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Abstract

We discuss an algorithm for the solution of variational inequalities associated to

simply supported plates in contact with a rigid obstacle. Our approach has a fixed

domain character, uses just linear equations and approximates both the solution and

the corresponding coincidence set. Numerical examples are also provided.
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1 Introduction

Variational inequalities model many contact problems in elasticity, in fluid-
solid interaction problems, change of phase phenomena, other applications from
physics, Duvaut and Lions (1976), Kikuchi and Oden (1988), Sofonea and Matei
(2009).
There is a rich literature devoted to their theoretical study Elliott and

Ockendon (1982), Rodrigues (1987), Kinderlehrer and Stampacchia (2000), or
their numerical approximation Glowinski, Lions and Trémolières (1981), Fortin
and Glowinski (1983). Let us also mention recent extensions of the theory
Sofonea, Migorski and Ochal (2012) and the study of the associated optimization
problems, in the setting of the optimal control theory Barbu (1984), Tiba (1990),
Neittaanmaki and Tiba (1994) or in shape optimization Neittaanmaki, Sprekels
and Tiba (2006).
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The difficulty of such problems is related to the presence of a geometric
unknown, the so-called free boundary that has to be found together with the
state of the system. It may be a surface or a whole region (called mushy region).
Equivalently, in obstacle problems, one may look for the coincidence set (where
the solution coincides with the obstacle). Its boundary is the free boundary.

Taking into account such aspects and the usual variational approach to
variational inequalities in the PDE’s setting, it turns out that methods used
in shape optimization may be very useful. We refer to fixed domain methods
Neittaanmaki and Tiba (2012) that “hide” the geometric unknowns via various
procedures. This idea appears already in Neittaanmaki, Pennanen and Tiba
(2009), the novelty here is that we propose an approach using just linear
differential equations. That is, we avoid the use of nonlinear equations that
appear in the penalization methods in semi-group theory Barbu (1984).

In the setting of variational inequalities and free boundary problems,
applications of such ideas have been recently discussed in Halanay, Murea
and Tiba (2013), (2016), Murea and Tiba (2016) with reference to elliptic
or parabolic obstacle problems, one or two phase Stefan problems, fluid-solid
contact models. As examples of applications that may be handled via the fixed
domain methods, we mention as well the electrochemical machining process
Neittaanmaki, Sprekels and Tiba (2006) or various contact problems related to
the deformation of the elastic membranes with obstacle, melting or solidification
processes. Applications to financial models (the two-asset American options) are
also investigated in Murea and Tiba (2016).

This article is devoted to problems in the elasticity theory of plates, in contact
with a rigid body. In the next section, we describe the problem and the new
algorithm. The stability of our approach is investigated in Section 3. The last
part of the paper is devoted to some relevant numerical experiments. It turns
out that our method is very rapid and accurate.

2 Problem formulation and algorithm

We start with the well-known model of a simply supported plate, to which
supplementary unilateral conditions will be added in the sequel:

∆(u3∆y) = f in Ω, (2.1)

y = ∆y = 0 on ∂Ω, (2.2)

where y ∈ H2(Ω) ∩H1
0 (Ω) is the unknown vertical displacement of the plate,

f ∈ L2(Ω) is the load, Ω is a sufficiently smooth bounded domain in R
d, d ≤ 3

and u ∈ L∞(Ω), u(x) ≥ m > 0 a.e. in Ω is the thickness of the plate. Since
u ∈ L∞(Ω), it is known that y ∈ W 2,p(Ω), with some p > 2 depending on the
dimension, Grisvard (1985), by the Sobolev theorem and regularity results for
second order elliptic equations. In the last section, polygonal domains will be
also considered.
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The boundary value problem (2.1)–(2.2) is equivalent with the minimization
of the energy

argmin
z

{
1

2

∫

Ω

u3(∆z)2dx−
∫

Ω

f z dx

}
(2.3)

on the space H2(Ω) ∩H1
0 (Ω), which gives the definition of the weak solution for

(2.1)–(2.2).

We introduce a convex closed subset representing the space of admissible
displacements:

K =
{
z ∈ H2(Ω) ∩H1

0 (Ω); z ≥ ψ a.e. in Ω
}

(2.4)

where ψ ∈ H2(Ω) is the obstacle bounding the displacement of the plate and we
assume

ψ ≤ 0 on ∂Ω. (2.5)

Relation (2.5) ensures that K defined in (2.4) is non-void. In the works
Glowinski, Lions and Trémolières (1981), Tiba (2016) other examples of closed
convex sets

K̃ =
{
z ∈ H2(Ω) ∩H1

0 (Ω); a ≤ ∆z ≤ b a.e. in Ω
}

(2.6)

K̂ =

{
z ∈ H2(Ω) ∩H1

0 (Ω);

∫

Ω

fzdx ≥ −1

}
(2.7)

are discussed in a different context, a, b ∈ R. We shall investigate the application
of our linear numerical approach to clamped plates and such examples (2.6),
(2.7), in a subsequent paper.

If the minimization in (2.3) is performed on K, classical arguments give the
existence of a unique solution. This is due to the assumed strict positivity of
u ∈ L∞(Ω) and to the fact that the first integral in (2.3) defines an equivalent
norm on H2(Ω) ∩H1

0 (Ω). Then, the functional (2.3) is coercive and strictly
convex.

The above problem can be rewritten as a variational inequality: find y ∈ K
such that

∫

Ω

u3∆y(∆y −∆z)dx ≤
∫

Ω

f(y − z)dx, ∀z ∈ K. (2.8)

It is also possible to re-express (2.8) or (2.3), (2.4) by using maximal monotone
operators:

∆(u3∆y) + β(y − ψ) ∋ f in Ω, (2.9)
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together with the boundary conditions (2.2). In fact, (2.8) is a weak formulation
of (2.9), where β : R → 2R is the multi-valued function:

β(r) =





0, r > 0,
]−∞, 0], r = 0,

∅, r < 0
(2.10)

and it will not be distinguished from its maximal monotone graph viewed as a
subset of R× R. The nonlinear term in (2.9), β(y − ψ) represents the unknown
reaction of the obstacle, when the contact occurs. Classical approximation
methods for (2.9), (2.10) use the Yoshida-Moreau penalization:

βǫ(r) =

{
1
ǫ
r, r ≤ 0
0, r > 0,

(2.11)

and smoothing procedures with standard mollifiers. This ensures differentiability
in the approximating equations, Barbu (1976), Barbu (1984).

We state now our algorithm, that uses just linear equations:

Algorithm 1 (for (2.9), (2.2))

1) Choose n = 0, ǫ0 > 0, C0 ⊂ Ω closed (the initial guess of the coincidence
set), y−1 ∈ L2(Ω);
2) Compute yn ∈ H2(Ω) and satisfying (2.2) such that

∆(u3∆yn) +
1

ǫn
χCn

(yn − ψ) = f in Ω. (2.12)

3) yn = max{yn, ψ}, Cn+1 = {x ∈ Ω; yn(x) = ψ(x)}, ǫn+1 = ǫn
2 ;

4) If
∥∥yn − yn−1

∥∥
L2(Ω)

< tol then STOP; else n:=n+1 GO TO step 2.

Notice that yn computed in Step 2 is at least in H2(Ω) and continuous since
dim(Ω) ≤ 3 and the approximating coincidence set Cn defined in Step 3 is closed.
Here, χCn

is the characteristic function of Cn. If we make the convention that
in (2.11):

β′
ǫ(0) =

1

ǫ
(2.13)

then we get
1

ǫn
χCn

= β′
ǫn
(yn−1 − ψ) (2.14)

and the equation in Step 2 can be rewritten as

∆(u3∆yn) + β′
ǫn
(yn−1 − ψ)(yn − ψ) = f in Ω, (2.15)

together with the boundary condition (2.2). This shows the “decoupling”
operation (2.14), (2.15) that we perform in the above algorithm. Recalling
that, under the convention (2.13), we have βǫn(r) = β′

ǫ(r)r, one can compare
our linear approach with the classical regularization approach for variational
inequalities, Barbu (1984).

Prepared using sagej.cls



6 Journal Title XX(X)

3 Stability

We start with two technical lemmas that show that the variational inequality
(2.8) associated to the convex (2.4) (see the equivalent formulation (2.9)) can
be reduced to the case when the obstacle ψ has zero trace on ∂Ω.

Lemma 3.1. Denote by ŷ ∈ H2(Ω) satisfying (2.2), the unique solution of the
partial differential equation

∆(u3∆ŷ) = f in Ω. (3.1)

Then y ∈ K, the solution of (2.9), (2.2) satisfies y(x) ≥ ŷ(x) a.e. in Ω.

Proof. We know that β(y − ψ) ∈ L2(Ω) and β(y − ψ) ≤ 0 a.e. in Ω. Denote by
z, respectively ẑ the solutions of

∆z + β(y − ψ) = f in Ω, z ∈ H2(Ω) ∩H1
0 (Ω), (3.2)

∆ẑ = f in Ω, ẑ ∈ H2(Ω) ∩H1
0 (Ω). (3.3)

Then, by comparison properties for elliptic equations, we have z ≤ ẑ a.e. in Ω.
We notice that ∆y = u−3z, ∆ŷ = u−3ẑ in Ω. Again, by comparison property,
we get the conclusion y ≥ ŷ a.e. in Ω since u is strictly positive. ✷

Remark. Assume that β(y − ψ) 6= 0 in Ω, i.e. y and ŷ cannot satisfy y = ŷ in
Ω. We also have z, ẑ ∈ H2(Ω) ∩H1

0 (Ω) by (3.2), (3.3) and, consequently, z, ẑ ∈
W 1,p(Ω), p < 6, by the Sobolev embedding theorem, since dim(Ω) ≤ 3. Under
the hypothesis u ∈W 1,∞(Ω), since u(x) ≥ m > 0, we get u−3z ∈W 1,p(Ω), p <
6. Similarly for ẑ. It yields that y, ŷ ∈W 3,p(Ω) by regularity theory for elliptic
equations, Grisvard (1985). Again, the Sobolev theorem gives y, ŷ ∈ C2(Ω) if
p > 3, which is valid in our case. It turns out that one can use the strong
maximum principle Evans (2010), in this setting (∂Ω is sufficiently smooth) and
we get the sharper inequality

y(x) > ŷ(x) in Ω. (3.4)

Denote ψ̂ = max(ψ, ŷ) in Ω. Then ψ̂ ∈ H1
0 (Ω) if ψ ∈ H1(Ω) and ψ ≤ 0 on ∂Ω

as assumed. We also have y ≥ ψ̂ a.e. in Ω.

Lemma 3.2. The solution y ∈ K of (2.9), (2.2) satisfies the same problem with

ψ replaced by ψ̂.

Proof. We check some equalities and inequalities: y > ψ̂ ⇒ y > ψ ⇒ β(y −
ψ̂) = β(y − ψ) = 0; y = ψ̂ = max(ψ, ŷ) ⇒ ψ̂ = ψ ⇒ y = ψ since y > ŷ by (3.4).

It yields that β(y − ψ̂) = β(y − ψ) in Ω and (2.9) is valid with ψ replaced by

ψ̂. Since y ≥ ψ̂ a.e. in Ω, we can replace ψ by ψ̂ in the definition of K as well.
Relation (2.2) remains valid. This ends the proof. ✷

Due to the above results, we can make the assumption ψ ∈ H1
0 (Ω) and prove
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Theorem 3.1. If ∂Ω is of class C1,1, ψ ∈ H2(Ω) ∩H1
0 (Ω), u ∈W 1,∞(Ω),

u(x) ≥ m > 0 a.e. in Ω, then we have:
i) On a subsequence, yn → ỹ weakly in H2(Ω) ∩H1

0 (Ω) and Ω \ Cn → Ω \ C in
the Hausdorff-Pompeiu complementary topology.
ii) If Ω \ Cn are uniformly of class C (see Neittaanmaki, Sprekels and Tiba
(2006)) and the convergence is valid on the whole sequence, then C is the
coincidence set corresponding to (2.9), (2.2) and ỹ satisfies (2.9), (2.2) in a
weak sense explained below.

Proof. i) We multiply (2.12) or (2.15) by yn − ψ ∈ H1
0 (Ω) and integrate by

parts:

∫

Ω

u3∆yn∆(yn − ψ)dx+
1

ǫn

∫

Cn

(yn − ψ)2dx =

∫

Ω

f(yn − ψ)dx. (3.5)

The positivity of the second integral in (3.5) gives:

∫

Ω

u3|∆yn|2dx ≤
∫

Ω

u3∆yn∆ψdx +

∫

Ω

f(yn − ψ)dx. (3.6)

It yields that {yn} is bounded in H2(Ω) since the first integral in (3.6) defines
an equivalent norm on H2(Ω) due to the zero boundary conditions. We also
obtain:

∫

Cn

(yn − ψ)2dx ≤ c ǫn (3.7)

with c > 0 independent of n ∈ N. We denote by ỹ ∈ H2(Ω) ∩H1
0 (Ω) the weak

limit in H2(Ω) of yn and C = limCn in the Hausdorff-Pompeiu topology for
compact sets in Euclidean spaces, on a subsequence.
ii) Denote D = Ω \ C open subset and let ρ ∈ C∞

0 (D). By the Γ property
for the complementary Hausdorff-Pompeiu convergence, Neittaanmaki, Sprekels
and Tiba (2006) , Appendix 3, we get ρ ∈ C∞

0 (Ω \ Cn), for n sufficiently big. We
multiply (2.12) by ρ and obtain

∫

Ω

u3∆yn∆ρdx =

∫

Ω

fρdx, (3.8)

after partial integration and since Cn ∩ supp(ρ) = ∅. One can pass to the limit
in (3.8) and obtain

∫

Ω

u3∆ỹ∆ρdx =

∫

Ω

fρdx, ∀ρ ∈ C∞
0 (D) (3.9)

that is ỹ satisfies in D the equation (2.1), in the sense of distributions.
Under the supplementary assumption that Ω \ Cn are domains of class

C (see Neittaanmaki, Sprekels and Tiba (2006), Appendix 3) we also get
the convergence of the corresponding characteristic functions, a.e. in Ω. By
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inequality (3.7), we obtain

∫

C

(ỹ − ψ)2dx = 0 (3.10)

that is ỹ(x) = ψ(x) in C (here also use the continuity of ỹ, ψ sinceH2(Ω) ⊂ C(Ω)
for dim(Ω) ≤ 3). As D is of class C, then ∂D has zero Lebesgue measure and
D ∪ C = Ω, up to a set of zero measure. Combining this with (3.9) and the
conclusion of (3.10), we see that (2.9) is satisfied by ỹ in a generalized sense.
The same is valid for (2.2) in the sense that all yn satisfy it and we have the
convergence property. Obviously, ỹ satisfies (2.4) since yn > ψ outside Cn+1 by
Algorithm 1 and we can again apply the Γ property for the sequence Ω \ Cn.
Here, we also use the convergence assumption from ii). ✷

Remark. Notice that the above convergence of yn is also valid in the uniform
topology.

4 Numerical experiments

We assume that the thickness of the plate is constant u = 1. Let Vh ⊂ H2(Ω) ∩
H1

0 (Ω) be a finite dimensional subspace. Classically, see Dautray and Lions
(1990), Chapter XII, section 4, we can approach (2.12) by: find yn,h ∈ Vh such
that

∫

Ω

(∆yn,h)(∆zh)dx+
1

ǫn

∫

Ω

χCn
(yn,h − ψh)zh dx =

∫

Ω

f zh dx, ∀zh ∈ Vh

where ψh ∈ Vh is an approximation of ψ and we have assumed that ψ = 0 on
∂Ω. This discrete problem has a unique solution. As in the continuous case,
‖∆yn,h‖L2(Ω) is bounded and ‖yn,h − ψh‖L2(Cn)

≤ C
√
ǫn, where C > 0 is a

constant. But the drawback of this approach is to use high order polynomial
finite element approximation to have Vh ⊂ H2(Ω).
We follow a different strategy, the mixed finite element method, see Boffi,

Brezzi and Fortin (2013). With the notation ωn = −∆yn, the problem (2.12),
(2.2) is equivalent to

−∆yn = ωn, in Ω (4.1)

−∆ωn +
1

ǫn
χCn

(yn − ψ) = f, in Ω (4.2)

yn = 0, on ∂Ω (4.3)

ωn = 0, on ∂Ω. (4.4)

Let f ∈ L2(Ω). Then, the weak solution of (2.12), (2.2) satisfies yn ∈ H2(Ω) ∩
H1

0 (Ω). As u = 1, the above notation and (2.12) give that ωn ∈ L2(Ω) is
the unique transposition solution of the Dirichlet problem for the Laplace
equation (the penalization term is “known” in L2(Ω)). As Ω is smooth, elliptic
regularity theory gives ωn ∈ H2(Ω) ∩H1

0 (Ω) and, using (4.1), it yields yn ∈
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H4(Ω). Multiplying (4.1) by µ ∈ H1
0 (Ω) and (4.2) by φ ∈ H1

0 (Ω) and integrating
by parts, we obtain the mixed problem: find yn, ωn ∈ H1

0 (Ω) such that
∫

Ω

ωnµ dx−
∫

Ω

∇yn · ∇µ dx = 0, ∀µ ∈ H1
0 (Ω) (4.5)

−
∫

Ω

∇ωn · ∇φdx− 1

ǫn

∫

Ω

χCn
(yn − ψ)φdx

= −
∫

Ω

fφ dx, ∀φ ∈ H1
0 (Ω). (4.6)

The minus sign in (4.6) is in order to obtain a symmetric matrix. For the
existence, uniqueness and finite element approximation for the biharmonic
problem with clamped boundary conditions, we refer to Boffi, Brezzi and Fortin
(2013), Chapter 10. If Ω is a bounded polygonal domain in R

2, the solution of
the simply supported plate problem is only in H2+α(Ω), where α ∈ (0, 1] is the
index of elliptic regularity determined by the interior angles of Ω, see Brenner
et al (2015) and the references therein.
The formulation (4.5), (4.6) allows us to use only P1 triangular finite element

for yn as well as for ωn in all tests. We assume that Ω is a bounded polygonal
domain in R

2 and let Th be a triangulation of Ω. We introduce the finite
dimensional space

Wh = {wh ∈ C(Ω); ∀T ∈ Th, wh|T ∈ P1(T )}

and the discrete mixed problem: find yn,h, ωn,h ∈Wh such that
∫

Ω

ωn,h µh dx−
∫

Ω

∇yn,h · ∇µh dx = 0, ∀µh ∈Wh (4.7)

−
∫

Ω

∇ωn,h · ∇φh dx− 1

ǫn

∫

Ω

χCn,h
(yn,h − ψh)φh dx

= −
∫

Ω

fφh dx, ∀φh ∈ Wh. (4.8)

If not otherwise specified, the initial guess of the coincidence set is C0 = ∅.
We have used the software FreeFem++, Hecht (2012).

Test 1. We have adapted Example 2 from Brenner et al (2012) for the
homogeneous simply supported boundary conditions.
The data are: the domain Ω = (−0.5, 0.5)2, the load f = 0, the obstacle

ψ(x) = 1− 5|x|2 + |x|4 and the boundary conditions y = 0 and ∆y = 0 on ∂Ω.
We use a mesh of 153962 triangles, 77494 vertices and size h = 2−8. The

tolerance for the stopping test in Algorithm 1 is tol = 10−8 and the penalization
parameter is fixed to ǫn = 10−5. Our algorithm stops after n = 8 iterations
and the errors between the last two iterations are: ‖yn − yn−1‖L2(Ω) = 3.6e− 9,
‖yn − yn−1‖H1(Ω) = 1.5e− 7. The computed coincidence set and solution are
presented in Figures 1 and 2.
As underlined in the previous section, we can use Algorithm 1 with ψ replaced

by ψ̂ = max(ψ, ŷ) in Ω, where ŷ is the solution of (3.1), (2.2). In this setting, we
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Figure 1. The coincidence set for the Test 1.

Figure 2. The computed solution with the obstacle for the Test 1.

can start, for instance, with C0 = Ω and the other numerical parameters are as
before. Our algorithm stops after n = 7 iterations and the error between the last
two iterations is zero. For n = 6 the errors are ‖yn − yn−1‖L2(Ω) = 1.14e− 6,
‖yn − yn−1‖H1(Ω) = 3.99e− 5. The error in the norm L∞(Ω) between the

solutions obtained using ψ and respectively ψ̂ is 2.65e− 6.

Test 2. It is the one obstacle problem from Brenner et al (2015).
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The data are: L-shaped domain Ω = (−0.5, 0.5)2 \ ([0, 0.5]× [−0.5, 0]), the

load f = 0, the obstacle ψ(x) = 1− (x1+0.25)2

0.242 − (x2−0.25)2

0.242 and the boundary
conditions y = 0 and ∆y = 0 on ∂Ω.

Figure 3. The coincidence set for the Test 2.

Figure 4. The computed solution for the Test 2.

We use a mesh of 110730 triangles, 55878 vertices and size h = 2−7. The
tolerance for the stopping test in Algorithm 1 is tol = 10−5 and the penalization
parameter is fixed to ǫn = 10−5. Our algorithm stops after n = 7 iterations
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and the error between the last two iterations is zero. For n = 6 the errors
are ‖yn − yn−1‖L2(Ω) = 3.0e− 5, ‖yn − yn−1‖H1(Ω) = 5.0e− 4. We obtain a
symmetric coincidence set, slightly larger than in Brenner et al (2015), see Figure
3.

Test 3. We have adapted Example 4 from Brenner et al (2012) for the
homogeneous simply supported boundary conditions.
The data are: L-shaped domain from the Test 2, the load f = 0, the obstacle

ψ(x) = 1− (x1+0.25)2

0.22 − x2

2

0.352 and the boundary conditions y = 0 and ∆y = 0 on
∂Ω.

Figure 5. The coincidence set for the Test 3.

We have used the same mesh as in Test 2. The tolerance for the stopping
test in Algorithm 1 is tol = 10−5 and the penalization parameter is fixed to
ǫn = 10−5. Our algorithm stops after n = 7 iterations and the error between the
last two iterations is zero. For n = 6 the errors are ‖yn − yn−1‖L2(Ω) = 2.5e− 6,
‖yn − yn−1‖H1(Ω) = 6.7e− 5.

Test 4. The algorithm works in more general situations than investigated
in Section 3. We have adapted Example 1 from Brenner et al (2012) for the
non-homogeneous simply supported boundary conditions.
The data are: the domain Ω = (−0.5, 0.5)2, the load f = 0, the obstacle

ψ(x) = 1− |x|2 where |x| =
√
x21 + x22 and the boundary conditions y = ye and

∆y = ∆ye on ∂Ω, where ye is the exact solution of the obstacle problem for the
non-homogeneous simply supported plate given by

ye(x) =

{
C1|x|2 ln(|x|) + C2|x|2 + C3 ln(|x|) + C4, r0 < |x| < 2,
1− |x|2, |x| ≤ r0

where r0 = 0.18134452, C1 = 0.52504063, C2 = −0.62860904, C3 = 0.01726640,
C4 = 1.04674630.
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Figure 6. The computed solution for the Test 3.

Figure 7. The coincidence set for the Test 4.

We use a mesh of 39034 triangles, 19774 vertices and size h = 2−7. The
tolerance for the stopping test in Algorithm 1 is tol = 10−8 and the penalization
parameter is fixed to ǫn = 10−5. Our algorithm stops after n = 8 iterations and
the errors between the computed and the exact solutions are: ‖yn − ye‖L2(Ω) =
3.4e− 4, ‖yn − ye‖H1(Ω) = 4.8e− 3, ‖yn − ye‖L∞(Ω) = 7.6e− 4 which prove the
algorithm is effective. The history of error of computed solution between two
consecutive iterations is presented in Table 1.

The exact coincidence set is the disk {x ∈ Ω; |x| ≤ r0}. We obtain numerically
a slightly larger disk, see Figure 7. This is a delicate test and it is due to the
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Figure 8. The computed solution with the obstacle for the Test 4.

iteration 3 4 5 6 7
‖yn − yn−1‖L2(D) 0.002015 0.000737 0.000143 7.11e-06 7.26e-08

‖yn − yn−1‖H1(D) 0.024636 0.009580 0.002746 0.000171 1.81e-06

Table 1. History of the errors between two consecutive iterations for the Test 4.

employed precision, because the exact solution is very close to the obstacle in a
close neighborhood of the coincidence set, for example ye(0, 0.25)− ψ(0, 0.25) =
0.00053, see Figure 9.
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 0.85

 0.9

 0.95

 1

-0.4 -0.2  0  0.2  0.4

phi
exact solution

Figure 9. The exact solution and the obstacle for the Test 4. Cut by the plane x1Ox3
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In order to estimate the convergence order q (see Theodor (1982)) from the
formula

lim
n→∞

∥∥yn+1 − ye
∥∥
L2(Ω)

‖yn − ye‖qL2(Ω)

< +∞,

we have computed the slope of the regression line of the points

(
log10

(
‖yn − ye‖L2(Ω)

)
, log10

(∥∥yn+1 − ye
∥∥
L2(Ω)

))
, n = 0, . . .

and similarly for the norm of H1(Ω). The results indicate in this example that
the convergence order of Algorithm 1 is q = 1.19 for the norm of L2(Ω) and
q = 1.3 for the norm of H1(Ω). We used also initial guess of the coincidence set
C0 = {x ∈ Ω; |x| ≤ 0.1} and C0 = {x ∈ Ω; |x| ≤ 0.05} and the results are the
same.
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