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Elliptic obstacle problem, strong formulation

Let D be a smooth domain in R
2 and let ψ : D → R denote the

obstacle function.
We assume ψ ∈ H2(D) and ψ|∂D ≤ 0 to be consistent with the
homogeneous Dirichlet conditions.
Let f ∈ L2(D) be given.

−∆y = f in D+ = {x ∈ D; y(x) > ψ(x)} , (1)

−∆y ≥ f in D \ D+ = {x ∈ D; y(x) = ψ(x)} , (2)

y = ψ and
∂y

∂n
=
∂ψ

∂n
on ∂D+ ∩ D, (3)

y = 0 on ∂D. (4)

The set D+ is called the noncoincidence set, while its
complementary is the coincidence set.



Weak formulation

Find y ∈ K such that

∫

D

∇y · (∇y −∇v) dx ≤

∫

D

f (y − v) dx ,∀v ∈ K (5)

K =
{
v ∈ H1

0 (D); v ≥ ψ a.e. in D
}
. (6)

The problem (5)-(6) is equivalent with the variational problem

min
v∈K

{
1

2

∫

D

|∇v |2 dx −

∫

D

f v dx

}
. (7)



Regularity

In the case when f ∈ L2(D), ψ ∈ H2(D) with the compatibility
condition ψ|∂D ≤ 0, it is known that the weak solution satisfies the
regularity property y ∈ H2(D) and the strong formulation may be
used. Moreover, in this case, the obstacle problem may be written
as a multivalued equation

−∆y + β(y − ψ) ∋ f in D

where β ⊂ R × R is the maximal monotone graph given by

β(z) =





] −∞, 0], z = 0,
0, z > 0,
∅, z < 0.

(8)



Algorithm 1

1) Choose n = 0, ǫ0 > 0, Ω0 ⊂ D open, y−1 ∈ H1
0 (D);

2) Compute yn ∈ H1
0 (D) as solution of the linear elliptic equation

− ∆yn +
1

ǫn
χD\Ωn

(yn − ψ) = f in D (9)

(here χD\Ωn
is the characteristic function of D \ Ωn, corresponding

to the approximation of the coincidence set in iteration n);
3) yn = max{yn, ψ}, Ωn+1 = {x ∈ D; yn(x) > ψ(x)}, ǫn+1 = ǫn

2 ;
4) If ‖yn − yn−1‖L2(D) < tol then STOP else n=n+1 GO TO step
2.

We can start with Ω0 = D and y−1 > ψ.



Remarks
Let βǫ : R → R denote the Yosida approximation of β. We have
βǫ(r) = 0 if r > 0 and βǫ(r) = 1

ǫ
r if r ≤ 0. Notice that

βǫ(r) = β′ǫ(r)r , if r 6= 0.
We can rewrite the step 2 of the Algorithm 1 as

− ∆yn +
(
β′ǫn

(yn−1 − ψ)
)
(yn − ψ) = f . (10)

The usual approximation by regularization of the variational
inequality is

− ∆ỹn + βǫn (ỹn − ψ) = f in D, (11)

plus homogeneous boundary conditions on ∂D.
The algorithm uses just linear elliptic equations in the whole
domain D.
The type of penalization term from Step 2 may be compared with
the approach developed in shape optimization problems in Tiba
2009.
A classical penalization term for solving the obstacle problem is
1
ǫ
(yn − ψ)− where v−(x) = −v(x) if v(x) < 0 and v−(x) = 0 if

v(x) ≥ 0, see for example Glowinski 1981.



Two obstacles problem

We denote now ψ1, ψ2 : D → R, ψ1 ≤ ψ2 in D, ψ1|∂D ≤ 0,
ψ2|∂D ≥ 0 and

K̃ =
{
y ∈ H1

0 (D); ψ1(x) ≤ y(x) ≤ ψ2(x) a.e. in D
}

which is a closed convex subset of H1
0 (D).

To K̃ , the following variational inequality may be associated:

∫

D

∇y · (∇y −∇v) dx ≤

∫

D

f (y − v) dx , ∀v ∈ K̃ (12)

The existence of a unique solution y ∈ K̃ is wellknown.



Algorithm 2

1) Choose n = 0, ǫ0 > 0, Ω0
1 ⊂ D, Ω0

2 ⊂ D open subsets such that
(D \ Ω0

1) ∩ (D \ Ω0
2) = ∅, y−1;

2) Compute yn ∈ H1
0 (D) as solution of the linear elliptic equation

− ∆yn +
1

ǫn
χD\Ωn

1
(yn − ψ1) +

1

ǫn
χD\Ωn

2
(yn − ψ2) = f in D (13)

3) Compute yn = min {ψ2, max{yn, ψ1}},
Ωn+1

1 = {x ∈ D; yn(x) > ψ1(x)},
Ωn+1

2 = {x ∈ D; yn(x) < ψ2(x)} ǫn+1 = ǫn

2 ;
4) If ‖yn − yn−1‖L2(D) < tol then STOP else n=n+1 GO TO step
2.



Convergence

Lemma Denote by ŷ ∈ H2(D) ∩ H1
0 (D) the solution of

− ∆ŷ = f in D, ŷ = 0 on ∂D. (14)

Then y ≥ ŷ a. e. in D.

Lemma The solution y of (1)-(4) satisfies the same problem with
ψ replaced by ψ̂.



Convergence

For Algorithm 1.
Theorem i) On a subsequence, yn → y̌ weakly in H1

0 (D) and
Ωn → Ω in the complementary Hausdorff-Pompeiu topology.
ii) If y̌ ∈ C1(D) and {Ωn} are uniformly of class C, then y̌ is the
solution of (1)-(4) with D+ = Ω. The convergence is valid without
taking subsequences.

For Algorithm 2.
Theorem The sequence {yn} is bounded in L2(D). Moreover,
there is C > 0, independent of n, such that:

∫

D\Ωn
2

(yn − ψ2)
2
+dx +

∫

D\Ωn
1

(yn − ψ1)
2
−dx ≤ Cǫn. (15)



Numerical tests

D = {(x1, x2);
√

x2
1 + x2

2 < 1}

ψ(x1, x2) =





1
2 , 0.5 ≤ x1 ≤ 0.7 and − 0.1 ≤ x2 ≤ 0.1
−12.5

(
(x1 + 0.4)2 + x2

2

)
+ 0.5, (x1 + 0.4)2 + x2

2 ≤ 0.08
−1

2 , otherwise.

We notice that ψ is not continuous, but the method still works.

f (x1, x2) =

{
3.5, x2

1 + x2
2 ≤ 0.16

−0.001, otherwise.

The mesh has 109898 triangles and 55350 vertices, the tolerance
for the stopping test tol = 10−17 and we use a fixed penalization
parameter ǫn = 10−4, for all n ∈ N. After 11 iterations the relative
error no longer change.



The coincidence set (blue) at the left and the computed

solution with the obstacle



Torsion of an elastic-plastic prism
D = [0, 1] × [0, 1], f (x) = −8 and ψ(x) = −dist(x , ∂D).
Mesh of 39216 triangles, 19865 vertices and size h = 1

128 .
The tolerance for the stopping test is tol = 10−18 and the
penalization parameter is ǫn = 0.003.

The computed coincidence set (blue).

The Algorithm 1 stops after 6 iterations. The algorithm presented
in Xue 2004 stops after 7 iterations, while the over-relaxation
algorithm with projection presented in Glowinski 1981 p. 133 stops
after 93 iterations.



Bilateral elastic-plastic torsion problem

D = [0, 1] × [0, 1], ψ1(x , y) = −dist ((x , y), ∂D), ψ2(x , y) = 0.2

g(x) =





6x , 0 < x ≤ 1/6,
2(1 − 3x), 1/6 < x ≤ 1/3,
6(x − 1/3), 1/3 < x ≤ 1/2,

2 (1 − 3(x − 1/3)) , 1/2 < x ≤ 2/3,
6(x − 2/3), 2/3 < x ≤ 5/6,

2 (1 − 3(x − 2/3)) , 5/6 < x ≤ 1

and f (x , y) =





300, (x , y) ∈ S = {(x , y) ∈ D; |x − y | ≤ 0.1 and x ≤ 0.3
−70 exp(y)g(x), x ≤ 1 − y and (x , y) /∈ S ,
15 exp(y)g(x), x > 1 − y and (x , y) /∈ S .

We use a mesh of 9662 triangles, 4960 vertices, the size h = 1
64 ,

the tolerance for the stopping test tol = 10−1 and the penalization
parameter is ǫn = 0.003.



Computed solution after 15 iterations



Coincidence sets (blue) for the bottom obstacle (left) and

for the top obstacle (right)



In Karkkainen 2003, an augmented lagrangian active set strategy is
employed. At each iteration, a reduced linear system associated
with the inactive set is solved. Without multigrid nested iterations,
the algorithm stops after 30 iterations.

In Wang 2008, at each iteration, linear systems associated to the
complementary of the coincidence sets are solved. There are no
information about the number of iterations, only on the CPU time;
for example the total CPU time for the “up down” algorithm is
916 s and the compute time of a linear system is 46 s.

For instance, the CPU time is 15.12 s on a PC with Intel i5 2.53
GHz and 4 Go RAM in our algorithm.



Parabolic obstacle problem

ψ ∈ L2
(
0,T ;H2(D)

)
∩ H1

(
0,T ;L2(D)

)
,

ψ(t, x) ≤ 0 a.e. on [0,T ] × ∂D, f ∈ L2 ([0,T ] × D)

∂y

∂t
− ∆y + β(y − ψ) ∋ f a.e. in [0,T ] × D (16)

together with (19).

K(t) =
{
v ∈ H1

0 (D); v(x) ≥ ψ(t, x) a.e. D
}
, (17)

∫

D

∂y

∂t
(y − v)dx +

∫

D

∇y · ∇(y − v)dx ≤

∫

D

f (y − v)dx ,

∀v ∈ L2
(
0,T ;H1

0 (D)
)
, v(t) ∈ K(t) a.e. [0,T ]. (18)

y(0, x) = y0(x) ∈ K(0) ⊂ H1
0 (D) a.e. in D, (19)



Algorithm 2.1

1) Choose n = 0, ǫ0 > 0, y−1(t, x) = y0(x), ỹ−1(t, x) = y0(x).
2) Compute yn ∈ L2

(
0,T ;H2(D)

)
∩ H1

(
0,T ;L2(D)

)
as solution

of the linear parabolic equation

∂yn

∂t
− ∆yn +

[
β′ǫn

(yn−1 − ψ)
]
(yn − ψ) = f , a.e. in [0,T ] × D,

yn(0, x) = y0(x) in D.

3) ỹn = max(yn, ψ), ǫn+1 = 1
2ǫn

4) If ‖ỹn − ỹn−1‖L2([0,T ]×D) < tol then STOP; else n=n+1 GO TO
step 2.



Algorithm 2.2

0) Put y0(x) = y0(x).
For k = 0, 1, . . . ,m − 1, ∆t = T/m do step 1) to step 4)
1) Choose n = 0, ǫ0 > 0, ỹk+1

−1 = yk

2) Compute yk+1
n ∈ H1

0 (D) as solution of the linear parabolic
equation

yk+1
n − yk

∆t
− ∆yk+1

n +
[
β′ǫn

(yk+1
n−1 − ψ)

]
(yk+1

n − ψ) = f k+1

3) ỹk+1
n = max(yk+1

n , ψ), ǫn+1 = 1
2ǫn

4) If
∥∥∥ỹk+1

n − ỹk+1
n−1

∥∥∥
L2(D)

< tol then yk+1 = ỹk+1
n , STOP;

else n=n+1 GO TO step 2.



Two-phase Stefan problem

γ(yk+1) − γ(yk)

∆t
− ∆yk+1 = f k+1 in D, (20)

The maximal monotone enthalpy graph γ ⊂ R × R

γ(r) =





ar , r < 0,
[0,L] , r = 0,
br + L, r > 0

(21)

with a, b, L positive constants related to the thermal conductivity
in the liquid/solid phases and to the latent heat.
The subsequent regularization γǫ is similar to the Yosida
regularization and Lipschitzian of rang 1

ǫ
:

γǫ(r) =





ar , r ≤ 0,
1
ǫ
r , 0 < r < Lǫ

1−ǫb
,

br + L, r ≥ Lǫ
1−ǫb

.

(22)



Algorithm 2.3

0) Choose y0(x) = y0(x), ǫ > 0.
For k = 0, 1, . . . ,m − 1 do step 1) to step 3)
1) Choose n = 0, yk+1

−1 = yk .
2) Compute yk+1

n ∈ H1
0 (D) as solution of the linear parabolic

equation

γ̃ǫ(y
k+1
n ) − γǫ(y

k)

∆t
− ∆yk+1

n = f k+1, in D

where

γ̃ǫ(y
k+1
n (x)) =





a yk+1
n (x), yk+1

n−1 (x) ≤ 0,
1
ǫ
yk+1
n (x), 0 < yk+1

n−1 (x) < Lǫ
1−ǫb

,

b yk+1
n (x) + L, yk+1

n−1 (x) ≥ Lǫ
1−ǫb

.

3) If
∥∥∥yk+1

n − yk+1
n−1

∥∥∥
L2(D)

< tol then yk+1 = yk+1
n , STOP;

else n=n+1 GO TO step 2.



Convergence for Algorithms 2.1 and 2.3
Proposition We have {yn} bounded in
L∞(0,T ;L2(D)) ∩ L2(0,T ;H1

0 (D)) and yn → ỹ on a subsequence
weakly in L∞(0,T ;L2(D)) ∩ L2(0,T ;H1

0 (D)). Moreover, ỹ ≤ y

a.e. in [0,T ] × D and

∫

Qn

(yn − ψ)2dxdt ≤ Cǫn

with C independent of n and
Qn = {(t, x) ∈ [0,T ] × D; yn−1(t, x) < ψ(t, x)}.
Proposition i) The sequence {yk+1

n } is bounded in H1
0 (D) with

respect to n. If y0 ∈ H1
0 (D) ∩ Lp(D) and f is in C(0,T ;Lp(D)),

p ≥ 2, then {yk+1
n } is bounded in W 2,p(D) ∩ H1

0 (D) with respect
to n.
ii) If yk+1

n → ỹk+1 weakly in W 2,p(D), p > d , then ỹk+1 satisfies

γǫ(ỹ
k+1) − γǫ(y

k)

∆t
− ∆ ỹk+1 = f k+1, in D. (23)



One phase Stefan problem
D = (−1, 1) × (−1, 1), T = 0.5, ψ = 0 and f = −2 on [0,T ] × D

penalization parameter ǫn = 10−3, time step ∆t = 0.05, mesh size
h = 1/160
The Algorithm 2.1 ends after n = 10 iterations, and the Algorithm
2.2 performs n = 6 or n = 5 iterations by time step.

The free boundary position at t = 0.05, t = 0.15, t = 0.30,
t = 0.5 (from the exterior to the center) at the left and computed

solution at t = 0.5 at the right



Two phase Stefan problem
D = {(x1, x2); x2

1 + x2
2 ≤ 1}, T = 0.5,

f (t, x1, x2) =





8(2e−2t − 1),
√

x2
1 + x2

2 > e−t ,

2(2e−2t − 2),
√

x2
1 + x2

2 ≤ e−t ,

γ(r) =





r , r < 0,
[0, 2] , r = 0,
4r + 2, r > 0

The exact solution is

y(t, x1, x2) =





2(x2
1 + x2

2 − e−2t),
√

x2
1 + x2

2 > e−t ,

x2
1 + x2

2 − e−2t ,
√

x2
1 + x2

2 ≤ e−t .

mesh of 85030 triangles and 42866 vertices
The error between the exact and the calculated solution
‖ycalc − yext‖L2(0,T ;L2(D)) is 0.193753 for the time step ∆t = 0.01
and the number of time steps N = 50.



Two phase Stefan problem

Free boundary position at t = 0.1, t = 0.2, t = 0.3 (from the
exterior to the center) at the left and computed solution at t = 0.1

at the right



Thank you!


