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Initial (left) and intermediate (right) geometrical
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Nonlinear elasticity. Notations

US> : Q3 x [0, T] — R2 the displacement of the structure
For X € QF, x = X+ U° (X, t) is in Q7.

F(X,t) = 1+ VxU?® (X, t) the gradient of the deformation
J(X,t) =det F(X,t)

2 the second Piola-Kirchhoff stress tensor

The structure is homogeneous, isotropic and it can be described by
the compressible Neo-Hookean constitutive equation

== A(nJ)F T 4 (1 FFT)

where \°, ;> are the Lamé constants of the linearized theory.
Simo & Pister 1984



Nonlinear elasticity equations

s ox) Y o o _ s s
g (X) 52 (X, t) = Vx - (FZ) (X, t) pg (X)g, Q5 x (0,T)
U°(X,t) = 0, onlgx(0,T)
(FX)(X,t)N°(X) = 0, onT} x(0,T)

9 =[ABJU[CD], T =[DA]

pg : Qg — R the initial mass density of the structure

g the acceleration of gravity vector and it is assumed to be
constant

N is the unit outer normal vector along the boundary 893



Navier-Stokes equations

We denote by v the fluid velocity and by p© the fluid pressure.

e F F F F F Fo in OF
P + (v - VIV ) —2pu V-e(v)—l—Vp = p'g, inQ,

ot
wvf =0, inQf
O'FI‘IF = h,‘,,, on Zl
ofnf = hoye, on X3
vii = 0, on I,

of = —pFl+2u%¢ (VF) the fluid stress tensor
€ (vF) = % (VvF + (VVF) T) the fluid rate of strain tensor



Interface and initial conditions

) - oo, e
(JFnF>(X+US(X7t)’t)w(X,t) — —(FZ)(X,t)NS (X), o x (0, T)

where w (X, t) = ||cof (F) N®|| . = || JF~TN?|| .
F.F _ F.F
/rt (a n )(SJ) ds—/rO (a n >(5+u5(5,t),t) w(S,t)dS

U°(X,0) = U>%(X), in Q5
ou®
— (X
5 (X0
v (X,0) = vPO(X), in Qf

= V>O(X), in Q3



Total Lagrangian framework for structure equations

Let N € N* be the number of time steps and At = T /N the time
step. We set t, = nAt for n=0,1,...,N. Let V>"(X) and

U>" (X) be approximations of V° (X, t,) and U® (X, t,). We also
use following notations for n > 0

F" =1+ VXUS’n,

> — )\S(ann) (Fn)—l (Fn)—T + MS <| . (Fn)—l (Fn)—T) )
The structure problem will be approached by the implicit Euler
scheme

S,n+1 _\S,n
5 00 IV g (pragn ) < o ()

S,n+1 X) — S,n X
u ( )At u ( ):VS,n+1 (X)




Weak form in Total Lagrangian framework

Fn-’rl — F" + Atvxvs,n-‘rl

Consequently, F"*1 and ™! depend on the velocity V°:"*1 but

not in the displacement US"t1,
Find VS:ntl . Qg — R2, V5t =0 on I'é), such that

V5,n+1 o V5,n
/ pg———— -W° dX+/ Frilyntl . vy W? dX
95 At 95

= / pog - W° dx+/ FrilEntiNS . WS dS
Q3 o
for all W? : Qg —R2, W° =0on F(’)D. For instant, we have

assumed that the forces F"T1X"TIN° on the interface Iy are
known.



Updated Lagrangian framework. |

XeO)—-xeQ5=05 -xeQ,
X=X+U>"(X), x=X+U>"1(X)
u(x) = U™ (X) - U (X)
Putting F = | + Vi, J = det F and J" = det F", we get
F (X) = F(R) F"(X),  J"™(X) = J (%) )" (X).

O,S,n-i-l (X) — < 1 Fn-l-lzn-i-l (Fn—i-l) T> (X), pS,n (/)Z) _ p(i

Jn+1



Updated Lagrangian framework. Il

Let us introduce Vo™ : Q5 — R2 and v : Q5 — R defined by

/‘;S,n—l-l (S(\) — VS,n—l—l (X) ’ v5,n (/)'(\) — VS,n (X) )

W°: Qs —R% w:0Q° -R? w:Q,; — R

WS (%) = wS (x) = WS (X).

VS,n+1 _ VS,n VS,n-l—l _ vS,n
T W dX= SnZ__ © WO dx
/SPO At /ﬁ P At

QO
/ pgg-WSdX:/A p°>"g - W dx
Q3 Qs

/ FrHIEmtl: Vx W dX = / o> Vw? dx
a5

S
Qn+1



Updated Lagrangian framework. Il

Let us introduce the tensor
TR =JRF ' ®c)FT(R),
we get

/ o>l Yw® dx = /A FX : Vow® dx.
Qs Qs

n+1
But u (x) = US> (X) — U>" (X) = AtV "1 (X) then
F =1+ AtVusmtl
For the compressible Neo-Hookean materiel, we have

5 n+1l )\ (In Jn+1)| (FIH-I (Fn+1) T |>

J Tn+1 Jn -‘rl
it follows that
s N TE-LE-T 4 w
£=n 4+ mD)FET (F (FYT —F1F- )

F depends on V"t and X depends on ¥>"+! and F" (X).



Weak form of the Updated Lagrangian framework

det(l+ A)~1+tr(A), (I1+A)1xI1—-A In(l1+x)~x
We linearize the map v>"*1 — FX by L (vor 1)
S T S
= S (1 ae (7o) ) 4 a0

w

+ 5 <(| + AtV EY(F)T <1 A (Ve T> .

Knowing us": Qg — R?, QS = Qf and v : QS R2, find
vortl Q5 - R2, ¥ =0 on 'Y such that

VS,n—i-l _ vS,n R
P W dX+ L (v>) : Vew® dx
9 At ol
:/A SN WS d?+/ FrilyntINS WS dS
Qs Jro

for all w° : Q° — R2, w® =0 on ré).



Arbitrary Lagrangian Eulerian (ALE) framework. Notations
The reference fluid domain OF = Q,',E, the interface ',
The velocity of the fluid mesh 9" = (97,93)7 is the solution of
A" =0inQf, 9 "=00n0Q5\T,, 9"=vF"onr,
The ALE map A, : 2, — R2
Ae, (X1, %0) = (X1 + Atd], % + Atd3).

We define Qf ; = A, (QF) and Th1 = Ay, (Th)
We introduce vF-"t1 - QF — R2 and pF" 1 : QF — R defined by

VR = (), BTR) = pF ),

vxe Qf, x= At (X) € er;-+1



Time discretization of the fluid equations. Weak form
Find vFn+1 - QF — R2 such that /"1 = 0 on ¥, and
pFntl: QF — R such that:

QF,n—l—l
/ S ,deiJr/ oF (((VF,n _ ﬁn) -V;) vF,n-‘rl) aF ds
QF At QF
—/ (v;'wF) 5F7"+1d§+/ 2uFe (vFv"“) :e(wF> dx
QF QF
— [’F(wF) +/ (O,F(/‘;F,nJrl;/ljF,nnLl)nF) -V/\\leS,

/K;F(v/i 'VF’"H)a dx =0,

for all wf : QF — R? such that w© =0 on X, and for all
G:QF - R, where Le(wF) is

F,n
/ v de§+/ ng.wF+/ h,"n+1-wF+/ bl GF
At QFf v v,
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Monolithic formulation for the fluid-structure equations

and p"1: Q, — R,

Find v*t!:Q, - R2, ¥"*1 =0on L, UTp
p"t1 =0in Q2, such that:

p
Vn—l—l
/ oF .wc&+/ oF (((v" — 0" - V) 3L - W
QF A QF
/ (V- w)p"‘HdA—i-/ 2uFe (VM) 1 e (W) dx
a
/ / L (@™ : Vs d%
(W) + / ps’”v—~led§+/ Sng . %,
At Qs
/ (Vg - 9"1)5d% = 0,
o

forallw:Q, —R%, w=0o0n X, UlY and for all §: Q, — R.




Finite element discretization

Triangular P1 + bubble for the velocity and IP; for the pressure.
The velocity, the pressure as well as the test functions are
continuous all over the global domain Q,,.

If the solution of the monolithic is sufficiently smooth, the
continuity of stress at the interface holds in a weak sense.

We have added the term e/ ™14, then the bellow system has

n

an unique solution and p° = 0 on Q;.

A BT 0 v L
B eMf 0 pF =10
0 0 eM® p> 0

We have used the LU algorithm for solving the linear system.



Time advancing schema from nto n+ 1

We assume that we know Q,, v", p".

Step 1: Compute 9"

Step 2: Solve the linear system and get the velocity v"*! and the
pressure p"t!

Step 3: We define the map T, : Q, — R? by:
Th(x) =%+ (At)9"(X)xqr (X) + (At)v"(X)xqs (X)

Step 4: We set Q1 = T,(Q,). We define v?*+1: Q.. — R2
and p™1: Q.1 — R? by:

vl (x) =v"T(%), p™(x) = p"TH(X), VX € Q, and x = T,(X).



Numerical results. Blood flow in large arteries

FIuid length L =6 cm, height H =1 cm, viscosity
= 0.035 —£_, density pF =1

cm-s’ cm3
Structure thlckness h° = 0. 1 cm Young modulus

E=3-10° - p S=0.3, denS|typ0—11C

m3 "

The prescribed boundary stress at the inlet is

hin(x, 1) = | (10°(1 = cos(2m/0.025)), 0), 0< t<0.025
in\X, 1) = (0, 0), 005 <t<T

and h,,: = (0, 0) at the outlet. g = (0,0)7.

The numerical tests have been produced using FreeFem-++.
Numerical parameters: T = 0.1, At = 0.001, 0.0005, 0.0025,
h=1/20, 1/10, 1/30

CPU: 4minl3s using the monolithic approach and 42min using a
partitioned procedures method (BFGS)



Fluid-structure velocities and pressure at time instant
t =0.025
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Volume of the structure
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A3 =108

v E

0.606

0.605 |-

0.604 |

0.603 -

0.602 |-

0.601 |

0.6

0.599
[

(1—2v5)(14v°)

lambdal ;
lambdag-------
lambda3 -

L L L L L L L L L L
001 002 003 004 005 006 007 008 009 0.1

= 1730769.23

011



Conclusions

» Semi-implicit algorithm: the global system of unknowns v"+1,
p™t1 is implicit, but the domain is computed explicitly.
» The continuity of velocity at the interface is automatically

satisfied and the continuity of stress holds in a weak sense.
» The global linear system is solved monolithically.

» The global moving mesh is obtained by gluing the fluid and
structure meshes which are matching at the interface. The
interface does not pass through the triangles.

» The CPU time is reduced compared to a particular partition
procedures strategy.



