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Abstract. We consider general shape optimization problems governed by

Dirichlet boundary value problems. The proposed approach may be ex-

tended to other boundary conditions as well. It is based on a recent rep-

resentation result for implicitly defined manifolds, due to the authors, and
it is formulated as an optimal control problem. The discretized approxi-

mating problem is introduced and we give an explicit construction of the

associated discrete gradient. Some numerical examples are also indicated.

1. Introduction

Shape optimization is a relatively young branch of mathematics, with im-

portant modern applications in engineering and design. Certain optimization

problems in mechanics, thickness optimization for plate or rods, geometric op-

timization of shells, curved rods, drag minimization in fluid mechanics, etc. are

some examples. Many appear naturally in the form of control by coefficients

problems, due to the formulation of the mechanical models, with the geomet-

ric characteristics entering the coefficients of the differential operators. See [15,

Chapter 6], where such questions are discussed in details.

It is the aim of this article to develop an optimal control approach, using

penalization methods, to general shape optimization problems as investigated

in [20], [23], [5], [10], [8], etc. We underline that our methodology allows simul-

taneous topological and boundary variations.
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Here, we fix our attention to the Dirichlet boundary conditions and we study

the typical problem (denoted by (P)):

min
Ω

∫
E

j
(
x, yΩ(x)

)
dx,(1.1)

−∆yΩ = f in Ω,(1.2)

yΩ = 0 on ∂Ω,(1.3)

where E ⊂⊂ D ⊂ R2 are given bounded domains, D is of class C1,1 and the

minimization parameter, the unknown domain Ω, satisfies E ⊂ Ω ⊂ D and

other possible conditions defining a class of admissible domains. Notice that the

case of dimension two is of interest in shape optimization. Moreover, f ∈ L2(D),

j : D×R→ R is some Carathéodory mapping. More assumptions or constraints

will be imposed later. Other boundary conditions or differential operators may

be handled as well via this control approach and we shall examine such questions

in a subsequent paper.

For fundamental properties and methods in optimal control theory, we quote

[12], [7], [2], [16]. The problem (1.1)–(1.3) and its approximation are strongly non

convex and challenging both from the numerical and theoretical points of view.

The investigation from this paper continues the one in [26] and is essentially based

on the recent implicit parametrization method as developed in [25], [18], [24],

that provides an efficient analytic representation of the unknown domains.

The Hamiltonian approach to implicitly defined manifolds will be briefly

recalled together with other preliminaries in Section 2. The precise formulation

of the problem and its approximation is analyzed in Section 3 together with its

differentiability properties. In Section 4, we study the discretized version and

find the general form of the discrete gradient. The last section is devoted to

some numerical experiments, using this paper approach.

The method studied in this paper has a certain complexity due to the use

of Hamiltonian systems and its main advantage is the possibility to extend it

to other boundary conditions or boundary observation problems. This will be

performed in a subsequent article.

2. Preliminaries

Consider the Hamiltonian system

x′1(t) = − ∂g

∂x2

(
x1(t), x2(t)

)
, t ∈ I,(2.1)

x′2(t) =
∂g

∂x1

(
x1(t), x2(t)

)
, t ∈ I,(2.2) (

x1(0), x2(0)
)

=
(
x0

1, x
0
2

)
,(2.3)
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where g : D → R is in C1(D),
(
x0

1, x
0
2

)
∈ D and I is the local existence interval for

(2.1)–(2.3), around the origin, obtained via the Peano theorem. The conservation

property [24] of the Hamiltonian gives:

Proposition 2.1. We have

(2.4) g
(
x1(t), x2(t)

)
= g
(
x0

1, x
0
2

)
, t ∈ I.

In the sequel, we assume that

(2.5) g
(
x0

1, x
0
2

)
= 0, ∇g

(
x0

1, x
0
2

)
6= 0.

Under condition (2.5), i.e. in the noncritical case, it is known that the solution

of (2.1)–(2.3) is also unique (by applying the implicit functions theorem to (2.4),

see [4]).

Remark 2.2. In higher dimension, iterated Hamiltonian systems were intro-

duced in [25] and uniqueness and regularity properties are proved. Some relevant

examples in dimension three are discussed in [18]. In the critical case, generalized

solutions can be obtained [24], [25].

We define now the family F of admissible functions g ∈ C2(D) that satisfy

the conditions:

g(x1, x2) > 0, on ∂D,(2.6)

|∇g(x1, x2)| > 0, on G =
{

(x1, x2) ∈ D : g(x1, x2) = 0
}
,(2.7)

g(x1, x2) < 0, on E.(2.8)

Condition (2.6) says that G∩∂D = ∅ and condition (2.7) is an extension of (2.5).

In fact, it is related to the hypothesis on the non existence of equilibrium points

in the Poincaré–Bendixson theorem, see [11, Chapter 10], and the same is valid

for the next proposition. The family F defined by (2.6)–(2.8) is obviously very

rich, but it is not “closed” (we have strict inequalities). Our approach here,

gives a descent algorithm for the shape optimization problem (P) and existence

of optimal shapes is not discussed.

Following [26], we have the following two propositions:

Proposition 2.3. Under hypotheses (2.6), (2.7), G is a finite union of closed

curves of class C2, without self intersections, parametrized by (2.1)–(2.3), when

some initial point (x0
1, x

0
2) is chosen on each component of G.

If r ∈ F as well, we define the perturbed set

(2.9) Gλ =
{

(x1, x2) ∈ D : (g + λr)(x1, x2) = 0, λ ∈ R
}
.

We also introduce the neighbourhood Vε, ε > 0

(2.10) Vε =
{

(x1, x2) ∈ D : d[(x1, x2),G] < ε
}
,

where d[(x1, x2),G] is the distance from a point to G.
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Proposition 2.4. If ε > 0 is small enough, there is λ(ε) > 0 such that, for

|λ| < λ(ε) we have Gλ ⊂ Vε and Gλ is a finite union of class C2 closed curves.

Remark 2.5. The inclusion Gλ ⊂ Vε shows that Gλ → G for λ → 0, in the

Hausdorff–Pompeiu metric [15]. In a “small” neighbourhood of each component

of G there is exactly one component of Gλ if |λ| < λ(ε), due to this convergence

property and the implicit functions theorem applied in the initial condition of

the perturbed Hamiltonian system derived from (2.1)–(2.3).

Proposition 2.6. Denote by Tg, Tg+λr the periods of the trajectories of

(2.1)–(2.3), corresponding to g, g+λr, respectively. Then Tg+λr → Tg as λ→ 0.

Proof. If (x1, x2), respectively (x1λ, x2λ), are the corresponding trajectories

of (2.1)–(2.3), respectively, then they are bounded by Proposition 2.4, if |λ| <
λ(ε). Consequently, ∇g may be assumed Lipschitzian with constant Lg and we

have

(2.11) |(x1, x2)− (x1λ, x2λ)|(t) ≤ λC + Lg

∫ t

0

|(x1, x2)− (x1λ, x2λ)| dt,

where we also use that ∇r(x1λ, x2λ) is bounded since (x1λ, x2λ) is bounded on R.

We infer by (2.11) that

|(x1, x2)− (x1λ, x2λ)|(t) ≤ λ ct, for t ∈ R,(2.12)

|(x′1, x′2)− (x′1λ, x
′
2λ)|(t) ≤ λ ct, for t ∈ R,(2.13)

for |λ| < λ(ε) and with some constant independent of λ, by Gronwall lemma.

Both trajectories start from
(
x0

1, x
0
2

)
, surround E, have no self intersections

(but (x1λ, x2λ) may intersect (x1, x2) even on infinity of times). We study them

on [0, jTg], j < 2, for instance.

Assume that (x1λ, x2λ) has the period Tg+λr > jTg. Since (x1, x2) is periodic

with period Tg and relations (2.12)–(2.13) show that (x1λ, x2λ) is very close to

(x1, x2) in every t ∈ [0, jTg] it yields that (x1λ, x2λ) is, as well, surrounding E

at least once. As it may have no self intersections, it yields that (x1λ, x2λ) is as

a limit cycle around E. Such arguments appear in the proof of the Poincaré–

Bendixson theorem, [11, Chapter 10]. That is (x1λ, x2λ) cannot be periodic –

and this is a false conclusion due to Proposition 2.4.

Consequently, we get

(2.14) Tg+λr ≤ jTg, |λ| < λ(ε).

On a subsequence, by (2.14), we obtain Tg+λr → T ∗ ≤ jTg. We assume that

T ∗ 6= Tg. It is clear that (x1(T ∗), x2(T ∗)) 6= (x1(Tg), x2(Tg)) by the definition

of the period. However, relation (2.12) and the related convergence properties

give the opposite conclusion. This contradiction shows that T ∗ = Tg and the

convergence is valid on the whole sequence. �
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Remark 2.7. Usually, the perturbation of a periodic solution may not be

periodic and just asymptotic convergence properties are valid, under certain

assumptions, Sideris [22]. A natural question, taking into account (2.12)–(2.13),

is whether |Tg+λr − Tg| ≤ c|λ|, for c > 0 independent of λ, |λ| < λ(ε).

3. The optimization problem and its approximation

Starting from the family F of admissible functions, we define the family O
of admissible domains in the shape optimization problem (1.1)–(1.3) as the con-

nected component of the open set Ωg, g ∈ F ,

(3.1) Ωg =
{

(x1, x2) ∈ D : g(x1, x2) < 0
}

that contains E. Clearly E ⊂ Ωg by (2.8). Notice as well that the domain

Ωg defined by (3.1) (we use this notation for the domain as well) is not simply

connected, in general. This is the reason why the approach to (1.1)–(1.3) that

we discuss here is related to topological optimization in optimal design problems.

But, it also combines topological and boundary variations.

The penalized problem, ε > 0, is given by:

(3.2) min
g∈F, u∈L2(D)

{∫
E

j(x, yε(x)) dx +
1

ε

∫
Ig

(yε(zg(t)))
2|z′g(t)| dt

}
subject to

−∆yε = f + (g + ε)2
+u in D,(3.3)

yε = 0 on ∂D,(3.4)

where zg =
(
z1
g , z

2
g

)
satisfies the Hamiltonian system (2.1)–(2.3) in Ig with some

(x0
1, x

0
2) ∈ D \ E such that g

(
x0

1, x
0
2

)
= 0(

z1
g

)′
(t) = − ∂g

∂x2
(zg(t)) for t ∈ Ig,(3.5) (

z2
g

)′
(t) =

∂g

∂x1
(zg(t)) for t ∈ Ig,(3.6)

zg(0) =
(
x0

1, x
0
2

)
,(3.7)

and Ig = [0, Tg] is the period interval for (3.5)–(3.7), due to Proposition 2.3.

The problem (3.2)–(3.7) is an optimal control problem with controls g ∈ F
and u ∈ L2(D) distributed in D. The state is given by [yε, z

1
g , z

2
g ] ∈ H2(D) ×(

C2(Ig)
)2

. We also have yε ∈ H1
0 (D). In case the corresponding domain Ωg is not

simply connected, in (3.7) one has to choose initial conditions on each component

of ∂Ωg and the penalization term becomes a finite sum due to Proposition 2.3.

The method enters the class of fixed domain methods in shape optimization and

can be compared with [13], [14], [17]. It is essentially different from the level set

method of Osher and Sethian [19], Allaire [1] or the SIMP approach of Bendsoe

and Sigmund [3]. From the computational point of view, it is easy to find initial
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condition (3.7) on each component of G and the corresponding period intervals Ig
associated to (3.5)–(3.7). See the last section as well.

We have the following general suboptimality property:

Proposition 3.1. Let j( · , · ) be a Carathéodory function on D×R, bounded

from below by a constant. Denote by [yεn, g
ε
n, u

ε
n] a minimizing sequence in

(3.2)–(3.7). Then, on a subsequence n(m) the (not necessaryly admissible pairs)[
Ωgε

n(m)
, yεn(m)

]
give a minimizing sequence in (1.1), yεn(m) satisfies (1.2) in{

(x1, x2) ∈ D : g(x1, x2) < −ε
}

and (1.3) is fulfilled with a perturbation of order ε1/2.

Proof. Let [ygm , gm] ∈ H2(Ωgm) × F be a minimizing sequence in the

problem (1.1)–(1.3), (3.1). By the trace theorem, since ∂Ωgm and D are at least

C1,1 under our assumptions, there is ỹgm ∈ H2(D) ∩ H1
0 (D), not unique, such

that ỹgm = ygm in Ωgm . We define the control ugm ∈ L2(D) as following:

ugm = 0, in Ωgm ,

ugm = −∆ỹgm + f

(gm + ε)2
+

, in ∂D \ Ωgm ,

where Ωgm is the open set defined in (3.1). Notice that on the second line in the

above formula, we have no singularity. It is clear that the triple [ỹgm , gm, ugm ]

is admissible for the problem (3.2)–(3.7) with the same cost as in the original

problem (1.1)–(1.3) since the penalization term in (3.2) is null due to the bound-

ary condition (1.3) satisfied by ỹgm . Consequently, there is n(m) sufficient big,

such that

(3.8)

∫
E

j
(
x, yεn(m)(x)

)
dx +

1

ε

∫
Igε
n(m)

(
yεn(m)(zgεn(m)

(t))
)2∣∣z′gε

n(m)
(t)| dt

≤
∫
E

j
(
x, ỹgm(x)

)
dx =

∫
E

j
(
x, ygm(x)

)
dx→ inf(P).

Since j is bounded from below, we get from (3.8):

(3.9)

∫
∂Ωgm

(
yεn(m)

)2
dσ ≤ Cε

with C a constant independent of ε > 0. Then, (3.9) shows that (1.3) is ful-

filled with a perturbation of order ε1/2. Moreover, again by (3.8), we see the

minimizing property of {yεn(m)} in the original problem (P).

We notice that in the state equation (3.3), the right-hand side coincides

with f in the set {(x1, x2) ∈ D : g(x1, x2) < −ε} , which is an approximation

of Ωgε
n(m)

. Namely, we notice that for any g ∈ F , the open sets
{

(x1, x2) ∈ D :

g(x1, x2) < −ε
}

form a nondecreasing sequence contained in Ωg, when ε → 0.

Take (x1, x2) such that g(x1, x2) = 0 and take some sequence (xn1 , x
n
2 )→ (x1, x2),
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(xn1 , x
n
2 ) ∈ Ωg. We have g(xn1 , x

n
2 ) < 0 by (3.1) and g(xn1 , x

n
2 ) → 0. Moreover,

(xn1 , x
n
2 ) ∈ Ωεn = Ωg+εn , for εn > 0 sufficiently small. Consequently, we have

the desired convergence property by [15, p. 461]. �

Remark 3.2. A detailed study of the approximation properties in the pe-

nalized problem is performed in [26], in a slightly different case.

We consider now variations u + λv, g + λr, where λ ∈ R, u, v ∈ L2(D),

g, r ∈ F , g
(
x0

1, x
0
2

)
= r
(
x0

1, x
0
2

)
= 0. Notice that u+ λv ∈ L2(D) and g+ λr ∈ F

for |λ| sufficiently small. The conditions (2.6)–(2.8) from the definition of F are

satisfied for |λ| sufficiently small (depending on g) due to the Weierstrass theorem

and the fact that E, ∂D and G are compacts. Here, we also use Proposition 2.4.

Consequently, we assume |λ| “small”. We study first the differentiability proper-

ties of the state system (3.3)–(3.7):

Proposition 3.3. The system of variations corresponding to (3.3)–(3.7) is

−∆qε = (g + ε)2
+v + 2(g + ε)+ur in D,(3.10)

qε = 0, on ∂D,(3.11)

w′1 = −∇∂2g(zg) ·w − ∂2r(zg) in Ig,(3.12)

w′2 = ∇∂1g(zg) ·w + ∂1r(zg) in Ig,(3.13)

w1(0) = 0, w2(0) = 0,(3.14)

where qε = lim
λ→0

(yλε − yε)/λ, w = [w1, w2] = lim
λ→0

(zg+λr − zg)/λ with yλε ∈
H2(D)∩H1

0 (D) being the solution of (3.3)–(3.4) corresponding to g+λr, u+λv,

and zg+λr ∈ C1(Ig)
2 is the solution of (3.5)–(3.7) corresponding to g + λr. The

limits exist in the above spaces. We denote by “ · ” the scalar product on R2.

Proof. We subtract the equations corresponding to yλε and yε and divide

by λ 6= 0, small:

(3.15) −∆
yλε − yε

λ
=

1

λ

[
(g + λr + ε)2

+(u+ λv)− (g + ε)2
+u
]
, in D,

with 0 boundary conditions on ∂D. The regularity conditions on F and u, v ∈
L2(D) give the convergence of the right-hand side in (3.15) to the right-hand side

in (3.10) (strongly in L2(D)) via some calculations. Then, by elliptic regularity,

we have (yλε − yε)/λ→ qε strongly in H2(D)∩H1
0 (D) and (3.10), (3.11) follows.

For (3.12)–(3.14), the argument is the same as in [24, Proposition 6]. The

convergence of the ratio (zg+λr − zg)/λ is in C1(Ig)
2 on the whole sequence

λ→ 0, due to the uniqueness property of the linear system (3.12)–(3.14). Here,

we also use Remark 2.5, on the convergence Gλ → G and the continuity with

respect to the perturbations of g in the Hamiltonian system (2.1)–(2.3), according

to [24]. �
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Remark 3.4. We have as well imposed the condition

(3.16) g(x0
1, x

0
2) = 0, for all g ∈ F ,

where (x0
1, x

0
2) ∈ D \ E is some given point. Similarly, constraints like (3.16)

may be imposed on a finite number of points or on some curves in D \ E and

their geometric meaning is that the boundary ∂Ωg of the admissible unknown

domains should contain these points, curves, etc.

Proposition 3.5. Assume that f ∈ Lp(D), j(x, · ) is of class C1(R) and

bounded, g ∈ F , u ∈ Lp(D), p > 2 and yε(zg(t)) = 0 in [0, Tg]. Then, for any

direction [r, v] ∈ F ×Lp(D), the derivative of the penalized cost (3.2) is given by:

(3.17)

∫
E

∂2j
(
x, yε(x)

)
qε(x) dx +

2

ε

∫
Ig

yε(zg(t))qε(zg(t))|z′g(t)| dt

+
2

ε

∫
Ig

yε(zg(t))∇yε(zg(t)) ·w(t)|z′g(t)| dt+
1

ε

∫
Ig

(
yε(zg(t))

)2 z′g(t) ·w′(t)
|z′g(t)|

dt

where qε ∈ W 2,p(D) ∩W 1,p
0 (D), w ∈ C1(Ig)

2, zg ∈ C1(Ig)
2 satisfy (3.10)–(3.14)

and (2.1)–(2.3) respectively, and Ig = [0, Tg] is the period interval for zg( · ).

Proof. In the notations of Proposition 3.3, we compute

(3.18) lim
λ→0

{
1

λ

∫
E

[
j
(
x, yλε (x)

)
− j
(
x, yε(x)

)]
dx

+
1

ελ

∫
Ig

[(
yλε (zg+λr(t)

)2|z′g+λh(t)| −
(
yε(zg(t)

)2|z′g(t)|]dt}.
In (3.18), λ > 0 is “small” and Proposition 2.4 ensures that g+λr ∈ F (see [25] as

well). By Proposition 2.3 we know that the trajectories associated to g+ λh are

periodic, that is the functions in the second integrals are defined on Ig. Moreover,

since f, u ∈ Lp(D), then yλε , yε defined as in (3.3), (3.4) are in W 2,p(D) ⊂ C1(D),

by the Sobolev theorem and elliptic regularity. Consequently, all the integrals

appearing in (3.17), (3.18) make sense.

Moreover, in (3.18), we have neglected the term

L = lim
λ→0

1

λε

∫ Tg+λr

Tg

yλε
(
zg+λr(t)

)2|z′g+λr(t)| dt
= lim
λ→0

1

λε

∫ Tg+λr

Tg

[
yλε
(
zg+λr(t)

)2|z′g+λr(t)| − yε(zg(t))2|z′g(t)|]dt
due to the hypothesis on yε

(
zg(t)

)
. We can study term by term:∫ Tg+λr

Tg

[
yλε (zg+λr(t))

2 − yε(zg+λr(t))2

λ

∣∣z′g+λr(t)∣∣]dt,∫ Tg+λr

Tg

[
yε(zg+λr(t))

2 − yε(zg(t))2

λ

∣∣z′g+λr(t)∣∣]dt,
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Tg

[
yε(zg(t))

2

∣∣z′g+λr(t)∣∣− ∣∣z′g(t)∣∣
λ

]
dt.

By Proposition 3.3, each of the above three integrands are uniformly bounded

and their limits can be easily computed, for instance on [0, 2Tg] due to Propo-

sition 2.6. Notice, in the last term, that
∣∣z′g(t)∣∣ =

∣∣∇g(zg(t))
∣∣ 6= 0 due to

(3.5)–(3.7), that is we can differentiate here as well.

Again, by Proposition 2.6 and the above uniform boundedness, we infer that

each of the above three terms has null limit as λ→ 0, i.e. L = 0. Consequently,

it is enough to study the limit (3.18).

We also have yλε → yε in C1(D), for λ → 0, by elliptic regularity. Then,

under the assumptions on j( · , · ), we get

(3.19)
1

λ

∫
E

[
j
(
x, yλε (x)

)
− j
(
x, yε(x)

)]
dx→

∫
E

∂2j
(
x, yε(x)

)
qε(x)dx.

For the second integral in (3.18), we intercalate certain intermediary terms and

we compute their limits for λ→ 0:

(3.20) lim
λ→0

1

ελ

∫
Ig

[(
yλε (zg+λr(t)

)2|z′g+λr(t)| − (yε(zg+λr(t))2|z′g+λr(t)|]dt
=

2

ε

∫
Ig

yε(zg(t))qε(zg(t))|z′g(t)| dt

due to the convergence zg+λr → zg in C1(Ig)
2 by g, r ∈ C2(D) and the continuity

properties in (2.1)–(2.3);

(3.21) lim
λ→0

1

ελ

∫
Ig

[(
yε(zg+λr(t)

)2|z′g+λr(t)| − (yε(zg(t))2|z′g+λr(t)|]dt
=

2

ε

∫
Ig

yε(zg(t))∇yε(zg(t)) ·w(t)
∣∣z′g(t)∣∣ dt,

where w = (w1, w2) satisfies (3.12)–(3.14) and again we use the regularity and

the convergence properties in C1(D), respectively C1(Ig)
2.

(3.22) lim
λ→0

1

ελ

∫
Ig

[(
yε(zg(t)

)2|z′g+λr(t)| − (yε(zg(t))2|z′g(t)|]dt
=

1

ε

∫
Ig

(
yε(zg(t))

)2 z′g(t) ·w′(t)
|z′g(t)|

dt,

where we recall that
∣∣z′g(t)∣∣ =

√(
z1
g

)′
(t)2 +

(
z2
g

)′
(t)2 is non zero by (2.7) and

the Hamiltonian system, and standard derivation rules may be applied under our

regularity conditions. By summing up (3.19)–(3.22), we end the proof of (3.17).�

Remark 3.6. In the case that Ωg is not simply connected, the penalization

integral in (3.2) is in fact a finite sum and each of these terms can be handled

separately, in the same way as above, due to Proposition 2.4 and Remark 2.5.
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One significance of the hypothesis yε
(
zg(t)

)
= 0, is that we may first minimize

the penalization term with respect to the control u (this is possible due to the

arguments in the proof of Proposition 3.1). Then, the obtained control may be

fixed and the minimization with respect to g ∈ F is to be performed. In case

Tg+λr can be evaluated as in Remark 2.7, then the hypothesis can be relaxed to

yε(x
0
1, x

0
2) = 0 via a variant of the above arguments.

Now, we denote by A : C2(D) × Lp(D) → W 2,p(D) ∩ W 1,p
0 (D) the linear

continuous operator given by r, v → qε, defined in (3.10), (3.11). We also denote

by B : C2(D) → C1(Ig)
2 the linear continuous operator given by (3.12)–(3.14),

Br = [w1, w2]. In these definitions, g ∈ C2(D) and u ∈ Lp(D) are fixed. We have:

Corollary 3.7. The relation (3.17) can be rewritten as:∫
E

∂2j(x, yε(x))A(r, v)(x) dx +
2

ε

∫
Ig

yε(zg(t))A(r, v)(zg(t))|z′g(t)| dt(3.23)

+
2

ε

∫
Ig

yε(zg(t))∇yε(zg(t)) ·Br(t)
∣∣z′g(t)∣∣ dt

+
1

ε

∫
Ig

(
yε(zg(t))

)2
|z′g(t)|

z′g(t) · [−∂2r, ∂1r](zg(t)) dt

+
1

ε

∫
Ig

(yε(zg(t)))
2

|z′g(t)|
C(t) ·w(t) dt,

where the vector C(t) is explained below.

Proof. In the last integral in (3.17), we replace w′(t) by the right-hand side

in (3.12), (3.13). We compute:

z′g(t) ·w′(t) = z′g(t) ·
[
−∇∂2g(zg(t)) ·w(t)− ∂2r(zg(t)),(3.24)

∇∂1g(zg(t)) ·w(t) + ∂1r(zg(t))
]

= z′g(t) · [−∂2r(zg(t)), ∂1r(zg(t))]

+ z′g(t) · [−∂2
1,2g(zg(t))w1(t), ∂2

1,1g(zg(t))w1(t)]

+ z′g(t) · [−∂2
2,2g(zg(t))w2(t), ∂2

2,1g(zg(t))w2(t)].

We denote by C(t) the (known) vector

C(t) = [−(z1
g)′(t)∂2

1,2g(zg(t)) + (z2
g)′(t)∂2

1,1g(zg(t)),

− (z1
g)′(t)∂2

2,2g(zg(t)) + (z2
g)′(t)∂2

2,1g(zg(t))]

and together with (3.24), we get (3.23). �

4. Finite element discretization

We assume that D and E are polygonal. Let Th be a triangulation of D with

vertices Ai, i ∈ I = {1, . . . , n}.
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We consider that Th is compatible with E, i.e.

T ⊂ E or T ⊂ D \ E for all T ∈ Th,

where T designs a triangle of Th and h is the size of Th. We consider a triangle

as a closed set. For simplicity, we employ piecewise linear finite element and we

denote

Wh =
{
ϕh ∈ C(D) : ϕh|T ∈ P1(T ), for all T ∈ Th

}
.

We use a standard basis of Wh, {φi}i∈I , where φi is the hat function associated

to the vertex Ai, see for example [6], [21]. The finite element approximations

of g and u are

gh(x) =
∑
i∈I

Giφi(x), uh(x) =
∑
i∈I

Uiφi(x), for all x ∈ D.

We set the vectors G = (Gi)
T
i∈I ∈ Rn, U = (Ui)

T
i∈I ∈ Rn and gh can be identified

by G, etc. The function u is in Lp(D), as in Proposition 3.5. Alternatively,

for uh, we can use discontinuous piecewise constant finite element P0. In order

to approach g ∈ C2(D), we can use high order finite elements.

4.1. Discretization of the optimization problem. We introduce

Vh = {ϕh ∈Wh : ϕh = 0 on ∂D},

I0 = {i ∈ I : Ai /∈ ∂D} and n0 = card(I0). The finite element weak formulation

of (3.3)–(3.4) is: find yh ∈ Vh such that

(4.1)

∫
D

∇yh · ∇ϕh dx =

∫
D

(
f + (gh + ε)2

+uh
)
ϕh dx, for all ϕh ∈ Vh.

As before, for yh(x) =
∑
j∈I0

Yjφj(x), we set Y = (Yj)
T
j∈I0 ∈ Rn0 . In order to

obtain the linear system, we take the basis functions ϕh = φi in (4.1) for i ∈ I0.

Let us consider the vector

F =

(∫
D

fφi dx

)T
i∈I0
∈ Rn0 ,

the n0 × n0 matrix K defined by

K = (Kij)i∈I0, j∈I0 , Kij =

∫
D

∇φj · ∇φi dx

and the n0 × n matrix B1(G, ε) defined by

B1(G, ε) = (B1
ij)i∈I0, j∈I , B1

ij =

∫
D

(gh + ε)2
+φjφi dx.

The matrix K is symmetric, positive definite. The finite element approximation

of the state system (3.3)–(3.4) is the linear system:

(4.2) KY = F +B1(G, ε)U.
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Now, we shall discretize the objective function (3.2). We denote IE = {i ∈ I :

Ai ∈ E} and nE = card(IE). For the first term of (3.2), we introduce

J1(Y ) =

∫
E

j(x, yh(x)) dx.

We shall study the second term of (3.2). In order to solve numerically the ODE

system (3.5)–(3.7), we use a partition [t0, . . . , tk, . . . , tm] of [0, Tg], with t0 = 0

and tm = Tg. We can use the forward Euler scheme:

Z1
k+1 = Z1

k − (tk+1 − tk)
∂gh
∂x2

(
Z1
k , Z

2
k

)
,(4.3)

Z2
k+1 = Z2

k + (tk+1 − tk)
∂gh
∂x1

(
Z1
k , Z

2
k

)
,(4.4)

(Z1
0 , Z

2
0 ) =

(
x0

1, x
0
2

)
,(4.5)

for k = 0, . . . ,m − 2. We set Zk = (Z1
k , Z

2
k) and we impose Zm = Z0. In fact,

Zk is an approximation of zg(tk). We do not need to stock Z0 and we set

Z = (Z1, Z2) ∈ Rm × Rm, with Z1 = (Z1
k)T1≤k≤m and Z2 = (Z2

k)T1≤k≤m. In the

applications, one can use more performant numerical methods for the ODE’s,

like explicit Runge–Kutta or backward Euler, but here we want to avoid a too

tedious exposition.

Without risk of confusion, we introduce the function Z : [0, Tg] → R2 de-

fined by

Z(t) =
tk+1 − t

(tk+1 − tk)
Zk +

t− tk
(tk+1 − tk)

Zk+1, for tk ≤ t < tk+1

for k = 0, 1, . . . ,m − 1. We have Z(tk) = Zk and we can identify the function

Z( · ) by the vector Z ∈ Rm × Rm. We remark that Z( · ) is derivable on each

interval (tk, tk+1) and

Z ′(t) =
1

(tk+1 − tk)
(Z1

k+1 − Z1
k , Z

2
k+1 − Z2

k) for tk ≤ t < tk+1.

We introduce the n0 × n0 matrix N(Z) defined by

N(Z) =

(∫ Tg

0

φj(Z(t))φi(Z(t))|Z ′(t)| dt
)
i∈I0, j∈I0

and the second term of (3.2) is approached by Y TN(Z)Y/ε, then the discrete

form of the optimization problem (3.2)–(3.7) is

(4.6) min
G,U∈Rn

J(G,U) = J1(Y ) +
1

ε
Y TN(Z)Y

subject to (4.2). We point out that Y depends on G and U by (4.2) and Z

depends on G by (4.3)–(4.5).
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4.2. Discretization of the derivative of the objective function. Let

rh, vh be in Wh and R, V ∈ Rn be the associated vectors. The finite element

weak formulation of (3.10)–(3.11) is: find qh ∈ Vh such that

(4.7)

∫
D

∇qh · ∇ϕh dx =

∫
D

(
(gh + ε)2

+vh + 2(gh + ε)+uhrh
)
ϕh dx,

for all ϕh ∈ Vh. Let Q ∈ Rn0 be the associated vector to qh and we construct

the n0 × n matrix C1(G, ε, U) defined by

C1(G, ε, U) =

(∫
D

2(gh + ε)+uhφjφidx

)
i∈I0, j∈I

.

The linear system of (4.7) is

(4.8) KQ = B1(G, ε)V + C1(G, ε, U)R.

In order to approximate ∂2j(x, yε(x)), yε given by (3.3)–(3.4), we consider the

nonlinear application Y ∈ Rn0 → L(Y ) ∈ RnE such that

∂2j(x, yh(x)) =
∑
i∈IE

(
L(Y )

)
i
φi|E(x)

where φi|E is the restriction of φi to E. We define the nE × n0 matrix MED

defined by

MED =

(∫
D

φiφjdx

)
i∈IE , j∈I0

.

The first term of (3.17) is approached by

(4.9)
(
L(Y )

)T
MEDQ

and the second term of (3.17) is approached by

(4.10)
2

ε
Y TN(Z)Q

where the matrix N(Z) was introduced in the previous subsection.

Next, we introduce the partial derivative for a piecewise linear function.

Let gh ∈ Wh and G ∈ Rn its associated vector, i.e. gh(x) =
∑
i∈I

Giφi(x). Let

Π1
hG ∈ Rn defined by(

Π1
hG
)
i

=
1∑

j∈Ji

area(Tj)

∑
j∈Ji

area(Tj)∂1gh|Tj

where Ji is the set of index j such that the triangle Tj has the vertex Ai. Since

gh is a linear function in each triangle Tj , then ∂1gh|Tj is constant. Similarly, we

construct Π2
hG ∈ Rn for ∂2. In fact, Π1

h and Π2
h are two n×n matrices depending

on Th. Then, we set

∂h1 gh(x) =
∑
i∈I

(
Π1
hG
)
i
φi(x)
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and similarly for ∂h2 gh. Finally, we put ∇hgh = (∂h1 gh, ∂
h
2 gh). Since yh ∈ Vh ⊂

Wh, we can define ∂h1 yh and ∂h2 yh.

Example 4.1. We shall give a simple example to understand the discrete

derivative of Wh functions. We consider the square [A1A2A4A3] of vertices

A1 = (0, 0), A2 = (1, 0), A4 = (1, 1), A3 = (0, 1) and the triangulation of two

triangles T1 = [A1A2A4] and T2 = [A1A4A3]. We shall present the discrete

derivative of the hat function

φ4(x1, x2) =

x2 in T1,

x1 in T2.

We have J1 = {1, 2} and(
Π1
hφ4

)
1

=
1

area(T1) + area(T2)

(
area(T1)∂1φ4|T1

+ area(T2)∂1φ4|T2

)
=

1

1/2 + 1/2

(
1/2× 0 + 1/2× 1

)
= 1/2.

Similarly, J2 = {1}, J3 = {2}, J4 = {1, 2},(
Π1
hφ4

)
2

=
1

1/2

(
1/2× 0

)
= 0,

(
Π1
hφ4

)
3

=
1

1/2

(
1/2× 1

)
= 1/2,

(
Π1
hφ4

)
4

=
1

1/2 + 1/2

(
1/2× 0 + 1/2× 1

)
= 1/2

then

∂h1φ4(x1, x2) = 1/2×φ1(x1, x2)+0×φ2(x1, x2)+1×φ3(x1, x2)+1/2×φ4(x1, x2).

In order to solve the ODE system (3.12)–(3.14), we use the forward Euler

scheme on the same partition as for (4.3)–(4.5):

W 1
k+1 =W 1

k − (tk+1 − tk)∇h∂h2 gh(Zk) · (W 1
k ,W

2
k )(4.11)

− (tk+1 − tk)∂h2 rh(Zk),

W 2
k+1 =W 2

k + (tk+1 − tk)∇h∂h1 gh
(
Zk
)
· (W 1

k ,W
2
k )(4.12)

+ (tk+1 − tk)∂h1 rh
(
Zk
)
,

W 1
0 = 0, W 2

0 = 0,(4.13)

for k = 0, . . . ,m − 1. We set Wk = (W 1
k ,W

2
k ) and now we have Wm 6= W0 ge-

nerally. In fact, Wk is an approximation of w(tk). We do not need to stock

W0 and we set W = (W 1,W 2) ∈ Rm × Rm, with W 1 = (W 1
k )T1≤k≤m and

W 2 = (W 2
k )T1≤k≤m. As mentioned before, we can use more performant nu-

merical methods for the ODE, like the explicit Runge–Kutta or the backward

Euler procedures.
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We construct W : [0, Tg]→ R2 in the same way as for Z(t)

W (t) =
tk+1 − t

(tk+1 − tk)
Wk +

t− tk
(tk+1 − tk)

Wk+1, tk ≤ t < tk+1

for k = 0, 1, . . . ,m− 1. We have

W (tk) = Wk and W ′(t) =
1

(tk+1 − tk)

(
W 1
k+1 −W 1

k ,W
2
k+1 −W 2

k

)
for tk ≤ t < tk+1. If ψk is the one-dimensional piecewise linear hat function

associated to the point tk of the partition [t0, . . . , tk, . . . , tm], we can write equiva-

lently

W (t) =

m∑
k=0

Wkψk(t) for t ∈ [0, Tg].

The third term of (3.17) is approached by

2

ε

m−1∑
k=0

∫ tk+1

tk

yh(Z(t))∇hyh(Z(t)) ·W (t)|Z ′(t)| dt(4.14)

=
2

ε

m−1∑
k=0

∫ tk+1

tk

yh(Z(t))∇hyh(Z(t))

·
(
Wkψk(t) +Wk+1ψk+1(t)

)
|Z ′(t)| dt

=
2

ε

m−1∑
k=0

∫ tk+1

tk

yh(Z(t))∂h1 yh(Z(t))

·
(
W 1
kψk(t) +W 1

k+1ψk+1(t)
) |ZkZk+1|

(tk+1 − tk)
dt

+
2

ε

m−1∑
k=0

∫ tk+1

tk

yh(Z(t))∂h2 yh(Z(t))

·
(
W 2
kψk(t) +W 2

k+1ψk+1(t)
) |ZkZk+1|

(tk+1 − tk)
dt

where |ZkZk+1| is the length of the segment in R2 with ends Zk and Zk+1. We

have ∫ tk+1

tk

yh(Z(t))∂h1 yh(Z(t))
(
W 1
kψk(t) +W 1

k+1ψk+1(t)
) |ZkZk+1|

(tk+1 − tk)
dt(4.15)

=W 1
k

∫ tk+1

tk

(∑
i∈I0

Yiφi(Z(t))

)

·
(∑
j∈I

(Π1
hY )jφj(Z(t))

)
ψk(t)

|ZkZk+1|
(tk+1 − tk)

dt
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+W 1
k+1

∫ tk+1

tk

(∑
i∈I0

Yiφi(Z(t))

)

·
(∑
j∈I

(Π1
hY )jφj(Z(t))

)
ψk+1(t)

|ZkZk+1|
(tk+1 − tk)

dt.

We introduce the n0 × n matrices N
[k,k+1]
k (Z) and N

[k,k+1]
k+1 (Z) defined by

N
[k,k+1]
k (Z) =

(∫ tk+1

tk

φi(Z(t))φj(Z(t))ψk(t)
|ZkZk+1|

(tk+1 − tk)
dt

)
i∈I0, j∈I

,

N
[k,k+1]
k+1 (Z) =

(∫ tk+1

tk

φi(Z(t))φj(Z(t))ψk+1(t)
|ZkZk+1|

(tk+1 − tk)
dt

)
i∈I0, j∈I

,

then (4.15) can be rewritten as

Y T
(
W 1
kN

[k,k+1]
k (Z) +W 1

k+1N
[k,k+1]
k+1 (Z)

)
(Π1

hY )

and finally, the third term of (3.17) is approached by

(4.16)
2

ε
Y T

m−1∑
k=0

(
W 1
kN

[k,k+1]
k (Z) +W 1

k+1N
[k,k+1]
k+1 (Z)

)
(Π1

hY )

+
2

ε
Y T

m−1∑
k=0

(
W 2
kN

[k,k+1]
k (Z) +W 2

k+1N
[k,k+1]
k+1 (Z)

)
(Π2

hY ).

We can introduce the linear operators T 1(Z) and T 2(Z) by

(4.17)

W 1 ∈ Rm → T 1(Z)W 1 =

m−1∑
k=0

(
W 1
kN

[k,k+1]
k (Z) +W 1

k+1N
[k,k+1]
k+1 (Z)

)
,

W 2 ∈ Rm → T 2(Z)W 2 =

m−1∑
k=0

(
W 2
kN

[k,k+1]
k (Z) +W 2

k+1N
[k,k+1]
k+1 (Z)

)
,

then (4.16) can be rewritten as

(4.18)
2

ε
Y T
(
T 1(Z)W 1

)(
Π1
hY
)

+
2

ε
Y T
(
T 2(Z)W 2

)(
Π2
hY
)
.

The fourth term of term of (3.17) is approached by

(4.19)
1

ε

m−1∑
k=0

∫ tk+1

tk

(∑
i∈I0

Yiφi(Z(t))

)(∑
j∈I0

Yjφj(Z(t))

)
Z ′(t) ·W ′(t)
|Z ′(t)|

dt.

But Z ′(t) and W ′(t) are constants for tk ≤ t < tk+1, then

Z ′(t) ·W ′(t)
|Z ′(t)|

=
(Z1

k+1 − Z1
k , Z

2
k+1 − Z2

k) · (W 1
k+1 −W 1

k ,W
2
k+1 −W 2

k )

(tk+1 − tk)|ZkZk+1|
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where |ZkZk+1| is the length of the segment in R2 with ends Zk and Zk+1. We

introduce the n0 × n0 matrix Rk(Z) defined by

Rk(Z) =

(∫ tk+1

tk

φi(Z(t))φj(Z(t))|Z ′(t)| dt
)
i∈I0, j∈I0

and the linear operators T 3(Z)

W ∈ Rm × Rm → T 3(Z)W,(4.20)

T 3(Z)W =

m−1∑
k=0

(
Z1
k+1 − Z1

k , Z
2
k+1 − Z2

k

)
·
(
W 1
k+1 −W 1

k ,W
2
k+1 −W 2

k

)
|ZkZk+1|2

Rk(Z).

The (4.19) can be rewritten as

(4.21)
1

ε
Y T
(
T 3(Z)W

)
Y.

The study of this subsection can be resumed as follows:

Proposition 4.2. The discret version of (3.17) is

(4.22) dJ(G,U)(R, V ) =
(
L(Y )

)T
MEDQ+

2

ε
Y TN(Z)Q

+
2

ε
Y T
(
T 1(Z)W 1

)(
Π1
hY
)

+
2

ε
Y T
(
T 2(Z)W 2

)(
Π2
hY
)

+
1

ε
Y T
(
T 3(Z)W

)
Y,

which represents the derivative of J at (G,U) in the direction (R, V ).

Proof. We get (4.22) just by assembling (4.9), (4.10), (4.18) and (4.21). �

4.3. Discretization of the formula (3.23). From (4.8), we get

Q = K−1B1(G, ε)V +K−1C1(G, ε, U)R

and the discrete version of the operator A in the Corollary 3.7 is

(R, V ) ∈ Rn × Rn → A1(R, V ) = K−1B1(G, ε)V +K−1C1(G, ε, U)R.

Replacing Q in the first two terms of (4.22), we get

(4.23)

((
L(Y )

)T
MED +

2

ε
Y TN(Z)

)
K−1B1(G, ε)V

+

((
L(Y )

)T
MED +

2

ε
Y TN(Z)

)
K−1C1(G, ε, U)R.

We denote

Λ1(t) = yh(Z(t))∇yh(Z(t))|Z ′(t)|,

Λ2(t) =

(
yh(Z(t))

)2
|Z ′(t)|

Z ′(t),

Λ3(t) =

(
yh(Z(t))

)2
|Z ′(t)|

C(t).
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The third term of (3.23) is approached by

2

ε

∫ Tg

0

Λ1(t) ·W (t) dt

and using the trapezoidal quadrature formula on each sub-interval [tk, tk+1], we

get

(4.24)
1

ε

m−1∑
k=0

(tk+1 − tk)
[
Λ1(tk) · (W 1

k ,W
2
k ) + Λ1(tk+1) · (W 1

k+1,W
2
k+1)

]
.

Similarly, for the 4th and 5th terms of (3.23), we get

(4.25)
1

2ε

m−1∑
k=0

(tk+1 − tk)
[
Λ2(tk) ·

[
− ∂h2 rh, ∂h1 rh

]
(Zk)

+ Λ2(tk+1) ·
[
− ∂h2 rh, ∂h1 rh

]
(Zk+1)

]
and

(4.26)
1

2ε

m−1∑
k=0

(tk+1 − tk)
[
Λ3(tk) ·

(
W 1
k ,W

2
k

)
+ Λ3(tk+1) ·

(
W 1
k+1,W

2
k+1

)]
.

In order to write (4.24)–(4.26) shorter, we introduce the vectors:

• Λ̃1
1 ∈ Rm with first components (tk+1 − tk−1)Λ1

1(tk), 1 ≤ k ≤ m− 1 and

the last component (tm − tm−1)Λ1
1(tm),

• Λ̃2
1 ∈ Rm with first components (tk+1 − tk−1)Λ2

1(tk), 1 ≤ k ≤ m− 1 and

the last component (tm − tm−1)Λ2
1(tm),

• Λ̃1
3 ∈ Rm with first components (tk+1 − tk−1)Λ1

3(tk)/2, 1 ≤ k ≤ m − 1

and the last component (tm − tm−1)Λ1
3(tm)/2,

• Λ̃2
3 ∈ Rm with first components (tk+1 − tk−1)Λ2

3(tk)/2, 1 ≤ k ≤ m − 1

and the last component (tm − tm−1)Λ2
3(tm)/2. Also, we introduce the

vectors in Rn:

Λ̃1
2 =

1

2

∑
0≤k≤m−1

(tk+1 − tk)
(
Λ1

2(tk)Φ(Zk) + Λ1
2(tk+1)Φ(Zk+1)

)
,

Λ̃2
2 =

1

2

∑
0≤k≤m−1

(tk+1 − tk)
(
Λ2

2(tk)Φ(Zk) + Λ2
2(tk+1)Φ(Zk+1)

)
,

where Φ(Zk) = (φi(Zk))Ti∈I ∈ Rn.

Proposition 4.3. The discrete version of the (3.23) is

dJ(G,U)(R, V ) =

(
(L(Y ))TMED +

2

ε
Y TN(Z)

)
K−1B1(G, ε)V(4.27)

+

(
(L(Y ))TMED +

2

ε
Y TN(Z)

)
K−1C1(G, ε, U)R

+
1

ε

((
Λ̃1

1

)
TW 1 +

(
Λ̃2

1

)
TW 2

)
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+
1

ε

(
−
(
Λ̃1

2

)
T
(
Π2
hR
)

+
(
Λ̃2

2

)
T (Π1

hR)
)

+
1

ε

((
Λ̃1

3

)
TW 1 +

(
Λ̃2

3

)
TW 2

)
.

Proof. We obtain (4.27) by summing (4.23)–(4.26). �

Next, we give more details about the relationship between W and R. Let us

introduce the 2× 2 matrices

M2(k) =

(
1− (tk+1 − tk)∂h1 ∂

h
2 gh(Zk) −(tk+1 − tk)∂h2 ∂

h
2 gh(Zk)

(tk+1 − tk)∂h1 ∂
h
1 gh(Zk) 1 + (tk+1 − tk)∂h2 ∂

h
1 gh(Zk)

)
,

I2 =

(
1 0

0 1

)
and the 2× n matrice

N2(k) =

(
−(tk+1 − tk)ΦT (Zk)Π2

h

(tk+1 − tk)ΦT (Zk)Π1
h

)
.

We remark that M2 depends on G and Z and N2 on Z. The system (4.11)–(4.12)

can be written as (
W 1
k+1

W 2
k+1

)
= M2(k)

(
W 1
k

W 2
k

)
+N2(k)R.

Proposition 4.4. We have the following equality

(4.28)



W 1
1

W 2
1

...

W 1
m

W 2
m


= M2m ×


N2(0)

...

N2(m− 1)

R

where at the right-hand side, M2m is a 2m× 2m matrix defined by
I2 0 . . . 0 0

M2(1) I2 . . . 0 0
...

...
. . .

...
...

M2(m− 1) . . .M2(1) M2(m− 1) . . .M2(2) . . . M2(m− 1) I2


and the size of the second matrix, which contains N2, is 2m× n.
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Proof. From (4.13) and the recurrent relation, we have(
W 1

1

W 2
1

)
=N2(0)R,

(
W 1

2

W 2
2

)
=M2(1)

( W 1
1

W 2
1

)
+N2(1)R = M2(1)N2(0)R+N2(1)R,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
W 1
m−1

W 2
m−1

)
=M2(m− 2) . . .M2(1)N2(0)R+M2(m− 2) . . .M2(2)N2(1)R

+ . . .+M2(m− 2)N2(m− 3)R+N2(m− 2)R,(
W 1
m

W 2
m

)
=M2(m− 1)

(
W 1
m−1

W 2
m−1

)
+N2(m− 1)R

=M2(m− 1)M2(m− 2) . . .M2(1)N2(0)R

+M2(m− 1)M2(m− 2) . . .M2(2)N2(1)R

+ . . .+M2(m− 1)M2(m− 2)N2(m− 3)R

+M2(m− 1)N2(m− 2)R+N2(m− 1)R,

which gives (4.28). �

Since W depends on R by (4.28), we can introduce the linear operator ap-

proximation of B in the Corollary 3.7:

R ∈ Rn →W =
(
W 1,W 2

)
=
(
B2(G,Z)R,B3(G,Z)R

)
∈ Rm × Rm.

If we denote by `i the i-th row of the matrix M2m at the right-hand side of (4.28),

for 1 ≤ i ≤ 2m, then

B2(G,Z) =


`1
`3
...

`2m−1




N2(0)

N2(1)
...

N2(m− 1)

 ,

B3(G,Z) =


`2
`4
...

`2m




N2(0)

N2(1)
...

N2(m− 1)


and B2(G,Z), B3(G,Z) are m× n matrices. The size of the matrix containing

N2 is 2m× n.
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4.4. Gradient type algorithm. We start by presenting the algorithm.

Step 1. Start with k = 0, ε > 0 some given “small” parameter and select

some initial (Gk, Uk).

Step 2. Compute Y k the solution of (4.2) and Zk solution of (4.3)–(4.5).

Step 3. Find (Rk, V k) such that dJ(Gk,Uk)(R
k, V k) < 0. We say that

(Rk, V k) is a descent direction.

Step 4. Define (Gk+1, Uk+1) = (Gk, Uk) + λk(Rk, V k), where λk > 0 is

obtained via some line search

λk ∈ arg min
λ>0

J
((
Gk, Uk

)
+ λ

(
Rk, V k

))
.

Step 5. If
∣∣J(Gk+1, Uk+1

)
− J

(
Gk, Uk

)∣∣ is below some prescribed tolerance

parameter, then Stop. If not, update k := k + 1 and go to Step 3.

In the Step 3, we have to provide a descent direction.

We present in the following a partial result. Let us introduce a simplified

adjoint system: find ph ∈ Vh such that

(4.29)

∫
D

∇ϕh · ∇ph dx =

∫
E

∂2j(x, yh(x))ϕh dx

+
2

ε

∫ Tg

0

yh(Z(t))ϕh(Z(t))|Z ′(t)| dt,

for all ϕh ∈ Vh and with Z(t) given by (4.3)–(4.5). We have

ph(x) =
∑
i∈I0

Piφi(x) and P = (Pi)
T
i∈I0 ∈ Rn0 .

The linear system associated to (4.29) is

KP = MT
EDL(Y ) +

2

ε
N(Z)Y.

We recall that K and N(Z) are symmetric matrices.

Proposition 4.5. Given gh, uh ∈ Wh, let yh ∈ Vh the solution of (4.1). If

rh = −phuh and vh = −ph, where ph ∈ Vh is the solution of (4.29), then

(4.30)

∫
E

∂2j(x, yh(x))qh dx +
2

ε

∫ Tg

0

yh(Z(t))qh(Z(t))|Z ′(t)| dt ≤ 0,

where qh ∈ Vh is the solution of (4.7) depending on rh and vh.

Proof. Putting ϕh = ph in (4.7) and ϕh = qh in (4.29), we get

(4.31)

∫
D

(
(gh + ε)2

+vh + 2(gh + ε)+uhrh
)
ph dx =

∫
D

∇qh · ∇ph dx

=

∫
E

∂2j(x, yh(x))qh dx +
2

ε

∫ Tg

0

yh(Z(t))qh(Z(t))|Z ′(t)| dt.
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For vh = −ph, we have∫
D

(gh + ε)2
+vhph dx = −

∫
D

(gh + ε)2
+p

2
h dx ≤ 0

and, for rh = −phuh, we have∫
D

2(gh + ε)+uhrhph dx = −
∫
D

2(gh + ε)+(uhph)2 dx ≤ 0

since (gh + ε)+ ≥ 0 in D. �

Remark 4.6. The left-hand side of (4.30) represents the first two terms

of (4.22). We can obtain a similar result as in Proposition 4.5, without using the

adjoint system, by taking

(V ∗)T = −
((
L(Y )

)T
MED +

2

ε
Y TN(Z)

)
K−1B1(G, ε),

(R∗)T = −
((
L(Y )

)T
MED +

2

ε
Y TN(Z)

)
K−1C1(G, ε, U),

in place of V and R in (4.23). In this case, (4.23) becames

−‖V ∗‖2Rn − ‖R∗‖2Rn ≤ 0.

We point out that (V ∗)T = −PTB1(G, ε) and (R∗)T = −PTC1(G, ε, U), so

(V ∗, R∗) is different from the direction given by Proposition 4.5.

Now, we present a descent direction, obtained from the complete gradient of

the discrete cost (4.22).

Proposition 4.7. For (R∗∗, V ∗) ∈ Rn × Rn given by

(V ∗)T = −
((
L(Y )

)
TMED +

2

ε
Y TN(Z)

)
K−1B1(G, ε)

(R∗∗)T = −
((
L(Y )

)
TMED +

2

ε
Y TN(Z)

)
K−1C1(G, ε, U)

− 1

ε

((
Λ̃1

1

)
TB2(G,Z) +

(
Λ̃2

1

)
TB3(G,Z)

)
− 1

ε

(
−
(
Λ̃1

2

)
TΠ2

h +
(
Λ̃2

2

)
TΠ1

h

)
− 1

ε

((
Λ̃1

3

)
TB2(G,Z) +

(
Λ̃2

3

)
TB3(G,Z)

)
,

we obtain a descent direction for J at (G,U).

Proof. In (4.27), we replace W 1 by B2(G,Z)R and W 2 by B3(G,Z)R, we

obtain that

dJ(G,U)(R, V ) = −(V ∗)TV − (R∗∗)TR,

then

dJ(G,U)(R
∗∗, V ∗) = −‖V ∗‖2Rn − ‖R∗∗‖2Rn ≤ 0. �
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5. Numerical tests

Shape optimization problems and their penalization are strongly nonconvex.

The computed optimal domain depends on the starting domain, but also on the

penalization ε or other numerical parameters. It may be just a local optimal

solution.

Moreover, the final computed value of the penalization integral is small, but

not null. This allows differences between the optimal computed domain Ωg and

the zero level curves of the computed optimal state yε. Consequently, we compare

the obtained optimal cost in the penalized problem with the costs in the original

problem (1.1)–(1.3) corresponding to the optimal computed domain Ωg and the

zero level curves of yε. This is a standard procedure, to inject the approximating

optimal solution in the original problem. Notice that in all the experiments, the

cost corresponding to Ωg is the best one, but the differences with respect to

the other computed cost values are small. This shows that the rather complex

approximation/penalization that we use is reasonable. Its advantage is that

it may be used as well in the case of boundary observation or for Neumann

boundary conditions and this will be performed in a subsequent paper.

In the examples, we have employed the software FreeFem++, [9].

Example 5.1. The computational domain is D = ]−3, 3[ × ]−3, 3[ and the

observation zone E is the disk of center (0, 0) and radius 0.5. The load is f = 1,

j(g) = (yε− yd)2, where yd(x1, x2) = −(x1− 0.5)2− (x2− 0.5)2 + 1/16, then the

cost function (3.2) becomes

(5.1) min
g∈F, u∈L2(D)

J(g, u) =

{∫
E

(yε − yd)2 dx +
1

ε

∫
Ig

(
yε(zg(t))

)2|z′g(t)| dt}.
The mesh of D has 73786 triangles and 37254 vertices. The penalization

parameter is ε = 10−3 and the tolerance parameter for the stopping test at the

Step 5 of the algorithm is tol = 10−6. The initial domain is the disk of center

(0, 0) and radius 2.5 with a circular hole of center (−1,−1) and radius 0.5.

At the Step 3 of the algorithm, we use (Rk, V k) given by Proposition 4.5.

At the Step 4, in order to have E ⊂ Ωk, we use a projection P at the line search

λk ∈ arg min
λ>0

J
(
P(Gk + λRk), Uk + λV k

)
and Gk+1 = P(Gk + λkR

k). If the value of gkh + λrkh at a vertex from E is

positive, then we set this value to −0.1. We recall that the left-hand side of (4.30)

represents only the first two terms of (4.22), not the whole gradient.

If rh, vh are given by Proposition 4.5 and γ > 0 is a scaling parameter, then

γrh and vh verify (4.30), that is they also give a descent direction. We take the

scaling parameter for rh given by γ = 1/max(rh), that is a normalization of rh.

In this way we avoid the appearance of very high values of the objective function,
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Figure 1. The solution of the elliptic problem (1.2)–(1.3) in the domain

Ωg (left), in the domain bounded by the zero level sets of yε (right) and

the final computed state yε in D (bottom).

that may stop the algorithm even in the first iteration. For the line search at

the Step 4, we use λ = ρiλ0, with λ0 = 1, ρ = 0.5 for i = 0, 1, . . . , 30.

The stopping test is obtained for k = 94 and some values of the objective

function are:

J(G0, U0) = 33110.5, J(G30, U30) = 54.725, J(G94, U94) = 14.9851.

At the final iteration, the first term of the optimal objective function is 1.03796

and
∫
∂Ωg

y2
ε(s) ds = 1.39471×10−2. We point out that the optimal Ωg has a hole

and the penalization term is a sum of two integrals∫
∂Ωg

y2
ε(s) ds =

2∑
j=1

∫
Ij

(
yε(zg(t))

)2|z′g(t)| dt
where the integral over I1 corresponding to the exterior boundary of Ωg and I2
to the boundary of the hole. In Figure 1 in the bottom, we can see the computed

optimal state yε in iteration 94. We also compute the costs
∫
E

(y1 − yd)2dx =

0.998189 where y1 is the solution of the initial elliptic problem (1.2)–(1.3) in the

domain Ωg with g obtained in iteration 94 and
∫
E

(y2− yd)2 dx = 1.04032 where

y2 is the solution of the elliptic problem (1.2)–(1.3) in the domain bounded by

the zero level sets of yε in iteration 94, see Figure 1.

Example 5.2. The domains D, E and the mesh of D are the same as in

Example 5.1. For f = 4 and yd(x1, x2) = −x2
1 − x2

2 + 1, we have the exact
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optimal state y = yd defined in the disk of center (0, 0) and radius 1, that gives

an optimal domain of the problem (1.1)–(1.3).

We have used ε = 10−1 and the starting configuration: the disk of center

(0, 0) and radius 2.5 with the circular hole of center (−1,−1) and radius 0.5. We

use (Rk, V k) given by Proposition 4.5. The parameters for the line search and

γ are the same as in the precedent example.

The stopping test is obtained for k = 64. The initial and the final computed

values of the objective function are 5368.84 and 11.2311. We obtain a local

minimum that is different from the above global solution. The first term of the

final computed objective function is 0.472856. The term
∫
∂Ωg

y2
ε(s) ds is 1.07583

and it was computed over the exterior boundary as well as over the boundaries

of two holes. The length of the total boundary of the optimal domain is 23.9714

and of the initial domain is 2π(2.5 + 0.5) = 18.8495.

Figure 2. The numerical solution of the elliptic problem (1.2)–(1.3) in the
optimal domain Ωg (left), in the domain bounded by the zero level sets of

yε (right) and the computed optimal state yε (bottom).

The domain changes its topology. The computed optimal state yε is presented

in Figure 2 in the bottom. At the left, we show y1 the solution of the elliptic

problem (1.2)–(1.3) in the domain Ωg which gives
∫
E

(y1−yd)2 dx = 0.295178, at

the right we show y2 the solution of the elliptic problem (1.2)–(1.3) in the domain

bounded by the zero level sets of yε, which gives
∫
E

(y2 − yd)2 dx = 0.471788.

Example 5.3. We have also used the descent direction given by Proposi-

tion 4.7, for the starting configuration the disk of center (0, 0) and radius 1.5,

ε = 10−1, γ = 1/‖rh‖∞ and a mesh of D of 32446 triangles and 16464 vertices.

For solving the ODE systems (4.3)–(4.5) and (4.11)–(4.13) we use m = 30.
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At the initial iteration, we have
∫
E

(yε − yd)2 dx = 72.3767,
∫
∂Ωg

y2
ε(s)ds =

658.459 and the value of the objective function is J0 = 6656.98. The algorithm

stops after 12 iterations and we have at the final iteration
∫
E

(yε − yd)2 dx =

1.22861,
∫
∂Ωg

y2
ε(s) ds = 0.557556 and the value of the penalized objective func-

tion is J12 = 6.80521. The final domain is a perturbation of the initial one,

the circular non-smooth curve in the top, left image of Figure 3. We have∫
E

(y1 − yd)2 dx = 1.20398 for y1 the solution of the elliptic problem (1.2)–(1.3)

in the final domain Ωg and
∫
E

(y2 − yd)2 dx = 1.21767 for y2 the solution of the

elliptic problem (1.2)–(1.3) in the domain bounded by the zero level sets of yε,

Figure 3 at the bottom, right.

Figure 3. The zero level sets of the computed optimal g, yε (top, left), the

final state yε (top, right), the solution of the elliptic problem (1.2)-(1.3) in
the domain Ωg (bottom, left) and in the domain bounded by the zero level

sets of yε (bottom, right).

Finally, we notice that the hypothesis of Proposition 3.5 is obviously fulfilled

by the null level sets of yε with a corresponding parametrization. In an approxi-

mate sense, it is also fulfilled by the computed optimal domain Ωg since the

penalization integral is “small” in all the examples.
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