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RÉSUMÉ. Dans cet article, nous présentons un algorithme semi-implicite pour simuler le phéno-
mène d’interaction fluide structure dans l’anévrisme cérébral. Le fluide est supposé visqueux, incom-
pressible, gouverné par des équations de Navier-Stokes posées dans un domaine en mouvement.
La structure est supposée gouvernée par le modèle de Saint-Venant Kirchhoff non linéaire, adopé
pour des grands déplacements, mais avec petites déformations. A chaque pas de temps, un pro-
blème d’optimisation est résolu par une méthode des procédures partagées basée sur l’algorithme
de BFGS (Broyden, Fletcher, Goldfard, Shano) pour satisfaire les conditions d’égalité des contraintes
et de continuité des vitesses à l’interface. Les résutats numériques sont présentés.

ABSTRACT. This paper deals with a semi-implicit algorithm for solving fluid-structure interaction prob-
lem numerically holding in cerebral aneurysm. We assume that the fluid is governed by Navier Stokes
equations setting in a moving domain and the structure is governed by nonlinear St-Venant Kirchholff
elasticity model, which could be used for large displacements but small strain. At each time step, an
optimization problem is solved by partitioned procedure method based in BFGS (Broyden, Fletcher,
Goldfard, Shano) algorithm in order to get the continuity of stress as well as the continuity of velocity
at the interface. The numerical results are presented.

MOTS-CLÉS : Fluide dans un domaine en mouvement, formulation ALE, élasticité non linéaire, pro-
cédures partagées, éléments finis, différences finies.

KEYWORDS : Fluid in a moving domain, ALE framework, nonlinear elasticity, partitioned procedures,
finite element, finite difference



1. Introduction

The cerebral aneurysm is an abnormal dilation of a blood vessel wall under divers
factors, like excess of tobacco and alcohol. It create therefore a pocket where the blood
accumulate. The intercranial aneurysm is observed in the outer wall of curved vessel, it is
found in the internal carotid artery near the apex of bifurcated vessels including the ante-
rior communicating artery (see [1] ). The discovery of cerebral aneurysm holds frequently
between 35 years old to 60 years old (2% to 4% of the populationand 3 women over 2
men). The unruptured aneurysm have been reported occur in upto 6% of the population
and the aneurysm rupture causes over 90% of subarachnoid haemorrhages, which is asso-
ciated to a high mortality rate (see [4]). There are some paper dealing with the interaction
between the blood and the wall aneurysm (see [12], [11]). In [12], the authors, describe
the flow dynamics and arterial wall interaction of a terminalaneurysm of simplified basi-
lar artery and they compute its wall shear stress (WSS), pressure, effective stress and wall
deformation. The geometry of cerebral aneurysm consideredhere is similar to one used
in [10]. In this work, we present a fast semi-implicit algorithm for solving numerically
the fluid-structure interaction arising in cerebral aneurysm. The term semi-implicit means
that the velocity and the pressure of the fluid, the structuredisplacements are computed in
implicit way, while the interface between the fluid and the structure is treated in explicit
way. In [9], when the structure is governed by linear elasticity model, we have showed
that this algorithm is unconditional stable. The algorithmimplementation is done by par-
titioned procedures : at each time step, we firstly solve the structure problem by Newton’s
method to get the structure displacements and secondly, thefluid-structure problem is sol-
ved by a least square method based on the BFGS algorithm in order to get the continuity
of the stress as well as the continuity of velocity at the interface. The major importance
to work with this algorithm is that it use a fluid fixed mesh and an unique factorization
of the fluid matrix during the optimization problem, that reduce considerably the time of
computation. More precisly, in [7] from the CPU time computation we showed that the
semi-implicit algorithm is5.94 times faster than the implicit one.

2. Setting problem

Let us denote byΩS the undeformed structure domain bounded by : the rigid section
Γ0, the exterior sectionΓ1 and the interior sectionΣ0, and byΩF

0 the initial fluid domain
bounded by : the rigid sectionΣ2, the inflow sectionΣ1, the outflow sectionΣ3 and the
exterior boundaryΣ0, (see Figure 1).
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Figure 1. The fluid-structure initial domain.



The sectionΣ0 represents the fluid-structure interface. Under the actionof the fluid stress,
the structure will be deformed. At the time instantt, the fluid occupies the domainΩF

t .
We assume that the fluid is governed by Navier-Stokes equations and the structure

by the nonlinear St-Venant Kirchhoff elasticity model (see[3]). At each timet ∈ [0, T ],
we are interested to know : the fluid velocityv(t) : ΩF

t −→ R
2, the fluid pressure

p(t) : ΩF
t −→ R and the structure displacementsu(t) : ΩS −→ R

2.
We introduce the ALE (Arbitrary Lagrangian Eulerian) coordinates in order to write

the time derivative of fluid velocity with respect to a fix reference domain, see [8]. Let̂ΩF

be the reference fixed domain and letAt, t ∈ [0, T ] be a transformation such that :

At(x̂) = x̂, ∀ x̂ ∈ ∂ΩF
t \ Σt, At(Ω̂

F ) = ΩF
t , At(Σ0) = Σt,

wherex̂ = (x̂1, x̂2)
T ∈ Ω̂F are the ALE coordinates andx = (x1, x2)

T = At(x̂) the
Eulerian coordinates. We denote the fluid domain velocity by:

ϑ(x, t) =
∂At

∂t
(x̂, t) =

∂At

∂t

(
A−1

t (x)
)

and the ALE time derivative of the fluid velocity by :
∂v

∂t

∣∣∣
x̂

(x, t) =
∂v̂

∂t
(x̂, t).

We assume that the fluid-structure interaction is governed by the following equations :
Navier-Stokes

ρF
(
∂v

∂t

∣∣∣∣
x̂

+ ((v − ϑ) · ∇)v

)
− 2µF∇ · ǫ (v) +∇p = fF in ΩF

t × (0, T ] (1)

∇ · v = 0 in ΩF
t × [0, T ] (2)

σFnF = hin onΣ1 × (0, T ] (3)

σFnF = hout onΣ3 × (0, T ](4)

v = 0 onΣ2 × (0, T ] (5)

v(X, 0) = v0(X) in ΩF
0 (6)

where

σF = −pI2 + 2µF ǫ(v), with ǫ(v) =
1

2

(
∇v + (∇v)T

)
,

fF = (fF
1 , fF

2 ) are the applied forces,hin andhout are the prescribed boundary stresses
onΣ1 and onΣ3, ρF andµF are the mass density and the viscosity of the fluid.

Nonlinear elasticity equations

ρS
∂2u

∂t2
−∇ · σS = fS , in ΩS × (0, T ] (7)

u = 0, onΓ0 × (0, T ] (8)

σSnS = 0, onΓ1 × (0, T ] (9)

u(X, 0) = u0(X), in ΩS (10)

∂u

∂t
(X, 0) = u̇0(X), in ΩS , (11)

whereρS > 0 is the mass density of the structure,µS , andλS are the Lamé’s coefficients,
fS = (fS

1 , f
S
2 ) are the applied forces and where the stress tensorσS is given by :

σS = (I2+∇u)
(
λS(tr(E(u))+2µS

E(u)
)
, with E(u) =

1

2

(
∇u+(∇u)T+(∇u)T∇u

)
.



Interface conditions

v(X + u(X, t), t) =
∂u

∂t
(X, t), onΣ0 × (0, T ] (12)

(σFnF )(X+u(X,t),t)ω = −(σSnS)(X,t), onΣ0 × (0, T ], (13)

whereω = ‖cof(∇Tu)n
S‖R2 , andTu : Γ0 −→ Γt defined by :Tu(X) = X + u(X, t)

andnS = (nS
1 , n

S
2 ) is the unit outward normal toΣ0.

Remark : The existence and uniqness of the weak solutions of (1)-(13)can be showed
using the same theory as in [2]. For the coupling problem, some regularity are requiert,
for example the condition (12) make sens if the structure velocity is in (H1(ΩS))2.

3. Discretization and weak formulation for the fluid equatio ns

Let N ∈ N
∗ be the number of time steps and∆t = T/N the step time. We set

tn = n∆t for n = 0, · · · , N the subdivision of[0, T ]. We denote byfn, hn
in, h

n
out, p

n,
vn the time approximation offF , hin, hout, p, v respectively. We consider an implicit
Euler scheme for the time derivative and a linearization of the convective term. We set
Ω̂F = ΩF

n and we defineϑn = (ϑn
1 , ϑ

n
2 ) the velocity of the fluid domain as solution of :

∆x̂ϑ
n = 0 in ΩF

n , ϑn = 0 on ∂ΩF
n r Σn, ϑn = vn, onΣn.

For alln = 0, · · · , N − 1, we define the discrete ALE mapAtn+1
: ΩF

n −→ R
2 by :

Atn+1
(x̂1, x̂2) = (x̂1 +∆tϑn

1 , x̂2 +∆tϑn
2 ).

We setΩF
n+1 = Atn+1

(ΩF
n ) andΣn+1 = Atn+1

(Σn).
We define the mapT = Atn ◦ Atn−1

◦ · · · ◦ At1 and we can observe thatΣn = T(Σ0).
We define the fluid velocityvn+1 : ΩF

n+1 −→ R
2 (respectively the fluid pressure

pn+1 : ΩF
n+1 −→ R) at time instant(n+ 1) onΩF

n+1 by :

vn+1(x) = v̂n+1(x̂), pn+1(x) = p̂n+1(x̂) ∀ x̂ ∈ Ω̂F
n and x = Atn+1

(x̂). (14)

We introduce the following spaces of test function :

ŴF
n = {ŵF ∈ (H1(ΩF

n ))
2; ŵF = 0 onΣ2}, Q̂F

n = L2(ΩF
n ).

From the Green’s formula we get the following discrete weak form of (1)-(6) :

Find v̂n+1 ∈ ŴF
n , p̂n+1 ∈ Q̂F

n , with v̂n+1 ◦ T =
un+1 − un−1

2∆t
, onΣ0 such that :

ρF
∫

ΩF
n

(v̂n+1 − vn)

∆t
· ŵF + ρF

∫

ΩF
n

(((vn − ϑn) · ∇x̂)v̂
n+1) · ŵF

+2µF

∫

ΩF
n

ǫx̂(v̂
n+1) : ǫx̂(ŵ

F )−

∫

ΩF
n

p̂n+1(∇x̂ · ŵ
F )−

∫

ΩF
n

q̂(∇x̂ · v̂
n+1)

=

∫

ΩF
n

f̂n+1 · ŵF +

∫

Σn

(σFnF ) · ŵF +

∫

Σ2

hn+1
in ·wF +

∫

Σ3

hn+1
out ·w

F , (15)

for all ŵF ∈ Ŵn, q̂ ∈ Q̂F
n with f̂n+1 = fn+1 ◦ Atn+1

.



4. Discretization and weak formulation of structure equati ons

For the structure equations, we denote byun, gn the time approximation ofu, fS .
We setFn = (σSnS)(tn). We use aθ-centred scheme of second order in time, with
1/4 ≤ θ ≤ 1/2. We define the space of test functions :

WS = {wS ∈ (H1(ΩS))2, wS = 0 onΓ0}.

From the Green formula, we get the following discrete weak form of (7)-(11) :
Findun+1 ∈WS such that :

∫

ΩS

ρS
(
un+1 − 2un + un−1

)

(∆t)2
·wSdX+ θaS

(
un+1,wS

)
+ (1− 2θ)aS

(
un,wS

)

+θaS
(
un−1,wS

)
=

∫

ΩS

(
θfS,n+1 + (1− 2θ)fS,n + θfS,n−1

)
·wSdX

+

∫

Γ0

(
θFn+1 + (1− 2θ)Fn + θFn−1

)
·wSd s, ∀wS ∈WS , (16)

where aS
(
u,wS

)
=

∫

ΩS

σS(u) :
(
∇wS

)
dX.

4.1. Newton’s method for the structure equations

The tensorσS(u) is nonlinear, we use the Newton method to compute the structure
displacements. From the derivative with respect tou of the components ofE(u) for an ar-

bitraryh = (h1, h2) ∈WS , we can compute :
daS
du

(u,wS)h =
2∑

i,j=1

∫

ΩS

dσS
ij

du
(u)h

∂ωS
i

∂xj

Newton Algorithm

Step 0. Initialization. Setk = 0 andun+1,0 = un. We generateun+1,k for k = 1, 2, · · ·
Step 1. Findhk the solution of the linear system

∫

ΩS

ρS
hk

(∆t)2
·wSdX +

daS

du
(un+1,k,wS)hk

=

∫

ΩS

ρS
(un+1,k − 2un + un−1)

(∆t)2
·wSdX

+θaS(u
n+1,k,wS) + (1− 2θ)aS(u

n,wS) + θaS(u
n−1,k,wS) (17)

−

∫

ΩS

(θfS,n+1 + (1− 2θ)fS,n + θfS,n−1) ·wSdX

−

∫

ΩS

(θFn+1 + (1− 2θ)Fn + θFn−1) ·wSdX, ∀ wS ∈WS ,

Step 2. If hk is small, then stop.
Step 3. Setun+1,k+1 = un+1,k − hk; k ←− k + 1; go toStep 1.

The finite element method is used to solve the variational equation (17). We denote by
un+1
h the solution which correspond to the structure displacement at timetn+1.



5. Semi-implicit algorithm for the coupling problem

We mean by semi-implicit the fact that the interface position is computed explicitly,
while the displacements, velocity and pressure are computed implicitly. An optimization
problem must be solved in order to get the continuity of stress at the interface. The stress

Fn+1 = (σSnS)(tn+1) is unknown. We approach it by :Fn+1 =

m∑

i=1

ξn+1
i ψi, where

ξn+1
i have to be identified,ψi ∈

(
L2 (Γ0)

)2
are shape functions. (see [7]).

Semi-implicit algorithm
Step 1. Compute the mesh velocityϑn.
Step 2. Assembling the finite element matrix of fluid problem using the frozen mesh

T n. Get a LU factorization of the matrix.
Step 3. Solve the fluid-structure problem using the fluid meshT n by BFGS algorithm :

ξn+1 ∈ arg min
ξ∈Rm

J(ξ),

where the cost functionJ is computed as following :

1) Solve (17) by Newton Method under the loadFn+1 =
∑m

i=1 ξ
n+1
i ψi and get

the displacementun+1.

2) Solve (15) on the meshT n under prescribed velocity at the interface

v̂n+1 =
un+1 − un−1

2∆t
, in order to get the fluid velocitŷvn+1 andp̂n+1.

3) Computeαi =

∫

Γ0




m∑

j=1

ξjψ
j


 ·ψid s, βi = −

∫

Γ0

(
σFnF

)
(X+u(X,t),t)

·ψid s.

4) Set the cost functionJ(α) =
1

2
‖α− β‖2

Rm .

Step 4. Build meshT n+1 = Atn+1
(T n) and saveT n+1, vn+1, pn+1 given by (14).

6. Numerical results

6.0.1. Physical parameters

The length ofΣ1 and ofΣ3 is 3 mm, the length ofΣ2 is 5 mm. The interfaceΣ0

is composed by two segments of length 5 mm and an arc of diameter 6 mm. The fluid
viscosity isµ = 0.003 g

cm·s
, the fluid density isρF = 1 g

cm3 and the volume forces
arefF = (0, 0)T . The prescribe boundary stress onΣ3 is hout(x, t) = (0, 0)T and on
Σ1 is hin(x, t) = (103(1 − cos(2πt/0.025)), 0)T , if x ∈ Σ2, 0 ≤ t ≤ 0.025 and
hin(x, t) = (0, 0)T , if x ∈ Σ2, 0.025 ≤ t ≤ T.
The up boundaryΓ3 is an arc with diameter 6 mm, the length ofΓ1 andΓ2 is 0.3 mm.
The Young modulus isE = 3 ·106 g

cm·s2
, the Poisson ratio isν = 0.3, the structure mass

density isρS = 1.1 g
cm3 and the volume force arefS = (0, 0)T . The Lamé’s coefficients

are computed by the formulas :λS =
νSE

(1− 2νS)(1 + νS)
, µS =

E

2(1 + νS)
.

6.0.2. Numerical parameters

The numerical tests have been performed using FreeFem++ (see [5]). We have used for
the structure a reference mesh of60 triangles and62 vertices and for the fluid a reference



mesh of1615 triangles and881 vertices. For the approximation in space of the fluid
velocity and pressure, we have used the triangular finite elementP1 + bubble andP1

respectively. The finite elementP1 was employed for the displacements of the structure.

6.0.3. Behavior of solutions

We show in the figure (2) the behavior of normal component of WSSat three different
points on the interface. Near the inflow section, the maximalvalue of WSS is around
150 dyn/cm2, near the apex, this value is around50 dyn/cm2 and near the outflow sec-
tion, the value is about100 dyn/cm2. These results are comfirmed by [11].
The figure (3) shows the fluid and structure meshes (at top left), the behvior of the fluid
velocity (at bellow left), of the fluid pressure (at top right) and of the structure velocity (at
bellow right). We can observe that, the compatibility of meshes are not necessary verified
at the interface.

7. Conclusion

In this paper, a semi-implicit algorithm based on the strategies developed in [9] and
[7] has been used to simulate the fluid-structure interaction in cerebral aneurysm. The
Newton method is used to solve the nonlinear model of the structure. At each time step,
an optimization problem is solved by partitioned procedurebased on BFGS algorithm in
order to get the continuity of velocity as well as the continuity of the stress at the interface.
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9. Figures
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Figure 2. Normal component of the wall shear stress at three points on the interface.

Figure 3. Fluid-structure meshes, fluid pressure, fluid velocities and structure velocities at
time instant t = 0.040 s.


