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Abstract. We present a weak formulation for a steady fluid-structure
interaction problem using an embedding domain technique with penaliza-
tion. Except of the penalizing term, the coefficients of the fluid problem
are constant and independent of the deformation of the structure, which
represents an advantage of this approach. A second advantage of this
model is the fact that the continuity of the stress at the fluid-structure
interface does not appear explicitly. Numerical results are presented.
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1 A steady fluid-structure interaction problem

The present paper is devoted to the study of the numerical behavior of an elastic
structure immersed in a viscous incompressible fluid. We use Stokes equation to
model the flow motion. The displacement of the structure under the flow motion
will be modeled by linear elasticity equations, under the small deformations
assumption. In this paper, we study the steady case.

Let D ⊂ R
2 be a bounded open domain with boundary ∂D. Let ΩS

0 be
the undeformed structure domain, and suppose that its boundary admits the
decomposition ∂ΩS

0 = ΓD ∪ Γ0, where Γ0 is a relatively open subset of the
boundary. On ΓD we impose zero displacement for the structure. We assume
that ΩS

0 ⊂ D.
Suppose that the structure is elastic and denote by u = (u1, u2) : ΩS

0 → R
2

its displacement. A particle of the structure with initial position at the point
X will occupy the position x = ϕ (X) = X + u (X) in the deformed domain
ΩS

u = ϕ
(
ΩS

0

)
.

We assume that ΩS
u ⊂ D and the fluid occupies ΩF

u = D \ Ω
S

u . We set
Γu = ϕ (Γ0) and we suppose that Γu does not touch the container wall, i.e.
∂D ∩ Γu = ∅. We recall that Γ0 is a relatively open subset. The boundary Γu

represents the moving fluid-structure interface. The boundary of the deformed
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structure is ∂ΩS
u = ΓD ∪ Γu. In the case when Ω

S

u ⊂ D, the fluid-structure
geometrical configuration is represented in Figure 1 and the boundary of the
fluid domain admits the decomposition ∂ΩF

u = ∂D ∪ ΓD ∪ Γu.

Γ

Γ 0
uΓ

D

Ω
F

Ω
S
u

u

D

Fig. 1. Geometrical configuration.

Also, for the first numerical test, we consider the case when ΓD ⊂ ∂D as
in Figure 2 and the boundary of the fluid domain admits the decomposition
∂ΩF

u = (∂D \ ΓD) ∪ Γu.

2 Weak formulation using an embedding domain

technique with penalization

We introduce the tensor ǫ (w) = 1

2

(
∇w + (∇w)

T
)

and we assume that the

fluid is Newtonian and the Cauchy stress tensor is given by σF (v, p) = −p I +
2µF ǫ (v), where µF > 0 is the viscosity of the fluid and I is the unit matrix.
We assume that the structure verifies the linear elasticity equation, under the
assumption of small deformations. The stress tensor of the structure written in
the Lagrangian framework is σS (u) = λS (∇ · u) I+ 2µSǫ (u), where λS , µS > 0
are the Lamé coefficients.

We present in an informal and intuitive manner the ideas behind our approx-
imation approach using embedding domain technique with penalization. In the
fluid domain, Stokes equations are solved:

−∇ · σF (v, p) = fF , in ΩF
u (1)

∇ · v = 0, in ΩF
u (2)

We introduce two more equations concerning the fluid fields, but written on the
deformed structure domain:

−∇ · σF (v, p) +
1

ε
P (v) = fF , in ΩS

u (3)

∇ · v = 0, in ΩS
u (4)
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where ε > 0 is a penalization parameter,

P (v) =
(
|v1|

α−1
sgn (v1) , |v2|

α−1
sgn (v2)

)
(5)

where v = (v1, v2) and 1 < α < 2 is a real number.

Remark 1. This choice of the penalization term is justified in [2], in order to
obtain existence of the fluid-structure interaction problem. For the steady case,
the role of the penalization term is to obtain very small values of the fluid velocity
in the structure domain. If we take other values for α or for a H1 penalization,
we do not get more regularity of the solution.

Let χS
u be the characteristic function of ΩS

u . Combining (1) and (3), it follows
that

−∇ · σF (v, p) +
1

ε
χS

u P (v) = fF , in D. (6)

Similarly, we have from (2) and (4)

∇ · v = 0, in D. (7)

In view of the equation (3), the “fictitious” fluid velocity and pressure defined
on the structure domain ΩS

u depend on ǫ. In the following, we denote by vε and
pε the fluid velocity and pressure defined all over the domain D.

Let us introduce the bi-linear forms

aS

(
u,wS

)
=

∫

ΩS

0

(
λS (∇ · u)

(
∇ ·wS

)
+ 2µSǫ (u) : ǫ

(
wS

))
dX

aF (v,w) =

∫

D

2µF ǫ (v) : ǫ (w) dx

bF (w, p) = −

∫

D

(∇ ·w) p dx

and the Hilbert spaces

WS =
{
wS ∈

(
H1

(
ΩS

0

))2
; wS = 0 on ΓD

}
,

W =
(
H1

0 (D)
)2

,

Q = L2
0 (D) = {q ∈ L2 (D) ;

∫

D

q dx = 0}.

We assume for the moment that fF ∈
(
L2(D)

)2
, fS ∈

(
L2(ΩS

0 )
)2

and g ∈
(
H1/2 (∂D)

)2
, such that

∫
∂D

g · nF ds = 0.

For a given u ∈
(
W 1,∞(ΩS

0 )
)2

, such that ‖u‖
1,∞,ΩS

0
< 1 and u = 0 on ΓD,

we define:

– fluid velocity vε ∈
(
H1(D)

)2
, vε = g on ∂D,

– fluid pressure pε ∈ Q,
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– structure displacement uε ∈ WS ,

as the solution of the following weakly coupled system of PDE’s:

aF (vε,w) + bF (w, pε)

+
1

ε

∫

D

H̃uP (vε) · w dx =

∫

D

fF · wdx, ∀w ∈ W (8)

bF (vε, q) = 0, ∀q ∈ Q (9)

aS

(
uε,w

S
)

=

∫

ΩS

0

fS · wS dX +

∫

ΩS

0

J
(
σF (vε, pε) ◦ ϕ

)
F−T : ∇XwS dX

+
1

ε

∫

ΩS

0

JH̃uP (vε ◦ ϕ) · wS dX

−

∫

ΩS

0

J
(
fF ◦ ϕ

)
· wS dX, ∀wS ∈ WS(10)

where ϕ(X) = X + u(X), F(X) = I + ∇Xu(X), J(X) = det F(X).

The equations (8) and (9) are obtained from (6) and (7). The coefficient H̃u

in (8) is a regularization of the characteristic function of ΩS
u , which is necessary

in order to prove the continuity of the solution with respect to the structure
displacement.

Remark 2. From the structure equation −∇·σS (uε) = fS , in ΩS
0 using Green’s

formula, we obtain for all wS = 0 on ΓD that

aS

(
uε,w

S
)

=

∫

ΩS

0

fS ·wS dX +

∫

Γ0

σS (uε)n
S · wSdS.

We can prove (see [2]) that the sum of the last three terms in (10) is equal to the
fluid forces acting on the structure which is also equals to

∫
Γ0

σS (uε)n
S ·wSdS.

In fact, from (10) and the above weak formulation of the structure, we can get
that the boundary condition at the interface concerning the continuity of the
stress is verified in a weak sense (see [2]). The second boundary condition at the
interface is the continuity of the velocity, i.e. v = 0 on Γu in the steady case.
This is obtained by using the penalization term in the structure domain.

Define the nonlinear operator

Tε :
{
u ∈

(
W 1,∞(ΩS

0 )
)2

; ‖u‖
1,∞,ΩS

0
< 1, u = 0 on ΓD

}
→

(
W 1,∞(ΩS

0 )
)2

by Tε(u) = uε. A solution of the penalized fluid-structure interaction problem
will be, by definition, a fixed point of Tε. In [2], we discuss the existence of a
solution of the penalized fluid-structure interaction problem. The convergence
of uε, vε, pε when ε goes to 0 is also analyzed.
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3 Partitioned procedures based on fixed point iterations

The penalized term P (v) is non-linear in v for α 6= 2. But for α = 2, we
have P (v) = v. Now, the fluid problem, at the Step 2 of the algorithm below,
becomes linear and, for a given uk

ǫ , it has a unique solution.
For 1 < α < 2, we can prove the existence of a fixed point for the nonlinear

operator Tε defined at the end of the previous section, but not for α = 2. We
can also replace H̃u in (8) by χS

u the characteristic function of ΩS
u in order to

simplify the computation. The regularization of the the characteristic function
was necessary in order to prove the continuity of the solution with respect to
the structure displacement.

Under the assumption of small displacements for the structure, we can ap-
proach the Jacobian determinant J by 1 and the gradient of the deformation F

by the identity matrix I. The structure problem at the Step 3 is linear and, for
given vk

ǫ and pk
ǫ , it has a unique solution.

Algorithm

Step 1. Given the initial displacement of the structure u0 ∈ WS , compute the
characteristic function χS

u0 , put k := 0.

Step 2. Find the velocity vε ∈
(
H1(D)

)2
, vε = g on ∂D and the pressure

pk
ε ∈ Q by solving the fluid problem

aF

(
vk

ε ,w
)

+ bF

(
w, pk

ε

)
+

1

ε

∫

D

χS
uk

ε

vk
ε · w dx =

∫

D

fF · w dx, ∀w ∈ W

bF

(
vk

ε , q
)

= 0, ∀q ∈ Q.

Step 3. Find the new displacement of the structure uk+1
ε ∈ WS by solving

aS

(
uk+1

ε ,wS
)

=

∫

ΩS

0

(
fS − fF

)
· wS dx +

∫

ΩS

0

2µF ǫ
(
vk

ε

)
: ǫ

(
wS

)
dx

−

∫

ΩS

0

(
∇ · wS

)
pk

ε dx +
1

ε

∫

ΩS

0

(
vk

ε ◦ ϕk
ε

)
· wS dx ∀wS ∈ WS

where ϕk
ε(X) = X + uk

ε(X).
Step 4. Stopping test: if

∥∥uk
ε − uk+1

ε

∥∥
0,ΩS

0

≤ tol, then Stop.

Step 5. Compute the characteristic function χS
uk+1

ε

, put k := k + 1 and Go to

Step 2.

It is possible to consider Navier-Stokes equations for the fluid domain, then
at the Step 2 we have to solve a non-linear system. In this case we can use
the non-linear penalization term for α 6= 2. If we use a non-linear model for the
structure, too, we have to use more accurate approximations for the the Jacobian
determinant J and the gradient of the deformation F.

4 Numerical tests

The numerical tests have been produced using the software FreeFem++ [3].
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4.1 Test 1. Shell in steady-state cross flow

First, we have performed numerical simulation using a 2D model adapted from
[1] (see Figure 2) where we have changed the physical parameters of the fluid
and of the structure.

Σ1

Σ

Σ

2

4

Γ

Γ 0
uΓ

D

Ω
F

Ω
S
u

u

D

Σ3

Fig. 2. Geometrical configuration for the Test 1.

The dimensions of a rectangular elastic structure are: height ℓ = 3 m, thick-
ness h = 0.125 m. The computational domain of the fluid D is a rectangle of
height H = 5 m and length L = 12 m. The distance between the left side of the
fluid and the left side of the structure is 2 m. The lower left corner of Figure 2
is (x1 = 0, x2 = 0).

We denote by Σ1, Σ3 the left and the right vertical boundaries of D and by
Σ2, Σ4 the bottom and the top boundaries of D, respectively.

The mechanical proprieties of the structure (polybutadiene) are: Young mod-
ulus ES = 1.6× 106 N/m2, Poisson’s ratio νS = 0.49, the applied volume forces
on the structure fS : ΩS

0 → R
2, fS = (0, 0) N/m3.

The dynamic viscosity of the fluid (glycerin) is µF = 1.14 N · s/m2.
The inflow velocity profile on Σ1 is

v1(x1, x2) = V × 1.5

(
2H x2 − x2

2

)

H2
m/s, V = 1, v2(x1, x2) = 0.

The other boundary conditions are: v = 0 (no-slip) on Σ2, v · nF = 0 (slip) on
Σ4 and v × nF = 0, nF ·

(
σF (v, p)nF

)
= 0 (the tangential velocity and the

normal traction are zero) on Σ3.
We use a fixed mesh for the fluid domain of 13096 triangles and 6719 vertices.

The mesh of the structure domain has 188 triangles and 145 vertices. The fluid
and structure meshes are not compatible, for example, a vertex on the structure
boundary is not necessary a vertex on the fluid mesh. For the approximation of
the fluid velocity and pressure we have employed the triangular finite elements
P1+bubble and P1 respectively, also called “mini” finite elements. The finite
element P1 was used in order to solve the structure problem. The characteristic
function was approached by P0 finite elements.
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Fig. 3. The fluid pressure [Pa].

Fig. 4. The fluid velocity around the final position of the structure. In each point of
the grid, there is an arrow giving the direction of the velocity and the length of the
arrow is proportional to the euclidean norm of the velocity. The maximal value for the
horizontal component v1 is 2.82 m/s and for the vertical component v2 is 1.18 m/s
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We have performed the simulation using the Algorithm described in the
previous section. For the stopping criterion at the Step 4, we have used the
tolerance tol = 0.2 × 10−4. The penalization parameter is ε = 10−3. The stop-
ping criterion holds after 5 iterations of the fixed point algorithm. The maximal
structural displacement is 0.14 m.

The fluid velocity into the fictitious domain is very small

‖vε‖0,ΩS
uε

=

√∫

D

χS
uε

vε · vε dx = 0.0703384.

4.2 Test 2. Flexible appendix in a flow

We have adapted the benchmark from [4]. Originally, the structure was placed
horizontally, parallel to the flow, but the displacements in this case are very small.
We have placed the structure vertically, transversely to the flow, see Figure 5.

Fig. 5. Geometrical configuration.

The structure is composed by a rectangular flexible appendix attached to a
fixed circle. The circle center is positioned at (0.2, 0.2) m measured from the left
top corner of the channel. The circle has the radius r = 0.5 m and the rectangular
appendix is of length ℓ = 0.35 m, thickness h = 0.02 m. The Young modulus is
ES = 1.6 × 106 N/m2 and Poisson’s ratio is νS = 0.49 (polybutadiene).

The channel has the length L = 2.5 m and the width H = 0.75 m. The fluid
dynamic viscosity is µF = 1.420 N · s/m2 (glycerin).

We have used the following boundary conditions: at the inflow the velocity
is

v1(x1, x2) = V × 1.5

(
H x2 − x2

2

)

(H/2)2
m/s, V = 1, v2(x1, x2) = 0;

at the bottom and the top we have imposed the no-slip boundary condition
v = 0 and at the outflow the traction free σF (v, p)nF = 0.

We use a fixed mesh for the fluid domain of 30330 triangles and 15461 vertices
and a structure mesh of 128 triangles and 97 vertices. We have employed the
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same finite elements as for the Test 1. We have treated by the embedding domain
technique only the flexible part of the structure.

The penalization parameter is ε = 10−4 and for the stopping criterion tol =
10−8. The fixed point algorithm stops after 8 iterations.

The maximal horizontal displacement of the structure is 0.10886 m. The
pressure and the velocity of the fluid are presented in Figures 6 and 7. The fluid
velocity in the fictitious domain is very small

‖vε‖0,ΩS
uε

=

√∫

D

χS
uε

vε · vε dx = 0.080920.

Fig. 6. The fluid pressure [Pa].

Conclusions

We have presented a fixed point algorithm for solving steady fluid-structure
interaction problem. Using the embedding domain technique with penalization,
the fluid equations as well as the structure equations are solved in fixed meshes.
The fluid and structure meshes could be generated independently. The algorithm
can be used for the three dimensions problems.
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Fig. 7. The fluid velocity [m/s] around the final position of the structure. In each point
of the grid, there is an arrow giving the direction of the velocity. The length of the
arrow is proportional to the euclidean norm of the velocity which is represented in the
color bar.
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