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Laboratoire de Mathématiques, Informatique et Applications,
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Abstract

A semi-implicit time advancing scheme for transient fluid-structure interaction prob-

lem is presented. At every time step, a least squares problem is solved by partitioned

procedures, such that the continuity of the velocity as well as the continuity of the

stress hold at the interface. During the iterative method for solving the optimiza-

tion problem, the fluid mesh does not move, which reduces the computational effort.

The stability of the algorithm is derived. The numerical results presented in this

paper show that the computed solution is similar to the one obtained by the implicit

algorithm, but the computational time is reduced.
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1 Introduction

In fluid-structure interaction problems, on the one hand, the stresses from

the fluid move the structure and on the other hand, the fluid domain de-

pends on the displacement of the structure. At the fluid-structure interface,

the continuity of the stress and of the velocity are imposed. The flow inside

a compliant vessel or the displacement of high buildings under the action of

the wind are examples of fluid-structure interaction. We are interested in the

haemodynamics applications such that the blood flow in large arteries.

Different time advancing algorithms have been developed for unsteady fluid-

structure interaction: explicit, implicit and, recently, semi-implicit. In the ex-

plicit algorithms, the two coupling conditions are not verified simultaneously.

For example, at a time step the continuity of the velocity holds, but the

continuity of the stress across the interface is violated or inversely. Explicit

algorithms have been successfully employed in aero-elasticity [8]. But, these al-

gorithms are unstable when the structure is light and its density is comparable

to that of the fluid [16], [4], [12]. Such situations appear in the bio-mechanics

applications, for example.

At every time step of the implicit algorithms, the fluid domain as well as

the displacement of the structure, velocity and the pressure of the fluid have

to be determined by iterative methods. This can be done using fixed point

strategies [21], [11], Newton or quasi-Newton methods [25], [14], [1], [9], [27],
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[6], [5]. Optimal control approaches have been employed in [19], [17] where, at

each time step, an optimization problem must be solved. Contrary to Newton

or fixed point iterations, the optimization approach is less sensitive to the

starting point, which permits to use moderate time step. Numerical results

presented in [19] suggest to use Modified Newton Method for small time step,

while the optimization approach is preferable for moderate time step.

In the case of implicit algorithms, we emphasize that at a time instant, the

fluid domain is changed in the interior of the loop where the structure dis-

placement, the velocity and the pressure of the fluid are computed iteratively.

The idea of semi-implicit algorithms is to compute explicitly the fluid domain

out of the loop, then a frozen fluid mesh is used during the iterative algorithm

until both coupling conditions at the interface hold. This strategy reduces the

computational time.

A semi-implicit algorithm for a mono-dimensional simplified fluid-structure

interaction problem is introduced in [13] and the stability in time is proved.

In [21, Sec. 4.10, p. 138] a semi-implicit algorithm based on the Leap-Frog

discretisation for the structure and on the implicit Euler discretisation for the

fluid is presented. In order to linearize the convection term of Navier-Stokes

equation, a supplementary fluid problem has to be solved. The stability is

proved under a condition on the time step governed only by the structure.

The author remarks at p. 140 that this condition might to be too restrictive

in haemodynamics applications. The stability analysis of semi-implicit algo-

rithms of first order in time for fluid-structure interaction problems can be

found in [2] and [26]. In [10], a semi-implicit algorithm based on the Chorin-

Temam projection scheme for incompressible flows is proposed. The stability

has been proved when the fluid domain is fixed. The numerical results show
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that the computational time is reduced when the semi-implicit strategy is

employed in place of the implicit one. Other semi-implicit algorithms are pre-

sented in [22], where the structure equation is embedded into the fluid equa-

tions and in [20], where the fluid-structure coupled problem is solved by the

Augmented Lagrangian Method.

The aim of this paper is to introduce a different semi-implicit algorithm for

transient fluid-structure interaction problems. The main differences between

our method and the ones proposed in [21], [2], [26] are: we use a centered

scheme of order two in time for the structure and more general boundary con-

ditions for the fluid. The unconditional stability of the algorithm is derived.

Moreover, the numerical results presented in this paper show that the com-

puted solution is similar to the one obtained by the implicit algorithm, but

the computational time is reduced.

2 The mathematical model

We are interested in fluid-structure interaction problem in two dimensions.

Let us denote by ΩS the undeformed structure domain and we suppose that

its boundary ∂ΩS admits decomposition ∂ΩS = ΓD ∪ ΓN ∪ Γ0, with ΓD =

[AB] ∪ [CD] and ΓN = [AD] (see Figure 1 on the left). We denote by ΩF
0

the initial fluid domain bounded by: Σ1 the inflow section, Σ2 the bottom

boundary, Σ3 the outflow section and Γ0 the top boundary. The boundary

Γ0 is common to both domains and it represents the fluid-structure interface.

Under the action of the fluid stress, the structure will be deformed. At the time

instant t, the fluid occupies the domain ΩF
t bounded by the moving interface

Γt and by the rigid boundary Σ = Σ1 ∪ Σ2 ∪ Σ3 (see Figure 1 at the right).
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We assume that the fluid is viscous, Newtonian and incompressible and it

is governed by the Navier-Stokes equations. We also assume that the struc-

ture is governed by the linear elasticity equations. The coupling between

the fluid and the structure is realized through two boundary conditions at

the interface, namely, the continuity of the velocity and the equality of the

stress. At each time t ∈ [0, T ], we are interested to know: the fluid velocity

v(t) = (v1(t), v2(t))
T : ΩF

t −→ R
2, the fluid pressure p(t) : ΩF

t −→ R and

the structure displacement u(t) = (u1(t), u2(t))
T : ΩS −→ R

2.

We are going to use the ALE (Arbitrary Lagrangian Eulerian) coordinates for

the fluid equations, see for example [23]. Let Ω̂F be the reference fixed domain

and let At, t ∈ [0, T ] be a family of transformations such that:

At(x̂) = x, ∀ x̂ ∈ Ω̂F , At(Ω̂
F ) = ΩF

t ,

where x̂ = (x̂1, x̂2)
T ∈ Ω̂F are the ALE coordinates and x = (x1, x2)

T ∈ ΩF
t

are the Eulerian coordinates. We denote the domain velocity by:

ϑ(x, t) =
∂At

∂t
(x̂) =

∂At

∂t

(
A−1

t (x)
)

and the ALE time derivative of the fluid velocity by:

∂v

∂t

∣∣∣∣
x̂

(x, t) =
∂v̂

∂t
(x̂, t).

We assume that the fluid-structure interaction is governed by the following

equations:

Navier-Stokes

5



ρF

(
∂v

∂t

∣∣∣∣∣
x̂

+ ((v − ϑ) · ∇)v

)
− 2µF∇ · ε (v) + ∇p= fF , ΩF

t × (0, T ] (1)

∇ · v = 0, ΩF
t × [0, T ] (2)

σFnF =hin, Σ1 × (0, T ] (3)

σFnF =hout, Σ3 × (0, T ] (4)

v = 0, Σ2 × (0, T ] (5)

v(X, 0)=v0(X), ΩF
0 (6)

linear elasticity

ρS ∂2u

∂t2
−∇ · σS = fS, in ΩS × (0, T ] (7)

u= 0, on ΓD × (0, T ] (8)

σSnS = 0, on ΓN × (0, T ] (9)

u(X, 0)=u0(X), in ΩS (10)

∂u

∂t
(X, 0)= u̇0(X), in ΩS (11)

interface conditions

v(X + u(X, t), t) =
∂u

∂t
(X, t), on Γ0 × (0, T ] (12)

(σFnF )(X+u(X,t),t)ω =−(σSnS)(X,t), on Γ0 × (0, T ]. (13)

We have used the following notations:

ε(v) =
1

2

(
∇v + (∇v)T

)
, σF = −pI2 + 2µF ε(v), σS = λS(∇ · u)I2 + 2µSε(u),

ρF > 0 is the mass density of the fluid (ρS > 0 the mass density of the

structure), µF is the viscosity of the fluid (µS and λS are the Lamé coefficients),

fF = (fF
1 , fF

2 ) are the applied volume forces of the fluid, in general the gravity

forces, (fS = (fS
1 , fS

2 ) the applied volume forces on the structure), hin (hout)

is the prescribed boundary stress on Σ1 (on Σ3), ω = ‖cof(∇Tu)n
S‖ �

2 , where

Tu is the mapping from Γ0 in Γt defined by: Tu(X) = X + u(X, t), cof(∇Tu)
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is the co-factor matrix of ∇Tu and nS = (nS
1 , nS

2 ) is the unit outward normal

to Γ0.

Remark 1 In the system (1)–(13), the fluid and the structure are treated

differently: on the one hand, the structure is governed by a linear elastic con-

stitutive law adapted for small deformations and, on the other hand, the fluid

equations are written in a moving domain. We are motivated by haemody-

namics applications and for instance we study numerically the blood flow in

a segment of artery of 6 cm length, 0.1 cm thickness and 1 cm diameter. In

the real life, the deformation of the artery is about 0.1 cm and a linear math-

ematical model for the structure could be sufficient. Contrary to the elastic

solids, the fluids are very sensitive to a moving boundary. This is probably

due to weak intermolecular forces and even a small deformation of a bound-

ary produces important modifications in a fluid flow. For this reason, it is

necessary to write the fluid equations in a moving domain. Coupling Navier-

Stokes equations with a linear model for the structure was used in [21], [11],

[23], [2], [26] where the structure is governed by the independent rings or lin-

ear membrane model. In applications with large deformations of the structure,

non-linear structure models have to be used as in [16], [14], [27], [10] (shells)

or in [3] (beams). In a future work, we intend to replace the linear elasticity

equations by a non-linear hyper-elastic model.

3 Weak formulation of the model

Let wF be a test function defined on ΩF
t , such that wF = 0 on Σ2. Let us

multiply the equation (1) by wF and using the Green’s formula, we get:
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∫

ΩF
t

ρF ∂v

∂t

∣∣∣∣∣
x̂

· wF +
∫

ΩF
t

ρF (((v − ϑ) · ∇)v) ·wF

+
∫

ΩF
t

2µF ε (v) : ε
(
wF

)
−
∫

ΩF
t

(
∇ · wF

)
p =

∫

ΩF
t

fF · wF

+
∫

Γt

(
σFnF

)
· wF +

∫

Σ1

hin · wF +
∫

Σ3

hout · w
F . (14)

Also, when we multiply the equation (7) by wS : ΩS −→ R
2 such that wS = 0

on ΓD, using again the Green’s formula, we obtain:

∫

ΩS

ρS ∂2u

∂t2
· wS + aS

(
u,wS

)
=
∫

ΩS

fS · wS +
∫

Γ0

(
σSnS

)
· wS, (15)

where

aS

(
u,wS

)
=
∫

ΩS

λS (∇ · u)
(
∇ · wS

)
+
∫

ΩS

2µSε (u) : ε
(
wS

)
.

If wS = wF ◦ T at the interface Γ0 and from the equation (13), we have :

∫

Γ0

(
σSnS

)
· wS +

∫

Γt

(
σFnF

)
·wF = 0. (16)

Now, if we multiply the equation (2) by q ∈ L2(ΩF
t ), taking the sum with

the precedent equations (14), (15) and referring to (16), we get the following

weak formulation of (1)-(13): find v ∈ (H1(ΩF
t ))2, v = 0 on Σ2 × [0, T ],

p ∈ L2(ΩF
t ) and u ∈ (H1(ΩS))2, u = 0 on ΓD with v(X+u(X, t), t) = ∂u

∂t
(X, t)

on Γ0 × [0, T ] solving:

∫

ΩF
t

ρF ∂v

∂t

∣∣∣∣∣
x̂

· wF +
∫

ΩF
t

ρF (((v − ϑ) · ∇)v) ·wF

+
∫

ΩF
t

2µF ε (v) : ε
(
wF

)
−
∫

ΩF
t

(
∇ · wF

)
p −

∫

ΩF
t

(∇ · v) q

+
∫

ΩS

ρS ∂2u

∂t2
· wS + aS

(
u,wS

)
=
∫

ΩF
t

fF · wF +
∫

ΩS

fS · wS

+
∫

Σ1

hin ·wF +
∫

Σ3

hout · w
F , (17)
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for any wF ∈ (H1(ΩF
t ))2; wF = 0 on Σ2 × [0, T ], wS ∈ (H1(ΩS))2; wS = 0

on ΓD with wF (X + u(X, t), t) =
∂wF

∂t
(X, t) on Γ0 × [0, T ] and for any q ∈

L2(ΩF
t ).

4 Time discretization

Let N ∈ N
∗ be the number of time steps and we denote by ∆t =

T

N
the

step time. We set tn = n∆t for n = 0, . . . , N the subdivision points of [0, T ].

We suppose that fF : [0, T ] −→ (L2(ΩF
t ))2, hin : [0, T ] −→ L2(Σ1), hout :

[0, T ] −→ L2(Σ3) and fS : [0, T ] −→ (L2(ΩS))2 are continuous maps and we

set fn = fF (n∆t), hn
in = hin(n∆t), hn

out = hout(n∆t) and gn = fS(n∆t). We

define un the approximation of u(n∆t).

For the fluid equations, we consider an implicit Euler scheme for the time

derivative and a linearization of the convection term. For the structure, we

employ a θ-centered scheme of second-order in time.

We set Ω̂F = ΩF
n and we define ϑ

n = (ϑn
1 , ϑ

n
2 )T the velocity of the fluid domain

as solution of: 



∆
x̂
ϑ

n = 0, ΩF
n

ϑ
n = 0, ∂ΩF

n r Γn

ϑ
n = vn, Γn,

(18)

where vn is the fluid velocity at time n on ΩF
n . Under the assumption that ΩF

n

is Lipschitz, we have ϑ
n ∈ (H1(ΩF

n ))2.

For all n = 0, · · · , N − 1, we denote by Atn+1 the map from Ω
F

n in R
2 defined

by:
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Atn+1(x̂1, x̂2) : Ω
F

n −→R
2

(x̂1, x̂2) 7→ (x̂1 + ∆tϑn
1 , x̂2 + ∆tϑn

2 ).

We set ΩF
n+1 = Atn+1(Ω

F
n ) and Γn+1 = Atn+1(Γn). We define the following

map: T = Atn ◦ Atn−1 · · · ◦ At1 and we may observe that Γn = T(Γ0).

The Jacobian of Atn+1 is obtained by:

1 + ∆t(∇
x̂
· ϑn) + (∆t)2

(
∂ϑn

1

∂x̂1
·
∂ϑn

2

∂x̂2
−

∂ϑn
2

∂x̂1
·
∂ϑn

1

∂x̂2

)
.

We need again to define the following test function spaces :

Ŵ F
n = {ŵF ∈ (H1(ΩF

n ))2; ŵF = 0 on Σ2}

Q̂F
n =L2(ΩF

n )

W S = {wS ∈ (H1(ΩS))2; wS = 0 on ΓD}.

We assume that we know ΩF
n , vn ∈ (L2(ΩF

n ))2, un−1,un ∈
(
L2(ΩS)

)2
.

Step 1: Find ϑ
n ∈ (H1(ΩF

n ))2 solution of the system (18)

Step 2: Find v̂n+1 ∈ Ŵ F
n , p̂n+1 ∈ Q̂F

n , un+1 ∈ W S with

v̂n+1 ◦ T =
un+1 − un−1

2∆t
, on Γ0

such that:
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ρF
∫

ΩF
n

(v̂n+1 − vn)

∆t
· ŵF + ρF

∫

ΩF
n

(((vn − ϑ
n) · ∇

x̂
)v̂n+1) · ŵF

+
ρF

2

∫

ΩF
n

δ(x̂)v̂n+1 · ŵF + 2µF
∫

ΩF
n

ε
x̂
(v̂n+1) : ε

x̂
(ŵF )

−
∫

ΩF
n

p̂n+1(∇
x̂
· ŵF ) −

∫

ΩF
n

q̂(∇
x̂
· v̂n+1)

+ρS
∫

ΩS

(
un+1 − 2un + un−1

∆t2

)
· wS

+aS(θun+1 + (1 − 2θ)un + θun−1,wS)

=
∫

ΩF
n

f̂n+1 · ŵF +
∫

ΩS

ḡn+1 ·wS +
∫

Σ1

hn+1
in · ŵF +

∫

Σ3

hn+1
out · ŵF , (19)

for any ŵF ∈ Ŵn, q̂ ∈ Q̂F
n , wS ∈ W S with wS = ŵF ◦ T on Γ0,

where

f̂n+1 = fn+1 ◦ Atn+1 et ḡn+1 = θgn+1 + (1 − 2θ)gn + θgn−1

and

δ(x̂) = ∆t
(

∂ϑn
1

∂x̂1
·
∂ϑn

2

∂x̂2
−

∂ϑn
2

∂x̂1
·
∂ϑn

1

∂x̂2

)
.

Remark 2 Let us explain why the first term of the second line in (19) was

added. First, this term contains ∆t, therefore the scheme does not lose con-

sistency after adding this term. The term containing δ(x̂) was added in order

to obtain the stability without supplementary condition on the mesh velocity.

We will see in the next section where the stability is proved that, adding the

term containing δ(x̂) allows us to obtain the exact expression of the Jacobian

of the map Atn+1 and then, the integral over ΩF
n of the terms containing the

mesh velocity can be rewritten as an integral over ΩF
n+1. In this way, the mesh

velocity will be eliminated from the a-priori estimate. In fact, the mesh velocity

is hidden in the definition of ΩF
n+1.

The system (19) can be reformulated as following :
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ρF
∫

ΩF
n

[
v̂n+1

∆t
+ ((vn − ϑ

n) · ∇
x̂
)v̂n+1 +

1

2
δ(x̂)v̂n+1

]
· ŵF

+aF (v̂n+1, ŵF ) + bF (ŵF , p̂n+1) + bF (v̂n+1, q̂)

+ρS
∫

ΩS

(
un+1 − 2un + un−1

∆t2

)
· wS

+aS(θun+1 + (1 − 2θ)un + θun−1,wS) = ρF
∫

ΩF
n

vn

∆t
· ŵF

+
∫

ΩF
n

f̂n+1 · ŵF +
∫

ΩS

ḡn+1 ·wS +
∫

Σ1

hn+1
in · ŵF +

∫

Σ3

hn+1
out · ŵF (20)

for all ŵF ∈ Ŵ F
n , wS ∈ W S with wS = ŵF ◦ T on Γ0 and q̂ ∈ Q̂F

n , where

aF (v̂, ŵF ) = 2µF
∫

ΩF
n

ε(v̂) : ε(ŵF ) and bF (ŵF , q̂) = −
∫

ΩF
n

q̂(∇ · ŵF ).

5 Stability

We denote by

Xn = θaS(un,un) + (1 − 2θ)aS(un,un−1) + θaS(un−1,un−1) (21)

and we define vn+1 to be the fluid velocity at time (n + 1) by:

vn+1(x) = v̂n+1(x̂), ∀ x ∈ ΩF
n+1, ∀ x̂ ∈ ΩF

n , with x = x̂ + ∆tϑn(x̂).

We have the following stability result:

Theorem 1 Let ΩF
n be a bounded domain of R

2. We suppose that
∫

Σ1∪Σ3

(vn · nF )|v̂n+1|2 ≥ 0. Then the following energy estimation holds:
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ρF‖vn+1‖2
L2(ΩF

n+1) + 2µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ) + ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

+Xn+1 ≤ exp(T )
[
ρF‖v1‖2

L2(ΩF
1 ) + 2µF∆t‖ε

x̂
(v̂1)‖2

L2(ΩF
0 )

+ρS

∥∥∥∥
u1 − u0

∆t

∥∥∥∥
2

L2(ΩS)
+ X1 + C

(
max
t∈[0,T ]

‖fF (t)‖2
L2(ΩF

t
)

+ max
t∈[0,T ]

‖fS(t)‖2
L2(ΩS) + max

t∈[0,T ]
‖hin(t)‖2

L2(Σ1) + max
t∈[0,T ]

‖hout(t)‖
2
L2(Σ3)

)]
,

where C > 0 is independent of ∆t.

If furthermore, θ ∈
[
1

4
,
1

2

]
, then:

‖vn+1‖L2(ΩF

n+1), ∆t‖ε
x̂
(v̂n+1)‖L2(ΩF

n ),
∥∥∥∥
un+1 − un

∆t

∥∥∥∥
L2(ΩS)

and Xn+1

are bounded.

Before starting the proof of the stability theorem, we need to show some

lemmas.

We denote by

cF (v̂n+1, ŵF ) = ρF
∫

ΩF
n

[
v̂n+1

∆t
+ ((vn − ϑ

n) · ∇
x̂
)v̂n+1 +

1

2
δ(x̂)v̂n+1

]
· ŵF .

Lemma 1 The following inequality holds

2∆tcF (v̂n+1, v̂n+1) ≥ ρF‖v̂n+1‖2
L2(ΩF

n ) + ρF‖vn+1‖2
L2(ΩF

n+1).

Proof. Let us set |v̂n+1|2 = (v̂n+1
1 )2 + (v̂n+1

2 )2, then we have:

2∆tcF (v̂n+1, v̂n+1)

= 2∆tρF
∫

ΩF
n

[
v̂n+1

∆t
+ ((vn − ϑ

n) · ∇
x̂
)v̂n+1 +

1

2
δ(x̂)v̂n+1

]
· v̂n+1

= 2ρF
∫

ΩF
n

|v̂n+1|2 + 2∆tρF
∫

ΩF
n

[
((vn − ϑ

n) · ∇
x̂
)v̂n+1

]
· v̂n+1

+ρF ∆t
∫

ΩF
n

δ(x̂)|v̂n+1|2.

13



The middle term of the previous expression can be written as

2∆tρF
∫

ΩF
n

[
((vn − ϑ

n) · ∇
x̂
)v̂n+1

]
· v̂n+1 = ρF ∆t

∫

ΩF
n

(vn − ϑ
n) · ∇

x̂
(|v̂n+1|2).

Now, when we integrate it by part we obtain :

ρF ∆t
∫

ΩF
n

(vn − ϑ
n) · ∇

x̂
(|v̂n+1|2) = −ρF ∆t

∫

ΩF
n

∇
x̂
· (vn − ϑ

n)|v̂n+1|2

+ρF ∆t
∫

∂ΩF
n

(
(vn − ϑ

n) · nF

)
|v̂n+1|2.

For the boundary term, we have ρF ∆t
∫

∂ΩF
n

(
(vn − ϑ

n) · nF

)
|v̂n+1|2 ≥ 0, in

fact it vanishes on Γn since vn = ϑ
n, it vanishes again on Σ2 since v̂n+1 = 0.

On Σ1 ∪ Σ3, we have ϑ
n = 0 and

∫

Σ1∪Σ3

(vn · nF )|v̂n+1|2 is supposed to be

positive. Using now the assumption that ∇
x̂
· vn = 0, we get

−ρF ∆t
∫

ΩF
n

∇
x̂
· (vn − ϑ

n)|v̂n+1|2 = ρF ∆t
∫

ΩF
n

(∇
x̂
· ϑn)|v̂n+1|2.

This implies that

2ρF ∆tcF (v̂n+1, v̂n+1)≥ 2ρF‖v̂n+1‖2
L2(ΩF

n )

+ρF
∫

ΩF
n

(
∆t(∇

x̂
· ϑn) + δ(x̂)∆t

)
|v̂n+1|2.

If we add and subtract ρF
∫

ΩF
n

|v̂n+1|2 in the second member of the above

inequality, we have:

2ρF ∆tcF (v̂n+1, v̂n+1)≥ ρF‖v̂n+1‖2
L2(ΩF

n )

+ρF
∫

ΩF
n

(
1 + ∆t(∇

x̂
· ϑn) + δ(x̂)∆t

)
|v̂n+1|2.

We recalled at the beginning that
(
1+∆t(∇

x̂
·ϑn)+∆tδ(x̂)

)
is the Jacobian

of Atn+1 and by changing the domain, under the assumption that vn+1 ∈

14



(L2(ΩF
n+1))

2, we have:

ρF
∫

ΩF
n

(
1 + ∆t(∇

x̂
· ϑn) + δ(x̂)∆t

)
|v̂n+1|2 = ρF

∫

ΩF
n+1

|vn+1|2.

Finally, we get:

2ρF∆tcF (v̂n+1, v̂n+1) ≥ ρF‖v̂n+1‖2
L2(ΩF

n ) + ρF‖vn+1‖2
L2(ΩF

n+1)
.

Remark 3 The following equality holds:

aF (v̂n+1, 2∆tv̂n+1) = 4µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ).

In fact, by definition of aF (·, ·) we have

aF (v̂n+1, 2∆tv̂n+1) = 4µF∆t
∫

ΩF
n

ε
x̂
(v̂n+1) : ε

x̂
(v̂n+1)

= 4µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ).

Remark 4 To compute the terms bF (·, ·) in (20), we set ŵF = 2∆tv̂n+1 and

q̂ = −2∆tp̂n+1, we get therefore :

bF (v̂n+1, q̂) + bF (ŵF , p̂n+1) = 2∆t
(
− bF (v̂n+1, p̂n+1) + bF (v̂n+1, p̂n+1)

)
= 0.

Lemma 2 The following equality holds

ρS
∫

ΩS

(
un+1 − 2un + un−1

(∆t)2

)
· (un+1 − un−1) = ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

−ρS

∥∥∥∥
un − un−1

∆t

∥∥∥∥
2

L2(ΩS)
.

Proof. Adding and substracting un to the term (un+1 − un−1), we have :

15



ρS
∫

ΩS

(
un+1 − 2un + un−1

(∆t)2

)
· (un+1 − un−1)

= ρS
∫

ΩS

(
un+1 − un − (un − un−1)

(∆t)2

)
· (un+1 − un + un − un−1).

Let us remark that the above expression can be identified as (a + b)(a − b),

thus

ρS
∫

ΩS

(
un+1 − 2un + un−1

(∆t)2

)
· (un+1 − un−1) = ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

−ρS

∥∥∥∥
un − un−1

∆t

∥∥∥∥
2

L2(ΩS)
.

Lemma 3 We have

aS(θun+1 + (1 − 2θ)un + θun−1,un+1 − un−1) = Xn+1 − Xn.

Proof. By bilinearity of the aS(·, ·), we get

aS(θun+1 + (1 − 2θ)un + θun−1,un+1 − un−1)

= aS(θun+1 + (1 − 2θ)un + θun−1,un+1)

−aS(θun+1 + (1 − 2θ)un + θun−1,un)

= θaS(un+1,un+1) + (1 − 2θ)aS(un,un+1) + θaS(un−1,un+1)

−θaS(un+1,un−1) − (1 − 2θ)aS(un,un−1) − θaS(un−1,un−1).

Since aS(·, ·) is symmetric, therefore θaS(un−1,un+1) − θaS(un+1,un−1) = 0.

Moreover when we add and we substracte the term θaS(un,un) in the above

final expression, we have:

aS(θun+1 + (1 − 2θ)un + θun−1,un+1 − un−1)

= θaS(un+1,un+1) + (1 − 2θ)aS(un+1,un) + θaS(un,un)

−θaS(un,un) − (1 − 2θ)aS(un,un−1) − θaS(un−1,un−1).
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Hence, we obtain

aS(θun+1 + (1 − 2θ)un + θun−1,un+1 − un−1) = Xn+1 − Xn.

Lemma 4 There exist two constants C2 > 0 and C ′ > 0 such that :

∫

ΩF
n

f̂n+1 · (2∆tv̂n+1) +
∫

Σ1

hn+1
in · (2∆tv̂n+1) +

∫

Σ3

hn+1
out · (2∆tv̂n+1)

≤ ∆t
(
C2‖f̂

n+1‖2
L2(ΩF

n ) + C ′‖hn+1
int ‖2

L2(Σ1) + C ′‖hn+1
out ‖

2
L2(Σ3)

)

+2µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ).

Before starting the proof of the Lemma 4, we recall two functional analysis

lemmas.

Lemma 5 (Korn lemma, see [7], page 123) Let Ω be a convex and boun-

ded open subset of R
n. We denote by V the subspace of (H1(Ω))n defined by

V =
{
v ∈ (H1(Ω))n; v

∣∣∣
Γ

= 0
}
, where Γ is a part of the boundary ∂Ω with

mes(Γ) > 0. Then, there exists a constant CΩ such that:

‖v‖2
L2(Ω) ≤ CΩ‖ε(v)‖2

L2(Ω), ∀ v ∈ V.

Lemma 6 (Trace theorem, see [24], page 10) Let Ω be a bounded open

subset of R
n, with Lipschitz continuous boundary ∂Ω. We define the trace

map by:

γ0 : H1(Ω) ∩ C(Ω)−→L2(∂Ω) ∩ C(∂Ω)

v 7→ γ0(v) = v
∣∣∣
∂Ω

This map γ0 can be extended by continuity to the linear continuous map from

H1(Ω) to L2(∂Ω), also called γ0. In particular there exists a constant Cγ0 > 0
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such that for all v ∈ H1(Ω)

‖v‖L2(∂Ω) ≤ Cγ0‖v‖H1(Ω).

Proof. (Lemme 4) First, let us set A =
∫

ΩF
n

f̂n+1 · (2∆t)v̂n+1 and by the

Cauchy-Schwarz’ inequality, we get

A ≤ 2∆t‖f̂n+1‖L2(ΩF
n )‖v̂

n+1‖L2(ΩF
n ).

We have from Lemma 5, that there exists a constant CΩF
n

> 0 (we after take

C1 = 2
√

CΩF
n
) such that:

A ≤ C1∆t‖f̂n+1‖L2(ΩF
n )‖εx̂(v̂

n+1)‖L2(ΩF
n ).

Setting

a =
C1‖f̂

n+1‖L2(ΩF
n )√

2µF
, b =

√
2µF‖ε

x̂
(v̂n+1)‖L2(ΩF

n )

and using the following Young’s inequality:

ab ≤
a2

2
+

b2

2
, ∀ a, b ≥ 0, (22)

we finally obtain that there exists a C2 =
C2

1

4µF
> 0 such that:

A≤C2∆t‖f̂n+1‖2
L2(ΩF

n ) + µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ).

Second, let us set

B =
∫

Σ1

hn+1
in · (2∆t)vn+1 +

∫

Σ3

hn+1
out · (2∆t)vn+1.

From Cauchy-Schwarz’ inequality, we have

B ≤ 2∆t
(
‖hn+1

in ‖L2(Σ1) + ‖hn+1
out ‖L2(Σ3)

)
‖γ0(v̂

n+1)‖L2(∂ΩF
n )

18



and referring to the Lemma 6, there exists a constant Cγ0 > 0 (we after take

C3 = 2Cγ0) such that

B ≤ ∆tC3

(
‖hn+1

in ‖L2(Σ1) + ‖hn+1
out ‖L2(Σ3)

)
‖v̂n+1‖H1(ΩF

n ).

We set

a = C3

√
1 + CΩF

n

2µF

(
‖hn+1

in ‖L2(Σ1) + ‖hn+1
out ‖L2(Σ3)

)

and

b =

√√√√ 2µF

1 + CΩF
n

‖vn+1‖H1(ΩF
n ).

Using (22) and Lemma 5 (‖v̂n+1‖2
H1(ΩF

n ) ≤ (1 + CΩF
n
)‖εx̂(v̂

n+1)‖2
L(ΩF

n )), we get

B ≤ C4∆t
(
‖hn+1

in ‖L2(Σ1) + ‖hn+1
out ‖L2(Σ3)

)2

+ µF ∆t‖εx̂(v̂
n+1)‖2

L(ΩF
n ).

By the inequality (a + b)2 ≤ 2(a2 + b2), there exists a constant C ′ = 2C4 such

that

B ≤ ∆tC ′

(
‖hn+1

in ‖2
L2(Σ1) + ‖hn+1

out ‖
2
L2(Σ3)

)
+ µF∆t‖εx̂(v̂

n+1)‖2
L(ΩF

n )

Finally, taking the sum of A and B we get the lemma.

Lemma 7 The following inequality holds

ρF
∫

ΩF
n

vn

∆t
· (2∆tv̂n+1) ≤ ρF‖vn‖2

L2(ΩF
n ) + ρF‖v̂n+1‖2

L2(ΩF
n ).

Proof. We have

ρF
∫

ΩF
n

vn

∆t
· (2∆tv̂n+1) = 2ρF

∫

ΩF
n

vn · v̂n+1 ≤ 2ρF‖vn‖L2(ΩF
n )‖v̂

n+1‖L2(ΩF
n ),

and from (22) (with a = ‖vn‖L2(ΩF
n ) and b = ‖v̂n+1‖L2(ΩF

n )), we obtain:

ρF
∫

ΩF
n

vn

∆t
· (2∆tv̂n+1) ≤ ρF‖vn‖2

L2(ΩF
n ) + ρF‖v̂n+1‖2

L2(ΩF
n ).
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Lemma 8 The inequality below holds

∫

ΩS

ḡn+1 · (un+1 − un−1) ≤
∆t

ρS
‖ḡn+1‖2

L2(ΩS) +
ρS∆t

2

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

+
ρS∆t

2

∥∥∥∥
un − un−1

∆t

∥∥∥∥
2

L2(ΩS)
.

Proof. Multiplying and dividing the term
∫

ΩS

ḡn+1 · (un+1 − un−1) by ∆t,

using Cauchy-Schwarz’ inequality and triangular inequality, we obtain

∆t
∫

ΩS

ḡn+1 ·
(un+1 − un−1)

∆t
≤ ∆t

√
2

ρS
‖ḡn+1‖L2(ΩS)

√
ρS

2

∥∥∥∥
un+1 − un−1

∆t

∥∥∥∥
L2(ΩS)

≤ ∆t

√
2

ρS
‖ḡn+1‖L2(ΩS)

√
ρS

2

(∥∥∥∥
un+1 − un

∆t

∥∥∥∥
L2(ΩS)

+

∥∥∥∥
un − un−1

∆t

∥∥∥∥
L2(ΩS)

)
.

From (22), we infer that

∫

ΩS

ḡn+1 · (un+1 − un−1) ≤
ρS∆t

4

(∥∥∥∥
un+1 − un

∆t

∥∥∥∥
L2(ΩS)

+

∥∥∥∥
un − un−1

∆t

∥∥∥∥
L2(ΩS)

)2

+
∆t

ρS
‖ḡn+1‖2

L2(ΩS).

Using the inequality (α + β)2 ≤ 2(α2 + β2), we finally have:

∫

ΩS

ḡn+1 · (un+1 − un−1)≤
ρS∆t

2

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

+
ρS∆t

2

∥∥∥∥
un − un−1

∆t

∥∥∥∥
2

L2(ΩS)
+

∆t

ρS
‖ḡn+1‖2

L2(ΩS).

We are going to apply the following lemma (see [24]).

Lemma 9 (Discrete Gronwall lemma) Assume that (kn)n∈ � is a non-ne-
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gative sequence and that the sequence φn satisfies :

φ0 ≤ g0 et φn ≤ g0 +
n−1∑

s=0

ps +
n−1∑

s=0

ksφs, ∀ n ≥ 1. (23)

Then φn satisfies

φ0 ≤ g0(1+k0)+p0 et φn ≤ g0

n−1∏

s=0

(1+ks)+
n−2∑

s=0

ps

n−1∏

r=s+1

(1+kr)+pn−1, ∀ n ≥ 2.

(24)

Moreover, if g0 ≥ 0 and pn ≥ 0 for n ≥ 0, it follows

φn ≤
(
g0 +

n−1∑

s=0

ps

)
exp

( n−1∑

s=0

ks

)
, n ≥ 1. (25)

Proof. (Theorem 1) : From (20), using the estimations obtained in the above

lemmas, we have:

ρF‖vn+1‖2
L2(ΩF

n+1) − ρF‖vn‖2
L2(ΩF

n ) + 2µF ∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n )

+ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)
− ρS

∥∥∥∥
un − un−1

∆t

∥∥∥∥
2

L2(ΩS)
+ Xn+1 − Xn

≤ C2∆t‖f̂n+1‖2
L2(ΩF

n ) +
∆t

ρS
‖ḡn+1‖2

L2(ΩS)

+∆tC ′

(
‖hn+1

in ‖2
L2(Σ1) + ‖hn+1

out ‖
2
L2(Σ3)

)
+ 2µF∆t‖ε

x̂
(v̂n)‖2

L2(ΩF
n−1)

+
ρS∆t

2

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)
+

ρS∆t

2

∥∥∥∥
un − un−1

∆t

∥∥∥∥
2

L2(ΩS)
.

Writing this inequality for all k = 1, . . . , n and taking the sum over k, we get
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ρF‖vn+1‖2
L2(ΩF

n+1) + 2µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ) + ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

+Xn+1 ≤ ρF‖v1‖2
L2(ΩF

1 ) + 2µF∆t‖ε
x̂
(v1)‖2

L2(ΩF
0 ) + ρS

∥∥∥∥
u1 − u0

∆t

∥∥∥∥
2

L2(ΩS)

+X1 + C2∆t
n∑

k=1

‖f̂k+1‖2
L2(ΩF

k
) +

n∑

k=1

∆t

ρS
‖ḡk+1‖2

L2(ΩS)

+∆tC ′

( n∑

k=1

‖hk+1
in ‖2

L2(Σ1) +
n∑

k=1

‖hk+1
out ‖

2
L2(Σ3)

)
+

ρS∆t

2

∥∥∥∥
u1 − u0

∆t

∥∥∥∥
2

L2(ΩS)

+
n−1∑

k=1

ρS∆t

∥∥∥∥
uk+1 − uk

∆t

∥∥∥∥
2

L2(ΩS)
+

ρS∆t

2

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)
. (26)

On the other hand, we have:

C2∆t
n∑

k=1

‖f̂k+1‖2
L2(ΩF

k
) +

n∑

k=1

∆t

ρS
‖ḡk+1‖2

L2(ΩS)

+∆tC ′

( n∑

k=1

‖ĥk+1
in ‖2

L2(Σ1) +
n∑

k=1

‖ĥk+1
out ‖

2
L2(Σ3)

)

≤ ∆t
(
nC2 max

t∈[0,T ]
‖fF (t)‖2

L2(ΩF
t

) +
n

ρS
max
t∈[0,T ]

‖fS(t)‖2
L2(ΩS)

+nC ′ max
t∈[0,T ]

‖hin(t)‖2
L2(Σ1) + nC ′ max

t∈[0,T ]
‖hout(t)‖

2
L2(Σ3)

)

and by using that n∆t < T , we get

C2∆t
n∑

k=1

‖f̂k+1‖2
L2(ΩF

k
) +

n∑

k=1

∆t

ρS
‖ḡk+1‖2

L2(ΩS)

+∆tC ′

( n∑

k=1

‖hk+1
in ‖2

L2(Σ1) +
n∑

k=1

‖hk+1
out ‖

2
L2(Σ3)

)

≤ T
(
C2 max

t∈[0,T ]
‖fF (t)‖2

L2(ΩF
t

) +
1

ρS
max
t∈[0,T ]

‖fS(t)‖2
L2(ΩS)

+C ′ max
t∈[0,T ]

‖hin(t)‖2
L2(Σ1) + C ′ max

t∈[0,T ]
‖hout(t)‖

2
L2(Σ3)

)
.

In this way, we have obtained an upper bound of the terms depending on fF ,

fS, hin, hout which appear in the right-hand side of (26).

Let us set
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φn = ρF‖vn+1‖2
L2(ΩF

n+1) + 2µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n )

+ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)
+ Xn+1,

we get that the sum of the last three terms in (26) is dominated by:

ρS∆t

2

∥∥∥∥
u1 − u0

∆t

∥∥∥∥
2

L2(ΩS)
+

n−1∑

k=1

ρS∆t
∥∥∥∥
uk+1 − uk

∆t

∥∥∥∥
2

L2(ΩS)

+
ρS∆t

2

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)
≤

n∑

k=0

ρS∆t

∥∥∥∥
uk+1 − uk

∆t

∥∥∥∥
2

L2(ΩS)

≤ ∆t(φ0 + · · · + φn).

We set also:

g0 = ρF‖v1‖2
L2(ΩF

1 ) + 2µF∆t‖ε
x̂
(v̂1)‖2

L2(ΩF

0 ) +
ρS

2

∥∥∥∥
u1 − u0

∆t

∥∥∥∥
2

L2(ΩS)
+ X1

+T
(
C2 max

t∈[0,T ]
‖fF‖2

L2(ΩF
t

) +
1

ρS
max
t∈[0,T ]

‖fS‖2
L2(ΩS)

+C ′ max
t∈[0,T ]

‖hin‖
2
L2(Σ1) + C ′ max

t∈[0,T ]
‖hout‖

2
L2(Σ3)

)
,

then φ0 ≤ g0 and let us take ps = 0, ks = ∆t. So the Gronwall lemma as-

sumptions are satisfied, thus we may apply it now with sum from 0 to n, we

get:

ρF‖vn+1‖2
L2(ΩF

n+1) + 2µF∆t‖ε
x̂
(v̂n+1)‖2

L2(ΩF
n ) + ρS

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)

+Xn+1 ≤
[
ρF‖v1‖2

L2(ΩF
1 ) + 2µF∆t‖ε(v̂1)‖2

L2(ΩF
0 ) + ρS

∥∥∥∥
u1 − u0

∆t

∥∥∥∥
2

L2(ΩS)

+X1 + T
(
C2 max

t∈[0,T ]
‖fF (t)‖2

L2(ΩF
t

) +
1

ρS
max
t∈[0,T ]

‖fS(t)‖2
L2(ΩS)

+C ′ max
t∈[0,T ]

‖hin(t)‖2
L2(Σ1) + C ′ max

t∈[0,T ]
‖hout(t)‖

2
L2(Σ3)

)]
exp(T ), (27)

since
n∑

s=0

ks = (n + 1)∆t ≤ T.

We obtain the expected inequality by setting C = T max(C2, C
′,

1

ρS
). Further-
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more, we can remark that

Xn+1 =
(

4θ − 1

2

)[
as(u

n+1,un+1) + aS(un,un)
]

+
(

1 − 2θ

2

)
aS(un+1 + un,un+1 + un),

If θ ∈
[
1

4
,
1

2

]
, then Xn ≥ 0 for any n. Which implies from (27) that

ρF‖vn+1‖2
L2(ΩF

n+1), 2µF∆t‖ε(v̂n+1), ‖2
L2(ΩF

n ),
ρS

2

∥∥∥∥
un+1 − un

∆t

∥∥∥∥
2

L2(ΩS)
, and Xn+1

are bounded.

6 Algorithm implementation

The monolithic linear system (20) can be solved by finite element method and

the continuity of the velocity at the interface must be satisfied as an essential

boundary condition. The fluid test functions must coincide with the structure

test functions at the interface, implying some constraints for triangulation of

the fluid and structure domains as well as in the choice of the finite elements.

In [20], a related problem has been solved, using the Augmented Lagrangian

Method where the continuity of the velocity was treated by a Lagrange multi-

plier. The numerical results presented in [20] show that the continuity of the

velocity is not very well respected since the error in the L2 norm between the

fluid and structure velocity at the interface is 0.45.

The method that we use here to solve the coupled problem is based on par-

titioned procedure (the fluid and structure equations are solved separately),

which is very often used to solve fluid-structure interaction problem. At each
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time step, an optimization problem in the form

inf
α∈

�
m

J(α)

has to be solved, where
∑m

i=1 αiφi is an approximation of the stress at the

fluid-structure interface. The shape functions φi, i = 1, . . . , m defined at the

interface are orthonormal with respect to the scalar product in L2. This tech-

nique was successfully employed in [19], [17], where implicit algorithms are

presented. We will use the same least square method based on the Broyden,

Fletcher, Goldford, Shano (BFGS) method in order to identify the stress at

the interface.

We present below the implicit algorithm. More details can be found in [19].

Implicit algorithm

Step 1 Solve by BFGS the optimization problem

αn+1 ∈ arg min
α∈

�
m

J(α),

where the cost function is computed as follows:

• Let
∑m

i=1 αiφi be a guess of the stress at the fluid-structure interface.

• Solve the structure problem under the load
∑m

i=1 αiφi at the interface to get

the displacement u.

• Build a fluid mesh T depending on the displacement u.

• Solve the fluid problem on the mesh T under prescribed velocity at the

fluid-structure interface in order to get the fluid velocity v and pressure p.

• Compute βi = −
∫
Γ0

(
σF (v, p)nF

)
· φi(X) ω(X, t) for i = 1, . . . , m.

• Set the cost function

J(α) =
1

2
‖α − β‖2�

m
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Step 2 Save the mesh T n+1, the structure displacement un+1, the fluid ve-

locity vn+1, the fluid pressure pn+1 obtained at the last iteration of the BFGS

algorithm at Step 1.

Remark 5 We emphasize that in the implicit strategy, the fluid mesh changes

at each call of the cost function during the minimization process.

Semi-implicit algorithm

Step 1 Compute the mesh velocity ϑ
n from (18).

Step 2 Assembling the finite element matrix of fluid problem (14) using the

mesh T n obtained at the previous time step. Get a LU factorization of the

matrix.

Step 3 Solve by BFGS the optimization problem using the fluid frozen mesh

T n

αn+1 ∈ arg min
α∈

�
m

J(α),

where the cost function is computed as follows:

• Let
∑m

i=1 αiφi be a guess of the stress at the fluid-structure interface.

• Solve the structure problem under the load
∑m

i=1 αiφi at the interface to get

the displacement u.

• Solve the fluid problem on the mesh T n under prescribed velocity at the

fluid-structure interface in order to get the fluid velocity v and pressure p.

• Compute βi = −
∫
Γ0

(
σF (v, p)nF

)
· φi(X) ω(X, t) for i = 1, . . . , m.

• Set the cost function

J(α) =
1

2
‖α − β‖2�

m

Step 4 Build mesh T n+1, as the image of T n by the map x̂ 7→ x̂ + ∆tϑn(x̂)
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and save the mesh T n+1, the fluid velocity vn+1(x) = v̂n+1(x̂), etc.

Remark 6 Contrary to the implicit strategy, the semi-implicit one use a fixed

fluid mesh during the iterative method for solving the optimization problem,

which reduces considerably the computational time.

The BFGS is a gradient like algorithm for solving unconstrained optimization

problems. We approximate the gradient of the cost function by a first order

finite difference scheme which requires m + 1 evaluations of the cost func-

tion. We recall that m is the number of the shape functions used to compute

the stress at the fluid-structure interface. Therefore, it is important to work

with small values of m. The shape functions φi are not necessary compatible

with the structure or fluid finite element functions. Possible choices for φi are

polynomial functions [18], finite element like functions, eigenfunctions asso-

ciated to the structure equations [19], [17]. In the case where the φi are not

orthonormal for the scalar product of L2 at the interface, the cost function

has the form

J(α) =
1

2

∫

Γ0

(
m∑

i=1

αiφi(X) − σF (v, p)nF ω(X, t)

)2

dX.

In this paper, we have chosen φi as the eigenfunctions associated to the struc-

ture equations. Since the eigenfunctions are orthonormal, the cost function

has the form

J(α) =
1

2
‖α − β‖2�

m

where βi = −
∫
Γ0

(
σF (v, p)nF

)
· φi(X) ω(X, t) dX.

In this paper, for convenience, the structure problem (15) is solved numeri-

cally by modal decomposition. We set u(X, t) =
∑

i≥1

qi(t)φi(X). The structure
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problem is: find qn+1
i such that

qn+1
i − 2qn

i + qn−1
i

(∆t)2
+λi(θq

n+1
i +(1−2θ)qn

i +θqn−1
i ) = θαn+1

i +(1−2θ)αn
i +θαn−1

i ,

where λi is the eigenvalue associated to the eigenfunction φi and αn+1
i =

αi(tn+1) =
∫
Γ0

(σSnS)φi(X) dX. We have assumed that fS = (0, 0). The modal

decomposition is efficient only in the context of linear model for the structure.

For a non-linear model, the structure problem could be solved by an appro-

priate finite element method, independent of choice of the shape functions

used to approach the stress at the fluid-structure interface. We will study this

aspect in a future work.

7 Numerical results

7.1 Flow in a flexible straight tube

Physical parameters

We consider the following data for the computation: the length of the fluid

domain is L= 6 cm and its height is H = 1 cm. The viscosity of the fluid

was fixed to be µ = 0.035 g
cm·s

, its density ρF = 1 g
cm3 and the volume force

in fluid is fF = (0, 0)T . The prescribed boundary stress at the outflow is

hout(x, t) = (0, 0) and at the inflow is

hin(x, t) =





(103(1 − cos(2πt/0.025)), 0), x ∈ Σ1, 0 ≤ t ≤ 0.025

(0, 0), x ∈ Σ1, 0.025 ≤ t ≤ T.

The thickness of the elastic wall is hS = 0.1 cm, the Young modulus E =
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3 · 106 g
cm·s2 , the Poisson ratio ν = 0.3, the mass density ρS = 1.1 g

cm3 and

the volume force is fS = (0, 0)T . The Lamé’s coefficients are computed by the

formulas:

λS =
νSE

(1 − 2νS)
(1 + νS), µS =

E

2(1 + νS)
.

The structure is supposed to be fixed at the left and at the right sides.

Numerical parameters

The numerical tests have been performed using FreeFem++ (see [15]). We

have used for the structure a reference mesh of 60 triangles and 62 vertices

and for the fluid a reference mesh of 1250 triangles and 696 vertices. The

meshes are not necessary compatible at the interface (see Figure 4). For the

approximation of the fluid velocity and pressure, we have employed the tri-

angular finite element P1 + bubble and P1 respectively. The finite element P1

was used in order to solve the eigenproblem of the structure. Only the first

m = 3 modes have been considered. The first eigenvalues are λ1,h = 7018.91,

λ2,h = 50500 and λ3,h = 193418. The real parameter in the θ-centered scheme

was chosen to be θ = 0.3.

Stopping criteria

At each time step, the optimization problem have been solved by the BFGS

algorithm. We have used the FreeFem++ implementation of the BFGS algo-

rithm which use the stopping criteria: ‖∇J‖ ≤ ε or the number of iterations

reaches a maximal value nbiter. We have performed the computation with

ε = 10−4 and nbiter = 10. We set to 5 maximal number of the iterations for

the time search. The final values of the cost function are less than 6.10−12. In

other words, the continuity of the velocity at the interface holds at every time
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step, while the error between the fluid and structure stress at the interface is

less than 6.10−12. This implies that ‖∆qn+1
i ‖ is less than 10−13.

Behavior of the computed solution

We have performed the simulation for a time duration T = 0.1 s, with time

step ∆t = 0.001 and number of iterations in time N = 100. We have compared

the vertical displacements of three points at the interface between the semi-

implicit and the implicit algorithm. Figure 2 shows that the solution computed

by the semi-implicit algorithm is similar to the one obtained by the implicit

algorithm.

We have proved that the time stability of the algorithm does not depend on

the time step. The vertical displacements of three points at the interface for

time steps ∆t = 0.001 s, ∆t = 0.0005 s and ∆t = 0.0025 s are presented in

Figure 3. We observe that the vertical displacements are less than 0.3 cm. For

∆t = 0.001 s, the fluid pressure and velocity at different time instants are

plotted in Figures 5 and 6.

CPU time

Here, we will compare the CPU time obtained using the semi-implicit time

strategy algorithm proposed in this paper with the CPU time obtained by

the implicit time advancing algorithm. The computation has been made on

a computer with one processor of 1.66 GHz frequency and 2 Gb RAM. To

compare the computational time between implicit and semi-implicit strate-

gies is mandatory to use the same algorithm for solving the fluid-structure

coupled problem at every time step. We emphasize that in the case of implicit
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strategy the coupled fluid-structure problem is non-linear due to the moving

domain, contrary to the semi-implicit strategy, where the coupled problem

(20) is linear.

We denote by m the number of eigenfunctions in the modal decomposition of

the structure problem and h the mesh seize, nv the number of vertices, nt the

number of triangles of the fluid domain.

(1) The CPU time in function of m, when the time step is ∆t = 0.001s, the

number of steps is N = 100, the mesh parameters of fluid are nv = 696

and nt = 1250 triangles:

m CPU-semi-implicit CPU-implicit CPU−implicit

CPU−semi

3 8 m 30 s 92 m 30 s 11.12

7 21 m 44 s 227 m 53 s 10.62

10 29 m 54 s 304 m 22 s 10.30

(2) The CPU time in function of fluid mesh size, when ∆t = 0.001, N = 100

and m = 3:

nv nt h CPU-semi-implicit CPU-implicit CPU−implicit
CPU−semi

696 1250 0.16 8 m 30 s 92 m 30 s 11.12

1632 3052 0.11 19m 48 s 226 m 42 s 11.62

2664 5046 0.08 33 m 50 s 415 m 23 s 12.39

(3) The CPU time in function of ∆t, when m = 3, nv = 696 and nt = 1250:
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∆t N CPU-semi-implicit CPU-implicit CPU−implicit

CPU−semi

0.0005 200 14 m 48 s 187 m 47 s 12.95

0.0010 100 8 m 30 s 92 m 30 s 11.12

0.0025 40 3 m 27 s 36 m 24 s 11.08

The mean number of cost function calls by time step

At each time step, the BFGS performs on average 5.47 iterations in the semi-

implicit case and 6.93 iterations in the implicit case. At each BFGS iteration,

2.68 evaluations of the cost function are necessary on average for the line search

in the semi-implicit case and 2.60 iterations in the implicit case. One call of

the gradient is necessary at each BFGS iteration for the both semi-implicit

and implicit strategies. We compute the gradient ∇J(α) by finite difference

scheme:

∂J

∂αk

(α) =
J(α + ∆αkek) − J(α)

∆αk

where ek is the k-th vector of the canonical base of R
m and ∆αk = 10−6 is

the grid spacing. Thus, m + 1 = 4 calls of the cost function are needed to

compute the gradient. To sum up, at each time step, the BFGS performs in

average 36.59 evaluations of the cost function in the semi-implicit case and

45.80 iterations in the implicit case. We recall that, contrary to the implicit

strategy, the semi-implicit one uses a fixed fluid mesh for all calls of the cost

function at a time instant, which explains the reduction of the computational

time.
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7.2 Flow in a flexible curved tube

Geometry

The bottom of the fluid domain is Σ2 the horizontal [−1, 7]× {0}. The inflow

Σ1 = {−1}×[0, 1] and outflow Σ3 = {7}×[0, 1] sections are vertical segments of

length 1 cm. The top boundary Γ0 of the undeformed fluid domain is composed

by three curves: at the left

{
x1 = ξ, x2 = 0.1ξ3 + 0.4ξ2 + 0.5ξ + 1, ξ ∈ [−1, 0]

}

in the middle

{
(x1, x2) ∈ R

2; x1 = ξ, x2 = −5 +
√

45 − (ξ − 3)2, ξ ∈ [0, L]
}

where L = 6 and at the right

{
x1 = ξ, x2 = −0.1ξ3 + 2.2ξ2 − 16.1ξ + 40, ξ ∈ [6, 7]

}
.

As in the previous test, the top boundary is flexible. The initial geometrical

configuration is presented in Figure 7.

Physical and numerical parameters

The thickness of the elastic wall is hS = 0.1 cm and the left and the right

sides are fixed. We have used for the structure a reference mesh of 80 triangles

and 82 vertices and for the fluid a reference mesh of 1216 triangles and 672

vertices. The meshes are not necessary compatible at the interface.

We have performed the simulation using the time step ∆t = 0.001 and N =

120 time increments. The others physical and numerical parameters are the

same as in the previous test.
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The fluid velocity computed by the semi-implicit algorithm at different time

instants is plotted in Figures 8. The vertical displacement of three points at

the interface of horizontal coordinates x1 = 1.5, x1 = 3, x1 = 4.5, respectively,

are presented in Figure 9. We recall that the left and right sides of the fluid

domain are vertical segments of horizontal coordinates x1 = −1 and x1 = 7,

respectively. We observe that the vertical displacements are less than 0.2 cm.

CPU time for small time step

In addition, we have performed the simulation for a small time step ∆t = 10−6.

In this case, the BFGS algorithm finds the solution after 2.68 iterations in

average, while for a medium time step ∆t = 10−3 the mean number of BFGS

iterations was 5.47. The above results have been obtained using the semi-

implicit strategy. The mean number of cost function calls at a time instant is

17.74 for ∆t = 10−6, while for ∆t = 10−3, the number of cost function calls

was 36.59. When the time step is small, the starting point for the optimization

problem is close to the solution, which explains the reduction of the cost

function calls. The CPU time for N = 50 time iterations and ∆t = 10−6 is

152s when the semi-implicit strategy is used and 689s in the implicit case. The

reduction factor of CPU time is 4.53.

Future works

We intend to apply the semi-implicit algorithm presented in this paper to re-

alistic applications in haemodynamics and actually we are looking for a three-

dimensional computational environment. The partitioned procedures tech-

nique employed to solve the coupled fluid-structure problem allowss us to
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employ existing solvers for each sub-problem. We need a structure solver, a

solver for Navier-Stokes equations in moving domains and an optimization

module. Let us remark that, once the fluid domain is computed by extrapola-

tion, then the structure and the fluid sub-problems could be solved in parallel.

We intent to replace the linear model for the structure by a non-linear one

which handles large displacements.

Conclusions

A semi-implicit time advancing scheme for transient fluid-structure interaction

problem was presented. For the fluid equations, we consider an implicit Euler

scheme for the time derivative and the convection term was linearized. For

the structure, we employ a θ-centered scheme of second-order in time. At

every time step, a least squares problem is solved by partitioned procedures,

such that the continuity of the velocity as well as the continuity of the stress

hold at the interface. During the iterative method for solving the optimization

problem, the fluid mesh does not move, which reduces the computational

effort. The unconditional stability of the algorithm was proved. The numerical

results presented in this paper show that the computed solution is similar to

the one obtained by the implicit algorithm, but the computational time is

reduced.
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Fig. 3. Vertical displacement when ∆t = 0.001s, ∆t = 0.0005s, ∆t = 0.0025s of

three points at the interface of horizontal coordinates x1 = L
4 (top, left), x1 = L

2

(top, right), x1 = 3L
4 (bottom).
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Fig. 4. Fluid and structure meshes at time instant t = 0.015 (top), t = 0.025

(middle), t = 0.035 (bottom)
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Fig. 5. Fluid pressure [ dynes
cm2 ] at time instant t = 0.015 (top), t = 0.025 (middle),

t = 0.035 (bottom)
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Fig. 6. Fluid velocity [cm/s] at time instant t = 0.015 (top), t = 0.025 (middle),

t = 0.035 (bottom)
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Fig. 7. Initial fluid and structure meshes
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Fig. 8. Fluid velocity [cm/s] at time instant t = 0.030 (top), t = 0.060 (middle),

t = 0.090 (bottom)
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Fig. 9. Vertical displacement of three points at the interface of horizontal coordinates

x1 = 1.5, x1 = 3, x1 = 4.5. The left and right sides of the fluid domain have

horizontal coordinates x1 = −1 and x1 = 7.
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