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RESUME. Dans cet article, nous présentons un algorithme semi-implicite pour simuler le phéno-
méne d'interaction fluide structure dans I'anévrisme cérébral. Le fluide est supposé visqueux, incom-
pressible, gouverné par des équations de Navier-Stokes posées dans un domaine en mouvement.
La structure est supposée gouvernée par le modele de Saint-Venant Kirchhoff non linéaire, adopé
pour des grands déplacements, mais avec petites déformations. A chaque pas de temps, un pro-
bléme d’optimisation est résolu par une méthode des procédures partagées basée sur I'algorithme
de BFGS (Broyden, Fletcher, Goldfard, Shano) pour satisfaire les conditions d’égalité des contraintes
et de continuité des vitesses a l'interface. Les résutats numériques sont présentés.

ABSTRACT. This paper deals with a semi-implicit algorithm for solving fluid-structure interaction prob-
lem numerically holding in cerebral aneurysm. We assume that the fluid is governed by Navier Stokes
equations setting in a moving domain and the structure is governed by nonlinear St-Venant Kirchholff
elasticity model, which could be used for large displacements but small strain. At each time step, an
optimization problem is solved by partitioned procedure method based in BFGS (Broyden, Fletcher,
Goldfard, Shano) algorithm in order to get the continuity of stress as well as the continuity of velocity
at the interface. The numerical results are presented.

MOTS-CLES : Fluide dans un domaine en mouvement, formulation ALE, élasticité non linéaire, pro-
cédures partagées, éléments finis, différences finies.

KEYWORDS : Fluid in a moving domain, ALE framework, nonlinear elasticity, partitioned procedures,
finite element, finite difference




1. Introduction

The cerebral aneurysm is an abnormal dilation of a bloodefesall under divers
factors, like excess of tobacco and alcohol. It create thexea pocket where the blood
accumulate. The intercranial aneurysm is observed in ther @all of curved vessel, it is
found in the internal carotid artery near the apex of biftedavessels including the ante-
rior communicating artery (see [1] ). The discovery of ceabbneurysm holds frequently
between 35 years old to 60 years old (2% to 4% of the populatiiwh3 women over 2
men). The unruptured aneurysm have been reported occurtm @b of the population
and the aneurysm rupture causes over 90% of subarachnaibhdages, which is asso-
ciated to a high mortality rate (see [4]). There are some pagaling with the interaction
between the blood and the wall aneurysm (see [12], [11])11, [the authors, describe
the flow dynamics and arterial wall interaction of a termiaa¢urysm of simplified basi-
lar artery and they compute its wall shear stress (WSS), pressffective stress and wall
deformation. The geometry of cerebral aneurysm consideeeel is similar to one used
in [10]. In this work, we present a fast semi-implicit algbrih for solving numerically
the fluid-structure interaction arising in cerebral ansoryThe term semi-implicit means
that the velocity and the pressure of the fluid, the strualigplacements are computed in
implicit way, while the interface between the fluid and theisture is treated in explicit
way. In [9], when the structure is governed by linear eléstimodel, we have showed
that this algorithm is unconditional stable. The algoritinmplementation is done by par-
titioned procedures : at each time step, we firstly solve thuetire problem by Newton’s
method to get the structure displacements and secondffjuttiestructure problem is sol-
ved by a least square method based on the BFGS algorithmen wrdet the continuity
of the stress as well as the continuity of velocity at therfate. The major importance
to work with this algorithm is that it use a fluid fixed mesh amdumique factorization
of the fluid matrix during the optimization problem, that uee considerably the time of
computation. More precisly, in [7] from the CPU time compiaa we showed that the
semi-implicit algorithm i5.94 times faster than the implicit one.

2. Setting problem

Let us denote by2° the undeformed structure domain bounded by : the rigid secti
Ty, the exterior sectiofi; and the interior sectioly, and byQ{" the initial fluid domain
bounded by : the rigid sections, the inflow sectior®;, the outflow sectiort; and the
exterior boundary, (see Figure 1).

Figure 1. The fluid-structure initial domain.



The sectiory: represents the fluid-structure interface. Under the adidie fluid stress,
the structure will be deformed. At the time instanthe fluid occupies the domain!”.

We assume that the fluid is governed by Navier-Stokes equeatiod the structure
by the nonlinear St-Venant Kirchhoff elasticity model ($8B. At each timet € [0, T,
we are interested to know : the fluid velocityft) : QF — R2 the fluid pressure
p(t) : QF — R and the structure displacement§) : Q% — R2.

We introduce the ALE (Arbitrary Lagrangian Eulerian) coomtes in order to write
the time derivative of fluid velocity with respect to a fix redace domain, see [8]. L&t"
be the reference fixed domain and &t ¢ € [0, T] be a transformation such that :

AR) =%, VR €00\ 2y, A(QF) = QF, A(S0) = 2,

wherex = (Z1,%,)7 € QF are the ALE coordinates and = (z1,2,)7 = A,(x) the
Eulerian coordinates. We denote the fluid domain velocity by

_OA; 0A;

W(x,) = 1) = (AT ()

and the ALE time derivative of the fluid velocity bya—‘ (x,t) = 8‘; (X,t).

We assume that the fluid-structure interaction is goven)aué)followmg equations :

Navier-Stokes

(G =9 ) — 2V eV = 17 el x 01 @
Vv = 0inQf x[0,7] (2

ofnf = hy, on¥; x (0,7] (3)

ofnf = hy, on¥s x (0,7)(4)

v = 0onXy;x (0,71 (5)

v(X,0) = v%X) inQf (6)

where 1
0" = —ply + 2 e(v), with e(v) = 2 (Vv + (V¥)7),

F = (ff, fF) are the applied forced,;,, andh,,; are the prescribed boundary stresses
on¥; and onXs, pf andp!” are the mass density and the viscosity of the fluid.
Nonlinear elasticity equations

%u .
,osat2 V-o% = £% inQ%x (0,7 (7)
= 0, onTy x (0,7 (8)
o"n® = 0, onI'; x (0,T] 9)
u(X,0) = u’(X), inQ° (10)
%‘:(X 0) = u’(X), inQ°, (11)

wherep® > 0 is the mass density of the structure,, and\° are the Lamé’s coefficients,
= (f7, f5) are the applied forces and where the stress ten$ds given by :

= (Io+Vu) (A (tr(B(u))+245E(u)), with E(u) = %(vu+(Vu)T+(Vu)TVu).



Interface conditions

V(X +u(X,t),t) = %‘t‘(x,t), on%o x (0,7 (12)
(O'FnF)(X+u(X7t)’t)w = —(Usns)(x’t), onYg X (O,T], (13)

wherew = ||cof(VT, )n® ||z, andT,, : Ty — T'; defined by T, (X) = X + u(X,t)

andn® = (n7,n5) is the unit outward normal t&.

Remark : The existence and unigness of the weak solutions of (1)€a8)be showed
using the same theory as in [2]. For the coupling problem,escegularity are requiert,
for example the condition (12) make sens if the structureais is in (H!(2%))2.

3. Discretization and weak formulation for the fluid equatio ns

Let N € N* be the number of time steps adt = T'/N the step time. We set
t, = nAtforn = 0,---, N the subdivision of0, T]. We denote by", h?,, h? ., p",
v" the time approximation of ', h,,, h,.., p, v respectively. We consider an implicit
Euler scheme for the time derivative and a linearizationhef convective term. We set
QF = QF and we defin@™ = (97, 9%) the velocity of the fluid domain as solution of :

Ag9" =0 in QF 9" =0 ondQf < %,, 9" =v", on%,.
Foralln =0,---,N — 1, we define the discrete ALE ma#,, ,, : Qf — R? by :
Ap, 1 (21,72) = (1 + AT, To + AtDy).

We setQf , = A, ., (QF) andZ, 11 = Ay, (E0).
We define the maff = A;, o A;, , o--- 0. A, and we can observe that, = T(X).

We define the fluid velocitw™*! : QF , — R? (respectively the fluid pressure
p" T QF | — R) attime instan{n + 1) on Q% | by :

vitl(x) = vHR), pMT(x) =T (R) VX e QF and x = A (%), (14)
We introduce the following spaces of test function :
Wy ={%" e (1'(Q])% W' =0onLs}, QF = LA(Q)).
From the Green’s formula we get the following discrete weaknf of (1)-(6) :

) R P R ) R un+1 _ unfl
Find v»*t1 e WF, pn*tt € QF ,with ¥" ™' o T= ———— on¥, suchthat:

2A¢t ’
(Qn+1 - vn) ~ n n ~n ~
o [ W [ (-0 e e
Qf 525
ouF / w@) (@) — [ (Ve wF) - / §(Vs -9
QF QF 974

= [ Est [ et [wrwt s [ owwr )
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n

forall W& € W,, g€ QF with f*+1 = f"t1o 4, .




4. Discretization and weak formulation of structure equati ons

For the structure equations, we denotedy g” the time approximation ofi, f°.
We setF" = (0°n”)(t,). We use &-centred scheme of second order in time, with
1/4 < 6 < 1/2. We define the space of test functions :

WS = {w e (H'(Q%))?, w° =0o0nTg}.

From the Green formula, we get the following discrete weaknfof (7)-(11) :
Findu™*t! € W such that :

u”*l—-2u"%-u"71 n n
/QSpS( L ) -wdX + fag (u +1,WS> + (1 —260)ag (u ,WS)

+0ag (w1, wo) = / (O£57F 4 (1 — 20)£5™ + 0F5" 1) . w¥dX
0s

+/ (0F" ' + (1 —20)F" + 0F" ') - wods, Yw® e W5, (16)
To

where ag (u, WS) :/ o%(u) : (VWS) dX.
Qs

4.1. Newton’s method for the structure equations

The tensow® (u) is nonlinear, we use the Newton method to compute the steictu
displacements. From the derivative with respeat taf the components ¢ (u) for an ar-

1J h [
du () Ox;

2
. d
bitraryh = (hy, hy) € W<, we can compute:a—s(u, w®)h = Z /
du =1 s
Newton Algorithm

Step 0. Initialization. Setc = 0 andu™*!:? = u”. We generata"+1* fork = 1,2, - - -
Step 1. Find h* the solution of the linear system

h* da® .
/QS ps A ,WSdX_i_daiu(un+1,k’WS)hk

n+1.k n n—1
Sk own )
= . dX
/Qs” (At)2 v

+9ag(u”+1’k,ws) +(1- 29)as(u”,ws) + Qag(unfl’k,ws) a7)

f/ (OF5"FL 4 (1 — 205" 4 0F5" 1) . wodX

S

—/ (OF" 1 1 (1 - 20)F" + 0F" 1) . wdX, Vw®ecW?,
Qs

Step 2. If h* is small, then stop.
Step 3. Setu LA+t = yrtLk _hk E «— k4 1; gotoStep 1.

The finite element method is used to solve the variationahgm (17). We denote by
uZ’“ the solution which correspond to the structure displacemetimet,, ;.




5. Semi-implicit algorithm for the coupling problem

We mean by semi-implicit the fact that the interface posii®computed explicitly,
while the displacements, velocity and pressure are cordpotglicitly. An optimization
problem must be solved in order to get the continuity of stegghe interface. The stress

F"*1 = (0%n%)(tn 1) is unknown. We approach it byE" ™! = "¢+ 'y’, where
=1
¢! have to be identifiedy’ € (L? (FO))2 are shape functions. (see [7]).

Semi-implicit algorithm

Step 1. Compute the mesh velocit§™.

Step 2. Assembling the finite element matrix of fluid problem using frozen mesh
T". Get a LU factorization of the matrix.

Step 3. Solve the fluid-structure problem using the fluid m&shby BFGS algorithm :

n+1 :
€ arg min J(§),
3 g Join (€
where the cost functiod is computed as following :

1) Solve (17) by Newton Method under the loR*! = -7 ¢7T1qp’ and get
the displacement™*!.

2) Solve (15) on the mestly™ under prescribed velocity at the interface
un+1 _ un—l

2A¢t

—_ j % _ F_F [
3) Computey; = /FO Zﬁﬂ,ﬂ cap'ds, B = —/F0 (a n )(X+U(X,t),t) ~ap'ds.
j=

vl = , in order to get the fluid velocity™*+! andp™*!.

. 1
4) Set the cost functiori(ar) = | - Blgm-
Step 4. Build mesh7"! = A4, , (7") and saveT ", v* 1, pntl given by (14).

6. Numerical results

6.0.1. Physical parameters

The length of%; and ofX3 is 3 mm, the length of; is 5 mm. The interfac&:,
is composed by two segments of length 5 mm and an arc of diaeten. The fluid
viscosity isp = 0.003 2, the fluid density isp” = 1 —Z; and the volume forces
areff’ = (0, 0)T. The prescribe boundary stress Bg is h,(x,t) = (0, 0)T and on
Y1 is hyp(z,t) = (103(1 — cos(27t/0.025)), O)T, if z € %y, 0 < t < 0.025 and
h;,(z,t) = (0, 0)T,if x € ¥y, 0.025 <t < T.

The up boundary’s is an arc with diameter 6 mm, the lengthlof andT’; is 0.3 mm.
The Young modulus i& = 3-10° -2, the Poisson ratio is = 0.3, the structure mass
density isp® = 1.1-%; and the volume force af®’ = (0, 0)7. The Lamé’s coefficients
v3E 5 E
1-2051+05 " Toa+uo)

are computed by the formulas\? =

6.0.2. Numerical parameters

The numerical tests have been performed using FreeFeme {53a8\e have used for
the structure a reference meshsoftriangles and?2 vertices and for the fluid a reference



mesh of1615 triangles and881 vertices. For the approximation in space of the fluid
velocity and pressure, we have used the triangular finitmeteP; + bubble and P,
respectively. The finite elemel®; was employed for the displacements of the structure.

6.0.3. Behavior of solutions

We show in the figure (2) the behavior of normal component of \&S8ree different
points on the interface. Near the inflow section, the maxiwadlie of WSS is around
150 dyn/cm?, near the apex, this value is arous@ldyn /cm? and near the outflow sec-
tion, the value is about00 dyn/cm?. These results are comfirmed by [11].

The figure (3) shows the fluid and structure meshes (at top ta# behvior of the fluid
velocity (at bellow left), of the fluid pressure (at top righnhd of the structure velocity (at
bellow right). We can observe that, the compatibility of mesare not necessary verified
at the interface.

7. Conclusion

In this paper, a semi-implicit algorithm based on the sgiate developed in [9] and
[7] has been used to simulate the fluid-structure interadtiocerebral aneurysm. The
Newton method is used to solve the nonlinear model of thetsire. At each time step,
an optimization problem is solved by partitioned procechased on BFGS algorithm in
order to get the continuity of velocity as well as the conitiypof the stress at the interface.
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9. Figures
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Figure 2. Normal component of the wall shear stress at three points on the interface.
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Figure 3. Fluid-structure meshes, fluid pressure, fluid velocities and structure velocities at
time instant ¢ = 0.040 s.



