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Initial geometrical configuration



Linear elasticity. Notations

QCR?2 00=TpUlNyUT, meas(I'p) > 0, meas(I'y) > 0,
meas(') > 0

y : Q — R? the displacement

stress tensor in linear elasticity is given by

o (y) = A(V - y)l+ 2u°e(y)

where A%, i®° > 0 are the Lamé coefficients

I is the unity matrix and e(y) = % (Vy + (Vy) T)

given volume load f : Q — R? and surface load h : 'y — R?
n is the unit outer normal vector along the boundary



Linear elasticity equations
Find y : Q — R? such that

—V-o(y) = f,inQ
= 0,onlp
o(y)n = h,onTly
o(y)n = 0,onTl

The weak formulation is: find y € V such that
/U(y):Vvdx:/f-vdx—i—/ h-vds, YWweV
Q Q Iy

where f € (L2(Q))2, he (L2(rN))2.

V={ve (Hl(Q))z; v=0onTp}.
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Compliance

A classical problem in structural design is to find a domain £ that
minimizes the compliance (the work done by the load, expressed by
the right-hand side in (5) with v =y) subject to 'y C 09,

I'p C 02 and the volume of € is prescribed.

In practice, we penalize the volume of €2, and the function to

minimize is
/f-ydx—l—/ h-yds+£/1dx (6)
Q My Q

where ¢ > 0 is a penalization coefficient.



Shape optimization problem in fixed domain

D C R?, including the unknown domain Q, with
oD = fD Ur/\/ Uf, suchthat 'p C Xp

X




Parametrization

Let X(D) denote a cone of C(D). With any g € X(D), that we
call a parametrization, we associate the open set

Qg =int{x € D; g(x)>0}.

We define the family of admissible domains as the connected
components of all Qg, g € X(D) satisfying 'y C 0Q,, ['p C 09Q.
We use the following regularization of the Heaviside function

. 1—1e7§, r >0,
H(r):{les2 r<o0 @
2 ) )

We have that H°(g) is a regularization of the characteristic
function of Q.



Optimal control problem

For given f € (L2(D))2, he (LZ(FN))2 and £ > 0, we introduce
the control problem (with control g) that approximates the shape
optimization problem

gei;{D)J(g)z /D H(g)f-y*(g) dx+ /r Nh-y€(g) ds+{ /D H(g) dx
(8)

where y(g) € W is the solution of

/DHE(g)a(yE(g)):Vvdx = /DHE(g)f~vdx+/ h - v d{9)

My
for all v e W, where

W={ve (Hl(D))2; v=0onXp}.



Existence and uniqueness of the state equation

We set
X(D)={geC(D); g(x)=0, xeyUlp}

which is a subspace in C(D).
Proposition

The problem (9) has a unique solution y*(g) € W and

¥ (@)l < 25 (19100 + Il (10)

where C > 0 is independent of € and c(€) > 0 is indicated below.



Proof

/DHE(g)U (v) : Vvdx

- / H(g) <)\5(V~v)2+2,u5e(v):e(v)) dx
D

c(e) /D (A(V - v)? + 2u%e(v) : e(v)) dx

> c(e)/D2u5e(v):e(v) dx.

H¢(g) > c(¢) > 0in D. From the Korn's inequality and
Lax-Milgram theorem, we get that the problem has a unique
solution

v

C) (IH(&)fllo.0 + oy, )

J (IFlo.0.+ Mo, )

ly“(@)ll1p <

(
C
c(e)

since 0 < Hé(g) < 1.



Proposition

When e — 0, on a subsequence, we have y¢|o, — y weakly in
H(Qg). Moreover, y € V and satisfies (1) - (4) in the
distributional sense.

Proof. Let f; € L?(D) be the extension by 0 of f € L?(,).

/ He(g)o (y°) : Vy“dx = / H(g)f1 -y dx —|—/ h-y“ds.
D D r

N

/D H(@)NS(V - y°)2 + 2uSely”) : e(y)] dx
:/DHE(g)fl -yedx+/rNh~yEds.

1> H(g) >1/2in Q.



One can apply the Korn's inequality and establish that y¢|Q, is
bounded in H(€,). On a subsequence, Yo, — Yy weakly in

H (). Moreover, H(g) — H(g) in LP(D), for any p > 1.

For any test function v € D(§;) C W, we pass to the limit in (9)
and obtain

/a(y):Vvdx:/ f~vdx—|—/ h-vds, Yve D)
Qg Qg My



Gateaux differentiability

Proposition

For any g, w in X(D), the mapping g — y“(g) € W is Gateaux
differentiable at g and the directional derivative in the direction w,
denoted by z € W, is the unique solution of the problem

/D H(g)o (z) : Vvdx =
- [ @wo ly(@): Tuax

+/(HE)’(g)wf-vdx, W W, (12)
D



Proof
Let g, w be fixed in X(D) and A # 0, small.

/D H(g + Aw)o (¥(g + A\w)) : Vv dx

:/He(g+)\w)f-vdx+/ h-vds, WYwelW.
D My

Subtracting (9) from the above equation, dividing by A, setting

2 = ye(g+>\v/t\/)—y€(g)v we get

/L;Hg(g + Aw)o (25) : Vv dx
L[ -t
D

3 o (y°(g)) : Vvdx

+/H(g+>\w)_H(g)f'vdx, YWwe W. (13)
D

A



M converges to (H¢)'(g) w in C(D), for A — 0.
We get that

<M, VA <A(5), A#£0 (14)

H H(g + )\V)\V) — H(g)

¢(D)

where M = M(e) is independent of A, but depends on .

o < Go (o6 @l + IFloo)
< 5 (Qly@lo+iflos) (9

where C; > 0 is independent of A, € such that
o (V)llo.p < Gilvlly p, forall ve W.
Let Z € W such that, on a subsequence z§ converges weakly to z

in W and strongly in (L2(D))2.



For passing to the limit on a subsequence in (13), we use the
Lemma: if a,a, € L°(D), [|anlly 0. p < M, an — a almost
everywhere in D, b, — b weakly in L2(D) and h € L2(D), then

lim /a,,b,,hdx_/abhdx.
n—o0 D D

We can apply this Lemma for a, = H (g + A\,w), b, = 0 (25 )
and h=Vv.

By passing to the limit on a subsequence in (13) we get that z is
solution of (12). But, as in Proposition 1, we can show that the
problem (12) has a unique solution, then Z = z and z§ converges
to z for A — 0 without taking subsequence, weakly in W and
strongly in (LZ(D))2.

We prove, also, that z§ converges to z strongly in W/, but ¢ is fixed.



Directional derivative

Proposition
The directional derivative of the objective function (8) has the form

Sgw = /D H(g)F - zdx + / (HY (g) wf - y*(g) dx

D
+/I—Nh.zd5+£/D(He)/(g)WdX (16)
for any g, w in X(D).
Proof
J(g +Aw) — J(g)
A
1 . P € €
- /\/D(H (g +Aw)f -y (g + Aw) — H(g)f - y°(g)) dx

+/ h.y(g+Aw)—y(g)ds+€/ H(g +Aw) — H(g)
r A b A



Subtracting and adding [, H(g + Aw)y“(g) : Vv dx, we get

i/ (H (g + Aw)y“(g + Aw) — H (g + Aw)y“(g)) - f dx
D

+§ /D (H(g + Aw)y“(g) — H(g)y“(g)) - f dx

= /DHE(gHw)yE(gHV:)_yE(g) fdx

H¢(g + Aw) converges uniformly to H(g) in C(D)
z§ converges strongly to z in W B
M converges uniformly to (H¢)'(g) w in C(D)



Directional derivative without using an adjoint system

Proposition
For any g, w in X(D), we have

Hew = /D (HY (g)w [2F - y<(2) + ¢ — o (y"(2)) : Vy“(2)[aR)

Proof.
From (9), we put v=2z € W and using

o (y(g)) : Vz=0(2) : Vy(g) we get
/DHg(g)o* (z) : Vy“(g)dx = /DHe(g)f -zdx + /FN h-zds.
Putting v = y(g) in (12), it follows
[ H(&)r @) vy (@) éx

- / (HY (€)wo (y'(g)) : Vy“(g) dx+ / (HY (g)wF - y(g) dx.
D D



Some descent directions

d=2f-y(g)+0—0o(y(g)): Vy(g)

[ e(-1+€"), r<o,
R(r) = { c(l—e"), r>0 (18)

where ¢ > 0. rR(r) > 0 for all r € R.
Proposition
The following are descent directions for the objective function J(g):

i) wyg=—H(g)d (19)
i) wy = —H(g)R(d) (20)
i) wg = —d (21)

under the assumption that wy € X(D). At iii), d € H(D) is the
solution of

/ Y(Vd-Vv)+dv dx:/(He)’(g)dvdx, Vv € HY(D) (22)
D D



Numerical examples

We have employed the software FreeFem-++-.

The dimensions and the starting domains are from the web site of
the team directed by G. Allaire, the files
levelset-cantilever.edp and pont.homog.struct.edp.



Example 1. Cantilever

D =]0,2[x] — 0.5,0.5[, £p = {0} x] — 0.5,0.5][,
My = {2} x] —0.1,0.1[, Lamé coefficients \°> =1, u° = 8,
f=(0,0), h=(0,-5), £=0.5
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Left: Geometrical configuration of D. Right: Convergence history
of the objective functions for descent directions i) and ii)



domains using descent direction i) (50 iterations)
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Optimal domains using descent directions ii) (left, after 38
iterations) and iii) (right, after 3 iterations)



Example 2. Bridge

D =]—-1,1[x]0,1.2[, ¥p = (] — 1,—0.9[U]0.9, 1]) x {0},
v =] —0.1,0.1[x{0}, Young modulus E = 1, Poisson ratio
v=0.3,f=(0,0), h=(0,-1), £=0.1
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Left: Geometrical configuration of D. Right: Convergence history
of the objective functions for descent directions i) and ii).



domains using descent direction i) (after 100 iterations)



Optimal domain using descent directions ii) after 80 iterations.



Optimal domain using descent directions i) after 100 iterations, for
the initial domain Qo =] — 1,1[x]0,0.6[, the bottom half of D.



The cost decreases from 0.378632 (left image) to 0.297857 (right
image).
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