0 \\ B & \epsilon M^F & 0 \\ 0 & 0 & \epsilon M^S \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ p^F \\ p^S \end{bmatrix} = \begin{bmatrix} \mathcal{L} \\ 0 \\ 0 \end{bmatrix}$$ The matrix A is not symetric due to the convection term. We have used the GMRES algorithm for solving the linear system. #### Time advancing schema from n to n+1 We assume that we know Ω_n , \mathbf{v}^n , \mathbf{u}^n , $\ddot{\mathbf{u}}^n$. **Step 1**: Compute $\tilde{\boldsymbol{\vartheta}}^n$ **Step 2**: Solve the linear system and get $\widehat{\mathbf{v}}^{n+1}$ and pressure \widehat{p}^{n+1} **Step 3**: Compute the displacement and the acceleration $$\widehat{\mathbf{u}}^{n+1} = \mathbf{u}^n + (\Delta t)^2 \left(\frac{1}{2} - 2\theta\right) \ddot{\mathbf{u}}^n + \Delta t (1 - 2\theta) \mathbf{v}^n + 2\theta \Delta t \ \widehat{\mathbf{v}}^{n+1}$$ $$\widehat{\ddot{\mathbf{u}}}^{n+1} = \frac{2}{\Delta t} \left(\widehat{\mathbf{v}}^{n+1} - \mathbf{v}^n\right) - \ddot{\mathbf{u}}^n$$ **Step 4**: We define the map $\mathbb{T}_n : \overline{\Omega}_n \to \mathbb{R}^2$ by: $$\mathbb{T}_n(\widehat{\mathbf{x}}) = \widehat{\mathbf{x}} + \Delta t \widetilde{\boldsymbol{\vartheta}}^n(\widehat{\mathbf{x}}) \chi_{\Omega_n^F}(\widehat{\mathbf{x}}) + (\widehat{\mathbf{u}}^{n+1}(\widehat{\mathbf{x}}) - \mathbf{u}^n(\widehat{\mathbf{x}})) \chi_{\Omega_n^S}(\widehat{\mathbf{x}})$$ **Step 5**: We set $\Omega_{n+1} = \mathbb{T}_n(\Omega_n)$. We define $\mathbf{v}^{n+1} : \Omega_{n+1} \to \mathbb{R}^2$ and $p^{n+1} : \Omega_{n+1} \to \mathbb{R}^2$ by: $$\mathbf{v}^{n+1}(\mathbf{x}) = \widehat{\mathbf{v}}^{n+1}(\widehat{\mathbf{x}}), \ p^{n+1}(\mathbf{x}) = \widehat{p}^{n+1}(\widehat{\mathbf{x}}), \ \forall \widehat{\mathbf{x}} \in \Omega_n \ \text{and} \ \mathbf{x} = \mathbb{T}_n(\widehat{\mathbf{x}}).$$ # Global fluid-structure mesh (top), the structure and fluid meshes (bottom) The global moving mesh is compatible with the interface: a triangle of the global mesh belongs either to the fluid region or to the structure region. # CPU time: monolithic versus partionned procedure algorithm | nsFS | nt | nv | global Dof | CPU_{mono} | |------|------|------|------------|--------------| | 80 | 2426 | 1305 | 8767 | 5m25s | | 100 | 3916 | 2070 | 14042 | 7m18s | | 120 | 5039 | 2649 | 18016 | 11m34s | | nsSF | ntF | nvF | ntS | nvS | DofF | DofS | CPU_{pp} | $\frac{CPU_{pp}}{CPU_{mono}}$ | |------|------|------|-----|-----|-------|------|------------|-------------------------------| | 80 | 2106 | 1144 | 320 | 242 | 7644 | 484 | 10m49s | 1.99 | | 100 | 3538 | 1880 | 378 | 291 | 12716 | 582 | 15m57s | 2.18 | | 120 | 4582 | 2422 | 452 | 348 | 16430 | 696 | 21m06s | 1.82 | | m | CPU_{pp} | $\frac{CPU_{pp}}{CPU_{mono}}$ | |----|------------|-------------------------------| | 3 | 10m49s | 1.99 | | 7 | 27m47s | 5.12 | | 10 | 41m07s | 7.59 | #### Conclusions - Semi-implicit algorithm: the global system of unknowns $\hat{\mathbf{v}}^{n+1}$, \hat{p}^{n+1} is implicit, but the fluid domain is computed explicitly. - ▶ The continuity of velocity at the interface is automatically satisfied and the continuity of stress holds in a weak sense. - The global system is solved monolithically. - ► The characteristic functions permit us to choose independently the time discretization schemes of the fluid and structure. - ▶ The global moving mesh is obtained by gluing the fluid and structure meshes which are matching at the interface. The interface does not pass through the triangles. - ► The CPU time is reduced compared to a particular partition procedures strategy.