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Elliptic obstacle problem, strong formulation

Let D be a smooth domain in R? and let ¢ : D — R denote the
obstacle function.

We assume 1 € H?(D) and Yjap < 0 to be consistent with the
homogeneous Dirichlet conditions.

Let f € L2(D) be given.

—Ay = fin Dt ={xe€D; y(x)>¥(x)}, (1)

Ay > finD\D"={xeD;y(x)=v(x)}, (2
_ Oy _ o

y = 1 and 3 = Bn n DT N D, (3)

y = 0ondD. (4)

The set DT is called the noncoincidence set, while its
complementary is the coincidence set.



Weak formulation

Find y € K such that
/Vy-(Vy—Vv)dxﬁ/f(y—v)dx,VvEK (5)
D D
K ={veHjD); v>1ae inD}. (6)

The problem (5)-(6) is equivalent with the variational problem

Vmei’r}{%/D|Vv|2dx—/vadx}. (7)



Regularity

In the case when f € L2(D), ¢ € H?(D) with the compatibility
condition ¢5p < 0, it is known that the weak solution satisfies the
regularity property y € H?(D) and the strong formulation may be
used. Moreover, in this case, the obstacle problem may be written
as a multivalued equation

—Ay+ 5y —v¢)>finD
where § C R x R is the maximal monotone graph given by

] —,0], z=0,
B(z) = 0, z>0, (8)
0, z<0.



Algorithm 1

1) Choose n =10, ¢g > 0, Qo C D open, y_; € H&(D);
2) Compute y, € H3(D) as solution of the linear elliptic equation

1 .
= Byn+ —xp\Q,(ya —¥) =f in D 9)

(here XD\Q, is the characteristic function of D\ 2, corresponding
to the approximation of the coincidence set in iteration n);

3) Yn = max{ynyw}v Qn-i-l = {X € D; Yn(x) > ¢(X)}v €nt+l = %n;
4) If llyn — ¥n-1ll2(py < tol then STOP else n=n+1 GO TO step
2.

We can start with Qo = D and y_1 > 9.



Remarks
Let G, : R — R denote the Yosida approximation of 3. We have
Be(r)=0if r>0and B(r) = 1rif r <0. Notice that
B.(r) = BL(r)r, if r £ 0.

We can rewrite the step 2 of the Algorithm 1 as

— Ay, + (ﬁén (Yn—1— ¢)) (yn =) =f. (10)
The usual approximation by regularization of the variational
inequality is
— AYn+ Be, (¥n — 1) =f in D, (11)

plus homogeneous boundary conditions on 9D.

The algorithm uses just linear elliptic equations in the whole
domain D.

The type of penalization term from Step 2 may be compared with
the approach developed in shape optimization problems in Tiba
2009.

A classical penalization term for solving the obstacle problem is
Y(yn — 1)~ where v=(x) = —v(x) if v(x) <0 and v=(x) =0 if
v(x) > 0, see for example Glowinski 1981.



Two obstacles problem

We denote now ¢1,92 : D — R, 91 <4y in D, ¢159p <0,
Y219p = 0 and

K= {y € H§(D); ¥1(x) < y(x) <1ba(x) ae. in D}

which is a closed convex subset of H(D).
To K, the following variational inequality may be associated:

/Vy.(Vy—vV)dngf(y—v)dx, YWwekK (12
D D

The existence of a unique solution y € K is wellknown.



Algorithm 2

1) Choose n =0, ¢o >0, Q2 € D, Q3 C D open subsets such that
(D\QY)N(D\QF) =0, y-1;
2) Compute y, € H}(D) as solution of the linear elliptic equation

1 1
— Byn+ —xp\ag(vn — ¥1) + XD\Q"( — 1) ="finD (13)

3) Compute y, = min {12, max{yn,¥1}},

QI = {x € D; ya(x) > ¥1(x)},

Q5 = {x € D; ya(x) < ¢2(x)} €ns1 =

4) If ||lyn — Yo 1HL2 ) < tol then STOP eIse n=n+1 GO TO step
2.



Convergence

Lemma Denote by § € H*(D) N H}(D) the solution of
—Ay=finD, y=0ondD. (14)
Then y >y a. e. in D.

Lemma The solution y of (1)-(4) satisfies the same problem with
1) replaced by .



Convergence

For Algorithm 1.

Theorem i) On a subsequence, y, — ¥ weakly in H}(D) and

Q, — Q in the complementary Hausdorff-Pompeiu topology.

i) If y € CY(D) and {Q,} are uniformly of class C, then y is the
solution of (1)-(4) with D™ = Q. The convergence is valid without
taking subsequences.

For Algorithm 2.
Theorem The sequence {y,} is bounded in L2(D). Moreover,
there is C > 0, independent of n, such that:

/ (vn — 1)} dx + / (vn —¥1)2dx < Cep. (15)
D\Qj

D\Q!



Numerical tests

D ={(x1,x); \/x? +x3 <1}

2, 05<x <07and —0.1<x <01
Y(x1,x0) = ¢ —125((x1 +0.4)2 +x3) + 0.5, (x1 +0.4)% + x3 < 0.08
—%, otherwise.

We notice that v is not continuous, but the method still works.

_[35  xF+x3<016
f(x1, x2) —{ —0.001, otherwise.

The mesh has 109898 triangles and 55350 vertices, the tolerance
for the stopping test to/ = 10717 and we use a fixed penalization
parameter €, = 10~%, for all n € N. After 11 iterations the relative
error no longer change.



The coincidence set (blue) at the left and the computed
solution with the obstacle

0:504 o700

0.0021059




Torsion of an elastic-plastic prism
D =[0,1] x [0,1], f(x) = —8 and 9(x) = —dist(x, D).
Mesh of 39216 triangles, 19865 vertices and size h = ﬁ.
The tolerance for the stopping test is to/ = 10718 and the
penalization parameter is ¢, = 0.003.

The computed coincidence set (blue).

The Algorithm 1 stops after 6 iterations. The algorithm presented
in Xue 2004 stops after 7 iterations, while the over-relaxation
algorithm with projection presented in Glowinski 1981 p. 133 stops
after 93 iterations.



Bilateral elastic-plastic torsion problem
D= [Oa ]-] X [07 1]1 ¢1(XaY) = —dist ((Xv}/))aD)v ¢2(X,Y) =02

( 6x, 0<x<1/6,
2(1 — 3x), 1/6 < x <1/3,
(x) = 6(x —1/3), 1/3<x<1/2,
EXITY 2(1-3(x—1/3)), 1/2<x<2/3,
6(x —2/3), 2/3 < x<5/6,

[ 2(1—3(x—2/3)), 5/6 <x<1

and f(x,y) =
300, (x,y)€S={(x,y) € D;|x—y| <0.1 and x < 0.

—70exp(y)g(x), x<1l-—yand(x,y) ¢S,
15exp(y)g(x), x>1—yand (x,y) ¢ S.

We use a mesh of 9662 triangles, 4960 vertices, the size h = &,

the tolerance for the stopping test to/ = 10~! and the penalization
parameter is €, = 0.003.



Computed solution after 15 iterations

0.ZPE00.000




Coincidence sets (blue) for the bottom obstacle (left) and
for the top obstacle (right)




In Karkkainen 2003, an augmented lagrangian active set strategy is
employed. At each iteration, a reduced linear system associated
with the inactive set is solved. Without multigrid nested iterations,
the algorithm stops after 30 iterations.

In Wang 2008, at each iteration, linear systems associated to the
complementary of the coincidence sets are solved. There are no
information about the number of iterations, only on the CPU time;
for example the total CPU time for the “up down” algorithm is
916 s and the compute time of a linear system is 46 s.

For instance, the CPU time is 15.12 s on a PC with Intel i5 2.53
GHz and 4 Go RAM in our algorithm.



Parabolic obstacle problem

¢ e [2(0, T; H*(D)) N H* (0, T; L*(D)),
P(t,x) < 0ae on[0,T] xAD, f € L2([0, T] x D)
%—Ay—i—ﬁ(y ¥)> fae in[0,T] xD (16)

together with (19).

= {v € H}(D); v(x) >1(t,x) ae. D}, (17)
/81‘ —vdx—i—/Vy —v)dx</f(y—v)dx,
Vv e L2 (0, T; H3(D)), v(t) € K(t) ae. [0, T). (18)

¥(0,x) = yo(x) € £(0) € H3(D) a.e. in D, (19)



Algorithm 2.1

1) Choose n =0, €g > 0, y_1(t,x) = yo(x), ¥-1(t,x) = yo(x).
2) Compute y, € L? (0, T.H>(D ) N H1 ( T L2( ) as solution
of the linear parabolic equation

yn
ot

- Ayn + [ﬁ;n(yn—l - ¢)] (yn - ¢) = f7 a.e. in [07 T] X Da
yn(0,x) = yo(x)in D.
3) ¥n = max(yn, V), €n1 = %6,,

4) I {|n — Vn-1ll 12(j0, 7« D) < tol then STOP; else n=n+1 GO TO
step 2.



Algorithm 2.2

0) Put y9(x) = yo(x).
For k=0,1,...,m—1, At = T/m do step 1) to step 4)

1) Choose n = O € > 0, ykJrl yk

2) Compute yf*! € H}(D) as solution of the linear parabolic
equation
yrl1(+1 k

Ay B )| v = £

3) At = max(y, "), en1 = en

4) If Hynk+1 yﬁ_“HLZ(D) < tol then y**1 = yk+1 STOP;
else n=n+1 GO TO step 2.



Two-phase Stefan problem

) — (")
At

The maximal monotone enthalpy graph v C R x R

Yy

Ayk-‘rl f.’k-i-l D, (20)

ar, r <o,
~v(r)y=< [0,L], r=0, (21)
br+L, r>0

with a, b, L positive constants related to the thermal conductivity
in the liquid/solid phases and to the latent heat.

The subsequent regularization 7, is similar to the Yosida
regularization and Lipschitzian of rang %:

ar, r <0,
ve(r) =14 e 0<r < == (22)
br+L, r>j

eb



Algorithm 2.3

0) Choose y°(x) = yo(x), € > 0.

For k=0,1,...,m— 1 do step 1) to step 3)

1) Choose n = 0, y*T1 = yk.

2) Compute yf*! € H}(D) as solution of the linear parabolic

equation
~ (. k+1 k
76(}/n+ )_’}/e(y ) Ayk+1 _ fk—l—l in D
At
where
. ?yr’f“(X), yﬁ*f(k)fo )
Feya X)) =4 2yt (), 0 <y, f7(x )< T=cb>
byk“(X) + L, yk“(X) > 5.
k+1 k+1

-y () < tol then yk+1 = yk+1 STOP;
else n=n+1 GO TO step 2.




Convergence for Algorithms 2.1 and 2.3
Proposition We have {y,} bounded in
L>(0, T; L2(D)) N L2(0, T; H}(D)) and y, — ¥ on a subsequence
weakly in L>(0, T; L2(D)) N L%(0, T; H}(D)). Moreover, y <y
a.e. in [0, T] x D and

/ (yn - 1/})2dth < Cep

n

with C independent of n and

Qn={(t,x) €[0, T] X D; yn_1(t,x) < 9(t,x)}.

Proposition i) The sequence {y *1} is bounded in H}(D) with
respect to n. If yg € H}(D) N LP(D) and f is in C(0, T; LP(D)),
p > 2, then {y5*1} is bounded in W2P(D) N H}(D) with respect
to n.

i) If yst1 — yk+1 weakly in W2P(D), p > d, then y**1 satisfies

~k+1y _ k
Ye(y )At e(y*) AYFHL = £k i D, (23)




One phase Stefan problem
D=(-1,1) x(-1,1), T=05,¢=0and f =—20on [0, T] x D
penalization parameter ¢, = 1073, time step At = 0.05, mesh size
h=1/160
The Algorithm 2.1 ends after n = 10 iterations, and the Algorithm
2.2 performs n = 6 or n =5 iterations by time step.

The free boundary position at t = 0.05, t = 0.15, t = 0.30,
t = 0.5 (from the exterior to the center) at the left and computed
solution at t = 0.5 at the right



Two phase Stefan problem
D = {(x1,x); X} +x3 <1}, T=0.5,

8(2e72t — 1), /X2 +x3 > e,
f(t7X1>X2) =
22e72t —2), /X2 +x3 <et,
r, r <o,
y(r)=14 [0,2], r=0,
4r+2, r>0

The exact solution is

203 +x3 —e7?t), \/xF+x3> et

2 4 2 _ g2t /52 4 52 —t
X{+x5—e 7, Xi+x53 <e .

mesh of 85030 triangles and 42866 vertices

The error between the exact and the calculated solution

[Yeaie = Yextl 12(0, 7.12(py) is 0-193753 for the time step At = 0.01
and the number of time steps N = 50.

y(t7X17X2) -



Two phase Stefan problem

Free boundary position at t = 0.1, t = 0.2, t = 0.3 (from the
exterior to the center) at the left and computed solution at t = 0.1
at the right



Thank you!



