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Abstract

We consider a simply supported plate with constant thickness, defined on an unknown multiply connected
domain. We optimize its shape according to some given performance functional. Our method is of fixed
domain type, easy to be implemented, based on a fictitious domain approach and the control variational
method. The algorithm that we introduce is of gradient type and performs simultaneous topological and
boundary variations. Numerical experiments are also included and show its efficiency.
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1. Introduction

Shape optimization or optimal design is now a well established branch of the calculus of variations. It is
a development of the optimal control theory with the minimization parameter being just the domain where
the problem is defined. Basic references in this respect are Pironneau [16], Sokolowski, Zolesio [19], Delfour,
Zolesio [4], Neittaanmäki, Sprekels, Tiba [14], etc.

It is to be noted that the literature on shape optimization problems, including unknown or variable
domains, is mainly devoted to second order elliptic equations. Concerning fourth order boundary value
problems, for instance plate models, there are papers Kawohl, Lang [8], Muñoz, Pedregal [11], Sprekels,
Tiba [20], Arnautu, Langmach, Sprekels, Tiba[1] studying thickness optimization problems that may be
reduced to optimal control problems by the coefficients. In Neittaanmäki, Sprekels, Tiba [14], Ch. VI,
shape optimization problems for shells and curved rods, with constant thickness, are also studied. Since
their parametric representation of the geometric form enters into the coefficients of the model, the shape
optimization problems are again formulated as optimal control problems by the coefficients.

It is the aim of this work to extend the study of the optimization and the approximation for vari-
able/unknown domain problems, from the case of second order elliptic operators, to fourth order operators.
The unknowns to be found are the position, the shape, the size, the number of the holes defining the opti-
mal plate and the given thickness is assumed constant. The main tools that we use is the fictitious domain
approach Neittaanmäki, Pennanen, Tiba [13], Neittaanmäki, Tiba [15], Halanay, Murea, Tiba [6], Murea,
Tiba [12] and the control variational method, Barboteu, Sofonea, Tiba [2], Sofonea, Tiba [18], Neittaanmäki,
Sprekels, Tiba [14] and their references.

The plan of the work is as follows. In the next section we discuss the plate model that we take into
account and its approximation via the fictitious domain method, under weak regularity assumptions on
the geometry. This is important from the point of view of the associated shape optimization problems
since it ensures a large class of admissible domains. Section 3 is devoted to the analysis of such optimal
design problems, including their gradient and a general gradient-type algorithm, for their solution. In
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the last section, numerical examples are investigated that show the capacity of our approach to generate
simultaneous topological and boundary variations, in the geometric optimization process. Our results are
discussed in R

2 since this is the natural setting for plates, but extensions to higher dimension are possible.

2. The model and its approximation

Let Ω ⊂ R
2 be a bounded, smooth (multiply) connected open subset representing the shape of a plate

of constant thickness (normalized to one). We consider the fourth order partial differential equation

∆∆y = f in Ω, (2.1)

y = 0, ∆y = 0 on ∂Ω, (2.2)

where f ∈ L2(Ω) is the load and y ∈ H4(Ω) ∩H1
0 (Ω) is the vertical deflection of the plate. The existence,

the regularity and the uniqueness of the strong solution of (2.1)-(2.2) is well known, under C1,1 conditions
for ∂Ω, [5].

The difficulty in the numerical solution of (2.1)-(2.2) is that the shape of Ω may be very complicated,
if multiply connected, and the standard Finite Element Method (FEM) may be difficult to implement.
Moreover, in the corresponding shape optimization problems, the geometry may change in each iteration in
a complex way (simultaneous topological and boundary variations) and this is very costly to be handled by
usual discretization methods.

We consider now another simply connected smooth bounded domain D ⊂ R
2 such that Ω ⊂ D and define

the following approximation of (2.1)-(2.2), in a sense to be made precise in the subsequent Proposition 2.1.

−∆yǫ +
1

ǫ
(1−HΩ)yǫ = zǫ in D, (2.3)

yǫ = 0 on ∂D,

−∆zǫ +
1

ǫ
(1−HΩ)zǫ = f in D, (2.4)

zǫ = 0 on ∂D,

where HΩ is the characteristic function of Ω in D. For the boundary value problems (2.3)-(2.4) we get in
the standard way that the strong solutions satisfy yǫ, zǫ ∈ H2(D) ∩H1

0 (D) if D is in C1,1. Notice that the
systems (2.3)-(2.4) arise from the application of both the control variational method and fictitious method,
as mentioned in Section 1.

We relax now the regularity assumptions on the domain Ω and we suppose that it is of class C (the
segment property, see [14], [21] ). In the boundary value problems (2.1)-(2.2) and (2.3)-(2.4) we shall work
with weak solutions y ∈ H2(Ω) ∩H1

0 (Ω) and, respectively, yǫ, zǫ ∈ H1
0 (D).

Proposition 2.1. If Ω is of class C, then yǫ|Ω → y weakly in H1
0 (Ω) and strongly in L2(Ω), where y ∈

H2(Ω) ∩H1
0 (Ω) satisfies (2.1)-(2.2) as a weak solution.

Proof. Multiply (2.4) by zǫ and integrate by parts:
∫

D

|∇zǫ|
2dx+

1

ǫ

∫

D

(1−HΩ)z
2
ǫ dx ≤

∫

D

f zǫ dx. (2.5)

The Poincaré inequality and (2.5) gives {zǫ} bounded in H1
0 (D) and zǫ → z̃ strongly in L2(D) and weakly

in H1
0 (D), on a subsequence. Moreover

∫

D

(1−HΩ)z
2
ǫdx →

∫

D\Ω

z̃2dx = 0 (2.6)

due to (2.5) since {zǫ} is bounded in Lp(D), p ≥ 1 in dimension two and we also have zǫ → z̃ a.e. in D.
One can use Lions’ lemma [9] to infer (2.6). By the Hedberg-Keldys stability property for domains of class
C (see [14]) we obtain that z̃ ∈ H1

0 (Ω).
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The above arguments can be applied to (2.3) as well and we have yǫ → ỹ strongly in L2(D) and weakly
in H1

0 (D) and ỹ|Ω ∈ H1
0 (Ω). Take any test function ϕ ∈ C∞

0 (Ω) and multiply (2.3), respectively (2.4). Since
the supports are disjoint, the penalization terms in (2.3), (2.4) disappear and we get that yǫ satisfies (2.1)
in the distribution sense. The boundary condition (2.2) are also satisfied due to the previous remarks. Since
the limits ỹ, z̃ are unique, the convergence is in fact valid without taking subsequence. ✷

Consider now Hǫ : D → R to be a C1 regularization of the characteristic function HΩ and Hǫ → HΩ

strongly in Lp(Ω), p ≥ 1. Examples of this type will be indicated in the next section.

Corollary 2.1. If in (2.3), (2.4) we replace HΩ by Hǫ, the other notations being preserved, then the con-
clusion of Proposition 2.1 remains valid.

3. Shape optimization problems and their gradient

We associate to (2.1), (2.2) the following minimization problem

min
Ω∈O

∫

Λ

J (x, y(x)) dx, (3.1)

where O is the class of admissible domains to be defined below, y ∈ H1
0 (Ω) is the weak solution of (2.1),

(2.2), Λ may be Ω or ∂Ω or some part of Ω or ∂Ω and J is the performance index of Carathéodory type
(measurable in x and continuous in y). More hypotheses or constraints will be imposed as necessity appears.
The problem (3.1), (2.1), (2.2) has a similar form with optimal control problems, however the optimization
parameter here is the geometry, the domain Ω itself.

The family O should be “large” in order to perform the optimization in (3.1) on a consistent admissible
class. We avoid regularity hypotheses on the geometry (that are frequently used in shape optimization, see
[3], [16], [19]) and we have just assumed that any Ω ∈ O is an open set of class C, contained in some given
bounded domain D ⊂ R

2:
Ω ⊂ D, ∀Ω ∈ O. (3.2)

On may add the constraint
E ⊂ Ω, ∀Ω ∈ O (3.3)

where E ⊂⊂ D is some given not empty subset of R2.
Let X(D) denote a subset of C(D). For instance, X(D) may be a finite element space defined in D.

Following [13], [15], with any g ∈ X(D), that we call a parametrization of the geometry, we associate the
open set

Ωg = int {x ∈ D; g(x) ≥ 0} . (3.4)

In the absence of regularity assumptions and due to the possible presence of critical points of g, it is possible
that g has level set {x ∈ D; g(x) = k} of positive measure. This is the reason for the form of the definition
(3.4). This is, in principle, different from the set of points where g(x) > 0. Notice that Ωg is a Carathéodory
open set, i.e. cracks or cuts are not allowed. However, high oscillations of the boundary are possible (and
the segment property may not be always valid and has to be imposed separately). In general, Ωg may have
many connected components, that may be multiply connected. If constraint (3.3) is imposed, then X(D)
should include the condition:

g(x) ≥ 0 in E. (3.5)

If H : R → R denotes the maximal monotone extension of the Heaviside function (see [13], [10]) then
H(g) is the characteristic function of Ωg. The regularization Hǫ = Hǫ(g), from Corollary 2.1, can be simply
obtained by a regularization of the Heaviside function. In [15], the following formula is used

Hǫ(r) =

{
1− 1

2e
− r

ǫ , r ≥ 0,
1
2e

r
ǫ , r < 0

(3.6)
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but other choices are possible.
Taking into account the approximation results from the previous section, we approximate the minimiza-

tion problem (3.1), (2.1), (2.2) by (3.1), (2.3), (2.4) where HΩ is replaced by Hǫ(g). The cost functional
(3.1), depending on the form of Λ, may be approximated in the form

∫

E

J (x, yǫ(x)) dx, if Λ = E, (3.7)

∫

D

Hǫ(g)J (x, yǫ(x)) dx, if Λ = Ω. (3.8)

The case Λ = ∂Ω imposes more regularity assumptions on the geometry in order to ensure the application
of trace theorems and it has been recently discussed in Tiba [22] for second order operators. We limit our
investigations here to (3.7), (3.8). The approximation of the state equation and of the cost functionals
ensures that all the computations are to be performed in the fixed domains E or D. The geometry Ω is
hidden under this approach in the mapping g ∈ X(D). Consequently, the approximating shape optimization
problems are in fact optimal control problems with the control g acting in the coefficients of the lowest order
term in the differential operator. Notice as well the smooth dependence of yǫ on g when Hǫ is used instead
of H . This is analyzed in the next result and is fundamental for the application of the gradient methods in
the solution of the optimization problem (3.1), (2.1), (2.2).

Proposition 3.1. The mappings g → yǫ = yǫ(g), g → zǫ = zǫ(g) defined by (2.3), (2.4) with HΩ replaced
by Hǫ(g) are Gâteaux differentiable between C(D) and H1

0 (Ω) and w = ∇yǫ(g)v, u = ∇zǫ(g)v for any v in
C(D) satisfy the following system in variations:

−∆u+
1

ǫ
(1−Hǫ(g))u =

1

ǫ
(Hǫ)′(g)zǫv,

−∆w +
1

ǫ
(1 −Hǫ(g))w = u+

1

ǫ
(Hǫ)′(g)yǫv,

with u,w ∈ H1
0 (Ω).

Proof. We denote by yλǫ = yǫ(g+λv), zλǫ = zǫ(g+λv), λ ∈ R. Substrating the corresponding regularized
equations and dividing by λ 6= 0, we get

−∆
zλǫ − zǫ

λ
+

1

ǫ
(1 −Hǫ(g + λv))

zλǫ − zǫ

λ
=

1

ǫ

Hǫ(g + λv) −Hǫ(g)

λ
zǫ, (3.9)

−∆
yλǫ − yǫ

λ
+

1

ǫ
(1−Hǫ(g + λv))

yλǫ − yǫ

λ
=

zλǫ − zǫ

λ

+
1

ǫ

Hǫ(g + λv)−Hǫ(g)

λ
yǫ, (3.10)

will null boundary conditions on ∂D for yǫ, zǫ, y
λ
ǫ , z

λ
ǫ . Here ǫ > 0 is fixed and λ ∈ R is the varying parameter

(λ → 0).

We multiply (3.9) by
zλ
ǫ −zǫ
λ

and, after some computations, we get

∫

D

∣∣∣∣∇
zλǫ − zǫ

λ

∣∣∣∣
2

dx+
1

ǫ

∫

D

(1−Hǫ(g + λv))

∣∣∣∣
zλǫ − zǫ

λ

∣∣∣∣
2

dx

=
1

ǫ

∫

D

Hǫ(g + λv)−Hǫ(g)

λ
zǫ
zλǫ − zǫ

λ
dx. (3.11)

Since Hǫ is of class C1, we have Hǫ(g+λv)−Hǫ(g)
λ

→ (Hǫ)′(g)v a.e. in D and it is bounded in L∞(D)

with respect to λ ∈ R. We get from (3.11) that
{

zλ
ǫ −zǫ
λ

}
is bounded in H1

0 (D). On a subsequence, we have

zλ
ǫ −zǫ
λ

→ u ∈ H1
0 (D), weakly in H1

0 (D) and strongly in L2(D).
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A similar argument, using the boundedness of
{

zλ
ǫ −zǫ
λ

}
applied to (3.10), gives that

{
yλ
ǫ −yǫ

λ

}
is bounded

inH1
0 (D) and converges weakly inH1

0 (D) and strongly in L2(D), to some limit w ∈ H1
0 (D), on a subsequence.

Passing to the limit in (3.9), (3.10) on a common subsequence, we get the equations from the proposition,
satisfied by u,w ∈ H1

0 (D).
We notice that the equations for u, w have a unique solution and this shows that the above convergences

are valid without taking subsequences. We conclude the Gâteaux differentiability of the maps yǫ(g), zǫ(g)
and the proof is finished. ✷

We introduce now the so called adjoint system. To do this, we shall consider two cases of the cost
functionals:

1

2

∫

E

(yǫ − yd)
2dx, (3.12)

which is a special case of (3.7) with some given yd ∈ L2(D). The second functional is (3.8).
For the performance index (3.12), we introduce the following adjoint system

−∆p+
1

ǫ
(1−Hǫ(g))p = χE(yǫ − yd) in D, (3.13)

−∆q +
1

ǫ
(1−Hǫ(g))q = p in D, (3.14)

p = 0, q = 0 on ∂D, (3.15)

where χE is the characteristic function of E in D.

Proposition 3.2. The directional derivative of the cost functional (3.12) is given by

1

ǫ

∫

D

(Hǫ)′(g)v(yǫp+ zǫq)dx,

for p, q satisfying (3.13)–(3.15) and for any v ∈ C(D).

Proof. We have (in the notations of Proposition 3.1):

L = lim
λ→0

1

2λ

[∫

E

(yλǫ − yd)
2dx−

∫

E

(yǫ − yd)
2dx

]
= lim

λ→0

∫

E

yλǫ − yǫ

λ

yλǫ + yǫ − 2yd
2

dx

=

∫

E

w(yǫ − yd)dx =

∫

D

w

(
−∆p+

1

ǫ
(1 −Hǫ(g))p

)
dx

=

∫

D

p

(
−∆w +

1

ǫ
(1 −Hǫ(g))w

)
dx,

by (3.13) and the partial integration.
Using Proposition 3.1, we get:

L =

∫

D

p

(
u+

1

ǫ
(Hǫ)′(g)yǫv

)
dx

=
1

ǫ

∫

D

(Hǫ)′(g)yǫp v dx+

∫

D

(
−∆q +

1

ǫ
(1−Hǫ(g))q

)
u dx

=
1

ǫ

∫

D

(Hǫ)′(g)yǫp v dx+

∫

D

(
−∆u+

1

ǫ
(1−Hǫ(g))u

)
q dx

=
1

ǫ

∫

D

(Hǫ)′(g)yǫp v dx+
1

ǫ

∫

D

(Hǫ)′(g)zǫq v dx

by (3.14) and again by Proposition 3.1. This ends the proof. ✷
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If the cost functional (3.8) is taken into account, the equation in variation is given by Proposition 3.1 as
well, but in the adjoint system (3.13)–(3.15), the equation (3.13) has to be replaced by

−∆p+
1

ǫ
(1−Hǫ(g))p = Hǫ(g)J ′

y(x, yǫ)v in D, (3.16)

under the differentiability assumption for J(x, ·) and the L2(D) integrability for J ′
y(x, yǫ). In a similar way,

we get

Corollary 3.1. The directional derivative of the cost functional (3.8) has the form:

∫

D

(Hǫ)′(g)

[
J(x, yǫ(x)) +

1

ǫ
(yǫ(x)p(x) + zǫ(x)q(x))

]
v(x) dx.

The first term in the above formula appears since in (3.8) the derivative of Hǫ(g), for perturbation g+λv,
also appears.

Remark 3.1. By Proposition 3.2, the gradient of the performance index (3.12) is 1
ǫ
(Hǫ)′(g)(yǫp + zǫq)

and the steepest descent direction is with minus sign. Another descent direction is −(yǫp + zǫq) since the
coefficient is positive due to the monotocity of Hǫ(·). It also has the advantage of simplicity. If polynomial
regularizations of HΩ, like

H̃ǫ(r) =





1, r ≥ 0,
ǫ(r+ǫ)2−2r(r+ǫ)2

ǫ3
, −ǫ < r < 0,

0, r ≤ −ǫ

are used instead of (3.6), then the support of the gradient or of the steepest descent direction is in the
set {−ǫ < g(x) < 0}, that is in a neighborhood of ∂Ωg (when the roots of g(·) are noncritical). Similar
considerations may be made in connection to the functional (3.8) and Corollary 3.1. Both variants of
descent directions may generate boundary and/or topological variations of the domain Ωg. A more general
situation is considered in the Proposition 4.1, in the next section.

As we have already mentioned, the shape optimization problem (3.1), (2.1), (2.2) may be approximated by
(3.1), (2.3), (2.4). Using admissible domains defined in (3.4) and regularizations like (3.6) with approximation
of the characteristic functions HΩg

by Hǫ(g), we have to solve an optimal control problem with control
g ∈ X(D) acting in the lower order terms of the system. In particular, we also infer the necessary optimality
conditions for the approximating control problem (3.1), (2.1), (2.2) with Hǫ(g) instead of HΩg

.

Corollary 3.2. Let g∗ǫ ∈ X(D) denote an optimal solution. The optimality conditions for g∗ǫ are given
by the system (3.1), (2.3), (2.4), the adjoint system (3.13)–(3.15) (or (3.14)–(3.16) according to the form
(3.12), respectively (3.8) of the cost) and the maximum principle:

∫

D

(Hǫ)′(g∗ǫ )(y
∗
ǫ p

∗
ǫ + z∗ǫ q

∗
ǫ )v dx ≤ 0, ∀v,

respectively ∫

D

(Hǫ)′(g∗ǫ )

[
J(x, y∗ǫ (x)) +

1

ǫ
(y∗ǫ (x)p

∗
ǫ (x) + z∗ǫ (x)q

∗
ǫ (x))

]
v(x) dx ≤ 0, ∀v,

where y∗ǫ , z
∗
ǫ ∈ H1

0 (D) denote the approximating optimal states, p∗ǫ , q
∗
ǫ denote the corresponding adjoint states

and v ∈ C(D) is any admissible variation such that g∗ǫ + λv ∈ X(D) for λ > 0, small.
For instance, if X(D) is given by (3.5), the admissible v have to satisfy (3.5) as well.

By Proposition 3.2 and Corollary 3.1, gradient methods may be applied with various descent directions.
We formulate the following general gradient with projection algorithm:

6



Algorithm 3.1

Step 1 Start with n = 0, ǫ > 0 given “small” and select some initial gn.
Step 2 Compute ynǫ , znǫ the solution of (2.3), (2.4) with HΩg

replaced by Hǫ(g).
Step 3 Compute pn, qn the solution of (3.13)–(3.15) or (3.14)–(3.16).
Step 4 Compute the gradient of the considered cost functional according to Proposition 3.2, respectively

Corollary 3.1.
Step 5 Denote by wn the chosen descent direction, according to Remark 3.1 and define g̃n = gn+λnwn,

where λn > 0 is obtained via some line search.
Step 6 Compute gn+1 = ProjX(D)(g̃n), if the constraint (3.5) is imposed.
Step 7 If |gn − gn+1| and/or |∇j(gn)| are below some prescribed tolerance parameter, then Stop. If

not, update n := n+ 1 and go to Step 2.

Notice that, according to [17], in case constraints are imposed on g (for instance, as in Step 6), the
set X(D) should consist of piecewise continuous functions, due to the projection operation. The above
arguments can be extended to this case in a rather straightforward way.
In all the examples discussed in the next section, we underline the combination of both topological and
boundary variations that is a property of Algorithm 3.1.

4. Numerical examples

We have employed the software FreeFem++, [7].

Example 1.

This is inspired by the example 2 from [13], but the second order elliptic equation is replaced by (2.1)–
(2.2). We have D =] − 1, 1[×] − 1, 1[, the load f = 3, the cost function j(g) = 1

2

∫
Ω(yǫ − yd)

2dx, where

yd(x1, x2) = −(x1 − 0.5)2 − (x2 − 0.5)2 + 1
16 . The initial geometric parametrization function is

g0(x1, x2) = min

(
x2
1 + x2

2 −
1

16
; (x1 − 0.5)2 + x2

2 −
1

64
; 1− x2

1 − x2
2

)
,

which corresponds to a domain with two holes (see Fig.1). We use for D a mesh of 53360 triangles and 26981
vertices and for the approximation of g, y, z we use piecewise linear finite elements, globally continuous (no
constraints on g). The penalization parameter is ǫ = 10−5.

From Corollary 3.1 and Remark 3.1, we get that

−

[
J(x, yǫ(x)) +

1

ǫ
(yǫ(x)p(x) + zǫ(x)q(x))

]

is a descent direction. The cost functional is of type (3.8) with J (x, yǫ(x)) =
1
2 (yǫ − yd)

2. First, accroding
to Algorithm 3.1, we use the descent direction

wn = −

[
1

2
(ynǫ − yd)

2 +
1

ǫ
(ynǫ p

n + znǫ q
n)

]
. (4.1)

The sequence (j(gn))n∈N
is decreasing. For the stopping test, we can use: if |j(gn)| < tol then STOP,

where tol = 10−10. To simplify the notation, we write Ωn in place of Ωgn .
The cost function decreases rapidly at the first iterations j(g0) = 2.29164, j(g1) = 0.00083009, j(g2) =

0.000510025, j(g3) = 0.000379625, but for n ≥ 4, Ωn is similar to Ω3 and cost function decreases slowly
j(g8) = 0.000171446, j(g11) = 0.00012326, j(g14) = 0.000100719. The initial domain and some computed
domains are presented in Figure 1.
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Figure 1: Example 1. The initial domain with cost 2.29164 (top, left) and intermediary domains in the line search at the first
iteration with cost 1.64609 (top, middle), respectively 0.133162 (top, right); the domains Ωn for n = 1, 3 (bottom) using the
descent direction (4.1).

As a second test, we use the descent direction

dn = R

(
1

ǫ
wn

)
(4.2)

where wn is given by (4.1) and R : R → R is defined by

R(r) =

{
−1 + er, r < 0,
1− e−r, r ≥ 0.

(4.3)

The function R is strictly increasing, R (R) =]− 1, 1[, R(−r) = −R(r) for all r ∈ R.

Proposition 4.1. The direction dn defined by (4.2) where wn is given by (4.1) is a descent direction at gn
for the cost function j(g) = 1

2

∫
Ω
(yǫ − yd)

2dx.

Proof. The directional derivative of the cost function was introduced in the previous section. In this
particular case, the directional derivative of the cost function at gn in the direction dn is

∫

D

(Hǫ)
′
(gn)

[
1

2
(ynǫ − yd)

2 +
1

ǫ
(ynǫ p

n + znǫ q
n)

]
dn dx.

It can be rewritten as
∫

D

(Hǫ)
′
(gn)(−wn)dn dx =

∫

D

(Hǫ)
′
(gn)(−wn)R

(
1

ǫ
wn

)
dx

= −ǫ

∫

D

(Hǫ)′ (gn)

(
1

ǫ
wn

)
R

(
1

ǫ
wn

)
dx ≤ 0.

For the last inequality, we have used that (Hǫ)
′
(gn) > 0 in D and the property of the function R

rR(r) ≥ 0, ∀r ∈ R
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which gives
(
1
ǫ
wn

)
R
(
1
ǫ
wn

)
≥ 0 in D. Consequently, dn is a descent direction. We remark that this

derivative is zero, if and only if wn = 0 in D. ✷

In this second test, excepting the descent direction, the other parameters are the same as before. The
stopping test is obtained for n = 4, the values of the cost function are: j(g0) = 2.29164, j(g1) = 1.23291,
j(g2) = 0.295709, j(g3) = 1.66212e − 05, j(g4) = 5.0583e − 11. The computed domains are presented in
Figure 2. The optimal domain is the empty set and the optimal cost is zero, as obtained in both experiments.

Figure 2: Example 1. The domains Ωn for n = 0, 1, 2 (top) and n = 3, 4 (bottom) using the descent direction (4.2).

Example 2.

We have again D =]− 1, 1[×]− 1, 1[. The load is f = 1, the cost function is j(g) =
∫
Ω(yǫ − yd)dx where

yd is given by

yd(x1, x2) =

{
1, if 1

9 ≤ x2
1 + x2

2 ≤ 1
4

−1, otherwise.

We use for D a mesh of 53360 triangles and 26981 vertices and for the approximation of g, y, z we use
piecewise linear finite element, globally continuous. The penalization parameter is ǫ = 10−3.

The cost functional is of type (3.8) with J (x, yǫ(x)) = yǫ − yd. From Corollary 3.1 and Remark 3.1, we
get the following descent direction

wn = −

[
(ynǫ − yd) +

1

ǫ
(ynǫ p

n + znǫ q
n)

]
. (4.4)

The sequence (j(gn))n∈N
is decreasing. For the stopping test, we use: if j(gn+1) > j(gn) − tol then

STOP, where tol = 10−6.
For the initial parametrization function g0(x1, x2) = −x2

1−x2
2+

3
4 , that corresponds to a simply connected

domain, the stopping test is obtained for n = 3, the values of the cost function are: j(g0) = 1.51761,
j(g1) = −0.417807, j(g2) = −0.421269, j(g3) = −0.423723. Some computed domains are presented in
Figure 3.

9



Figure 3: Example 2. The initial domain Ω0 with cost 1.51761 (left), intermediary domain in the line search with cost −0.203754
(middle) and optimal domain Ω3 with cost −0.423723 (right), for initial parametrization g0(x1, x2) = −x

2

1
− x

2

2
+ 3

4
.

For the initial parametrization function used in Example 1, the stopping test is obtained for n = 6, the
values of the cost function are: j(g0) = 2.07908, j(g1) = −0.309447, j(g2) = −0.424, j(g3) = −0.424701,
j(g4) = −0.425225, j(g5) = −0.425309, j(g6) = −0.425331. Some computed domains are presented in
Figure 4. The computed optimal cost depends slightly on g0.

Figure 4: Example 2. The initial domain Ω0 with cost 2.07908 (left), intermediary domains with cost −0.309447 (middle) and
−0.424 (right), for initial parametrization g0 used in Example 1.

Example 3.

We have again D =]− 1, 1[×]− 1, 1[ and the cost function is j(g) =
∫
Ω(yǫ − yd)dx.

The load is f = 2× 103 and

yd(x1, x2) =

{
1, if x2

1 + x2
2 ≤ 1

4
−1, otherwise.

We use the direction

dn = R

(
1

ǫ
wn

)
(4.5)

where wn is given by (4.4) and R is defined by (4.3). As in Proposition 4.1, it yields that dn is a descent
direction for the cost function

∫
Ω(yǫ − yd)dx. The other parameters are the same as in Example 1.

For the initial parametrization function g0(x1, x2) = −x2
1 − x2

2 +
3
4 , used in Example 2, the stopping test

is obtained for n = 5, the values of the cost function are: j(g0) = 69.1791, j(g1) = 15.5425, j(g2) = 0.234407,
j(g3) = −0.34875, j(g4) = −0.385096, j(g5) = −0.385548. Some computed domains are presented in Figure
5.

For the initial parametrization function used in Example 1, the stopping test is reached for n = 3 and the
values of the cost function are: j(g0) = 20.2385, j(g1) = 0.828123, j(g2) = −0.509888, j(g3) = −0.511685.
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Some computed domains are presented in Figure 6. We observe that the obtained result depends on g0.
Shape optimization problems are strongly non convex and “local” solutions are obtained, in general.

Figure 5: Example 3. The domains Ωn for n = 0, 3, 5 using the descent direction (4.5) and initial parametrization g0(x1, x2) =
−x

2

1
− x

2

2
+ 3

4
.

Figure 6: Example 3. The domains Ωn for n = 0, 1, 3 using the descent direction (4.5) for initial parametrization g0 used in
Example 1.
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[11] J. Muñoz, P. Pedregal, A review of an optimal design problem for a plate of variable thickness. SIAM J. Control Optim.
46 (2007), no. 1, 1–13.

[12] C.M. Murea, D. Tiba, A direct algorithm in some free boundary problems. J. Numer. Math. 24 (2016) 253–271.

11
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